code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float ): """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
1
"""simple docstring""" from math import factorial __snake_case = {str(d): factorial(d) for d in range(10)} def A_ ( _lowerCAmelCase : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(_lowerCAmelCase ) ) def A_ ( ): """simple docstring""" _a = 7 * factorial(9 ) + 1 return sum(i for i in range(3, _lowerCAmelCase ) if sum_of_digit_factorial(_lowerCAmelCase ) == i ) if __name__ == "__main__": print(f'{solution() = }')
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
1
"""simple docstring""" import torch from diffusers import DiffusionPipeline class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) def __call__( self ) -> Union[str, Any]: _a = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _a = 1 _a = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample _a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample _a = scheduler_output - scheduler_output + torch.ones_like(__UpperCAmelCase ) return result
320
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
1
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __snake_case = { '''allenai/led-base-16384''': 16384, } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : Tuple = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : int = LEDTokenizer A_ : Tuple = ['input_ids', 'attention_mask'] def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __UpperCAmelCase ) != add_prefix_space: _a = getattr(__UpperCAmelCase , pre_tok_state.pop('''type''' ) ) _a = add_prefix_space _a = pre_tok_class(**__UpperCAmelCase ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = '''post_processor''' _a = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state['''sep'''] ) if "cls" in state: _a = tuple(state['''cls'''] ) _a = False if state.get('''add_prefix_space''' , __UpperCAmelCase ) != add_prefix_space: _a = add_prefix_space _a = True if state.get('''trim_offsets''' , __UpperCAmelCase ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(__UpperCAmelCase , state.pop('''type''' ) ) _a = component_class(**__UpperCAmelCase ) setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value _a = value def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding: _a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding: _a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> int: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> dict: _a = super()._pad( encoded_inputs=__UpperCAmelCase , max_length=__UpperCAmelCase , padding_strategy=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: _a = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _a = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _a = len(encoded_inputs['''global_attention_mask'''] ) != len(__UpperCAmelCase ) if needs_to_be_padded: _a = len(__UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _a = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _a = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
320
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
1
"""simple docstring""" __snake_case = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
320
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Dict, _lowerCAmelCase : List[str], _lowerCAmelCase : Tuple, _lowerCAmelCase : List[Any]=True, _lowerCAmelCase : Any="pt" ): """simple docstring""" _a = {'''add_prefix_space''': True} if isinstance(_lowerCAmelCase, _lowerCAmelCase ) and not line.startswith(''' ''' ) else {} _a = padding_side return tokenizer( [line], max_length=_lowerCAmelCase, padding='''max_length''' if pad_to_max_length else None, truncation=_lowerCAmelCase, return_tensors=_lowerCAmelCase, add_special_tokens=_lowerCAmelCase, **_lowerCAmelCase, ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : Any=None, ): """simple docstring""" _a = input_ids.ne(_lowerCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="train" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , ) -> List[Any]: super().__init__() _a = Path(__UpperCAmelCase ).joinpath(type_path + '''.source''' ) _a = Path(__UpperCAmelCase ).joinpath(type_path + '''.target''' ) _a = self.get_char_lens(self.src_file ) _a = max_source_length _a = max_target_length assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}' _a = tokenizer _a = prefix if n_obs is not None: _a = self.src_lens[:n_obs] _a = src_lang _a = tgt_lang def __len__( self ) -> Union[str, Any]: return len(self.src_lens ) def __getitem__( self , __UpperCAmelCase ) -> Dict[str, torch.Tensor]: _a = index + 1 # linecache starts at 1 _a = self.prefix + linecache.getline(str(self.src_file ) , __UpperCAmelCase ).rstrip('''\n''' ) _a = linecache.getline(str(self.tgt_file ) , __UpperCAmelCase ).rstrip('''\n''' ) assert source_line, F'empty source line for index {index}' assert tgt_line, F'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _a = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer ) _a = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer _a = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_source_length , '''right''' ) _a = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_target_length , '''right''' ) _a = source_inputs['''input_ids'''].squeeze() _a = target_inputs['''input_ids'''].squeeze() _a = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _UpperCAmelCase ( __UpperCAmelCase ) -> Dict: return [len(__UpperCAmelCase ) for x in Path(__UpperCAmelCase ).open().readlines()] def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict[str, torch.Tensor]: _a = torch.stack([x['''input_ids'''] for x in batch] ) _a = torch.stack([x['''attention_mask'''] for x in batch] ) _a = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _a = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) _a = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) _a = trim_batch(__UpperCAmelCase , __UpperCAmelCase ) _a , _a = trim_batch(__UpperCAmelCase , __UpperCAmelCase , attention_mask=__UpperCAmelCase ) _a = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __snake_case = getLogger(__name__) def A_ ( _lowerCAmelCase : List[List] ): """simple docstring""" return list(itertools.chain.from_iterable(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = get_git_info() save_json(_lowerCAmelCase, os.path.join(_lowerCAmelCase, '''git_log.json''' ) ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : List[Any]=4, **_lowerCAmelCase : Optional[Any] ): """simple docstring""" with open(_lowerCAmelCase, '''w''' ) as f: json.dump(_lowerCAmelCase, _lowerCAmelCase, indent=_lowerCAmelCase, **_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" with open(_lowerCAmelCase ) as f: return json.load(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = git.Repo(search_parent_directories=_lowerCAmelCase ) _a = { '''repo_id''': str(_lowerCAmelCase ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def A_ ( _lowerCAmelCase : Callable, _lowerCAmelCase : Iterable ): """simple docstring""" return list(map(_lowerCAmelCase, _lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Any ): """simple docstring""" with open(_lowerCAmelCase, '''wb''' ) as f: return pickle.dump(_lowerCAmelCase, _lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): return re.sub(R'''\b(a|an|the)\b''', ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : List[Any] ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : str ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = normalize_answer(_lowerCAmelCase ).split() _a = normalize_answer(_lowerCAmelCase ).split() _a = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase ) _a = sum(common.values() ) if num_same == 0: return 0 _a = 1.0 * num_same / len(_lowerCAmelCase ) _a = 1.0 * num_same / len(_lowerCAmelCase ) _a = (2 * precision * recall) / (precision + recall) return fa def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[str] ): """simple docstring""" assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = 0 for hypo, pred in zip(_lowerCAmelCase, _lowerCAmelCase ): em += exact_match_score(_lowerCAmelCase, _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: em /= len(_lowerCAmelCase ) return {"em": em} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return model_prefix.startswith('''rag''' ) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _a = '''dropout_rate''' for p in extra_params: if getattr(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): if not hasattr(_lowerCAmelCase, _lowerCAmelCase ) and not hasattr(_lowerCAmelCase, equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(_lowerCAmelCase ) ) delattr(_lowerCAmelCase, _lowerCAmelCase ) continue _a = p if hasattr(_lowerCAmelCase, _lowerCAmelCase ) else equivalent_param[p] setattr(_lowerCAmelCase, _lowerCAmelCase, getattr(_lowerCAmelCase, _lowerCAmelCase ) ) delattr(_lowerCAmelCase, _lowerCAmelCase ) return hparams, config
320
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
1
"""simple docstring""" import argparse import os import re import packaging.version __snake_case = '''examples/''' __snake_case = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } __snake_case = { '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } __snake_case = '''README.md''' def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: _a = f.read() _a , _a = REPLACE_PATTERNS[pattern] _a = replace.replace('''VERSION''', _lowerCAmelCase ) _a = re_pattern.sub(_lowerCAmelCase, _lowerCAmelCase ) with open(_lowerCAmelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.write(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" for folder, directories, fnames in os.walk(_lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(_lowerCAmelCase, _lowerCAmelCase ), _lowerCAmelCase, pattern='''examples''' ) def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Any=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) if not patch: update_version_in_examples(_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = '''🤗 Transformers currently provides the following architectures''' _a = '''1. Want to contribute a new model?''' with open(_lowerCAmelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f: _a = f.readlines() # Find the start of the list. _a = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _a = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): _a = lines[index].replace( '''https://huggingface.co/docs/transformers/main/model_doc''', '''https://huggingface.co/docs/transformers/model_doc''', ) index += 1 with open(_lowerCAmelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f: f.writelines(_lowerCAmelCase ) def A_ ( ): """simple docstring""" with open(REPLACE_FILES['''init'''], '''r''' ) as f: _a = f.read() _a = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0] return packaging.version.parse(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Tuple=False ): """simple docstring""" _a = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: _a = default_version.base_version elif patch: _a = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: _a = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. _a = input(f'Which version are you releasing? [{default_version}]' ) if len(_lowerCAmelCase ) == 0: _a = default_version print(f'Updating version to {version}.' ) global_version_update(_lowerCAmelCase, patch=_lowerCAmelCase ) if not patch: print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() def A_ ( ): """simple docstring""" _a = get_version() _a = f'{current_version.major}.{current_version.minor + 1}.0.dev0' _a = current_version.base_version # Check with the user we got that right. _a = input(f'Which version are we developing now? [{dev_version}]' ) if len(_lowerCAmelCase ) == 0: _a = dev_version print(f'Updating version to {version}.' ) global_version_update(_lowerCAmelCase ) print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' ) clean_main_ref_in_model_list() if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') __snake_case = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
320
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[int], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = AlbertConfig.from_json_file(_lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) _a = AlbertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
320
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
1
"""simple docstring""" __snake_case = 256 # Modulus to hash a string __snake_case = 1000003 def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = len(_lowerCAmelCase ) if p_len > t_len: return False _a = 0 _a = 0 _a = 1 # Calculating the hash of pattern and substring of text for i in range(_lowerCAmelCase ): _a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _a = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _a = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _a = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def A_ ( ): """simple docstring""" _a = '''abc1abc12''' _a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _a = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase, _lowerCAmelCase ) # Test 2) _a = '''ABABX''' _a = '''ABABZABABYABABX''' assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase ) # Test 3) _a = '''AAAB''' _a = '''ABAAAAAB''' assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase ) # Test 4) _a = '''abcdabcy''' _a = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase ) # Test 5) _a = '''Lü''' _a = '''Lüsai''' assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase ) _a = '''Lue''' assert not rabin_karp(_lowerCAmelCase, _lowerCAmelCase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Optional[Any]: _a = '''ZinengTang/tvlt-base''' _a = tempfile.mkdtemp() def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Optional[Any]: return TvltImageProcessor.from_pretrained(self.checkpoint , **__UpperCAmelCase ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> int: return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: shutil.rmtree(self.tmpdirname ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) _a = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) _a = np.ones([12000] ) _a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' ) _a = processor(audio=__UpperCAmelCase , return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> int: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) _a = np.ones([3, 224, 224] ) _a = image_processor(__UpperCAmelCase , return_tensors='''np''' ) _a = processor(images=__UpperCAmelCase , return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _UpperCAmelCase ( self ) -> Dict: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) _a = np.ones([12000] ) _a = np.ones([3, 224, 224] ) _a = processor(audio=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def _UpperCAmelCase ( self ) -> int: _a = self.get_image_processor() _a = self.get_feature_extractor() _a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
320
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
1
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
1
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: _a = dataset _a = process _a = params def __len__( self ) -> Any: return len(self.dataset ) def __getitem__( self , __UpperCAmelCase ) -> List[Any]: _a = self.dataset[i] _a = self.process(__UpperCAmelCase , **self.params ) return processed class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]: _a = loader _a = infer _a = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _a = None _a = loader_batch_size # Internal bookkeeping _a = None _a = None def __len__( self ) -> List[Any]: return len(self.loader ) def __iter__( self ) -> List[Any]: _a = iter(self.loader ) return self def _UpperCAmelCase ( self ) -> str: if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _a = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _a = {} for k, element in self._loader_batch_data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Convert ModelOutput to tuple first _a = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _a = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _a = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _a = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _a = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _a = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _a = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _a = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _a = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _a = self._loader_batch_data.__class__(__UpperCAmelCase ) self._loader_batch_index += 1 return result def _UpperCAmelCase ( self ) -> Optional[Any]: if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _a = next(self.iterator ) _a = self.infer(__UpperCAmelCase , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(__UpperCAmelCase , torch.Tensor ): _a = processed else: _a = list(processed.keys() )[0] _a = processed[key] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = len(__UpperCAmelCase ) else: _a = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _a = observed_batch_size # Setting internal index to unwrap the batch _a = processed _a = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[Any]: super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __iter__( self ) -> int: _a = iter(self.loader ) _a = None return self def _UpperCAmelCase ( self ) -> List[Any]: if self.subiterator is None: _a = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _a = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _a = self.infer(next(self.iterator ) , **self.params ) _a = next(self.subiterator ) return processed class __lowerCamelCase ( a__ ): '''simple docstring''' def __iter__( self ) -> Any: _a = iter(self.loader ) return self def _UpperCAmelCase ( self ) -> Any: # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. _a = False _a = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _a = self.loader_batch_item() _a = item.pop('''is_last''' ) accumulator.append(__UpperCAmelCase ) if is_last: return accumulator while not is_last: _a = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(__UpperCAmelCase , torch.Tensor ): _a = processed else: _a = list(processed.keys() )[0] _a = processed[key] if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = len(__UpperCAmelCase ) else: _a = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _a = observed_batch_size _a = processed _a = 0 while self._loader_batch_index < self.loader_batch_size: _a = self.loader_batch_item() _a = item.pop('''is_last''' ) accumulator.append(__UpperCAmelCase ) if is_last: return accumulator else: _a = processed _a = item.pop('''is_last''' ) accumulator.append(__UpperCAmelCase ) return accumulator class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: _a = dataset _a = key def __len__( self ) -> Optional[Any]: return len(self.dataset ) def __getitem__( self , __UpperCAmelCase ) -> List[str]: return self.dataset[i][self.key] class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = dataset _a = keya _a = keya def __len__( self ) -> Optional[Any]: return len(self.dataset ) def __getitem__( self , __UpperCAmelCase ) -> List[Any]: return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
320
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=99 , __UpperCAmelCase=0 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase="last" , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> List[Any]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope def _UpperCAmelCase ( self ) -> List[Any]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _UpperCAmelCase ( self ) -> Optional[int]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: _a = FlaubertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , lengths=__UpperCAmelCase , langs=__UpperCAmelCase ) _a = model(__UpperCAmelCase , langs=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[str]: _a = FlaubertWithLMHeadModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = FlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]: _a = FlaubertForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase ) _a = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , p_mask=__UpperCAmelCase , ) _a = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = FlaubertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = self.num_labels _a = FlaubertForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = self.num_choices _a = FlaubertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : int = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A_ : Dict = ( { 'feature-extraction': FlaubertModel, 'fill-mask': FlaubertWithLMHeadModel, 'question-answering': FlaubertForQuestionAnsweringSimple, 'text-classification': FlaubertForSequenceClassification, 'token-classification': FlaubertForTokenClassification, 'zero-shot': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Any: _a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def _UpperCAmelCase ( self ) -> List[str]: _a = FlaubertModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def _UpperCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = FlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _a = True _a = model_class(config=__UpperCAmelCase ) _a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) _a = torch.jit.trace( __UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) ) _a = torch.jit.load(os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) , map_location=__UpperCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(__UpperCAmelCase ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> Optional[int]: _a = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _a = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): _a = model(__UpperCAmelCase )[0] _a = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) _a = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
320
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case = logging.get_logger(__name__) __snake_case = {'''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = VOCAB_FILES_NAMES A_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = ['input_ids', 'attention_mask'] A_ : str = None def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> str: super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , **__UpperCAmelCase , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __UpperCAmelCase ) != add_prefix_space: _a = getattr(__UpperCAmelCase , pre_tok_state.pop('''type''' ) ) _a = add_prefix_space _a = pre_tok_class(**__UpperCAmelCase ) _a = add_prefix_space def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding: _a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding: _a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with' ''' pretokenized inputs.''' ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[int]: _a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: _a = input_ids[-self.model_max_length :] return input_ids
320
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
1
"""simple docstring""" import re from filelock import FileLock try: import nltk __snake_case = True except (ImportError, ModuleNotFoundError): __snake_case = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A_ ( _lowerCAmelCase : str ): """simple docstring""" re.sub('''<n>''', '''''', _lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
320
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Optional[Any] ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ), end='''\t''' ) else: print('''INF''', end='''\t''' ) print() def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : str ): """simple docstring""" _a = [[float('''inf''' ) for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )] for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): _a = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(_lowerCAmelCase ): # looping through rows of graph array for i in range(_lowerCAmelCase ): # looping through columns of graph array for j in range(_lowerCAmelCase ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): _a = dist[i][k] + dist[k][j] _print_dist(_lowerCAmelCase, _lowerCAmelCase ) return dist, v if __name__ == "__main__": __snake_case = int(input('''Enter number of vertices: ''')) __snake_case = int(input('''Enter number of edges: ''')) __snake_case = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): __snake_case = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) __snake_case = int(input('''Enter source:''')) __snake_case = int(input('''Enter destination:''')) __snake_case = float(input('''Enter weight:''')) __snake_case = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
320
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
1
"""simple docstring""" __snake_case = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __snake_case = frozenset(['''prompt''', '''negative_prompt''']) __snake_case = frozenset([]) __snake_case = frozenset(['''image''']) __snake_case = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) __snake_case = frozenset(['''image''']) __snake_case = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __snake_case = frozenset(['''prompt''', '''image''', '''negative_prompt''']) __snake_case = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __snake_case = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) __snake_case = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __snake_case = frozenset(['''image''', '''mask_image''']) __snake_case = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __snake_case = frozenset(['''example_image''', '''image''', '''mask_image''']) __snake_case = frozenset(['''class_labels''']) __snake_case = frozenset(['''class_labels''']) __snake_case = frozenset(['''batch_size''']) __snake_case = frozenset([]) __snake_case = frozenset(['''batch_size''']) __snake_case = frozenset([]) __snake_case = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __snake_case = frozenset(['''prompt''', '''negative_prompt''']) __snake_case = frozenset(['''input_tokens''']) __snake_case = frozenset(['''input_tokens'''])
320
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
1
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : List[Any], _lowerCAmelCase : Any ): """simple docstring""" _a = MobileBertConfig.from_json_file(_lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) _a = MobileBertForPreTraining(_lowerCAmelCase ) # Load weights from tf checkpoint _a = load_tf_weights_in_mobilebert(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
320
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = MgpstrTokenizer A_ : Tuple = False A_ : Any = {} A_ : Optional[int] = False def _UpperCAmelCase ( self ) -> Union[str, Any]: super().setUp() # fmt: off _a = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z'''] # fmt: on _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' ) def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Optional[Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: _a = '''tester''' _a = '''tester''' return input_text, output_text @unittest.skip('''MGP-STR always lower cases letters.''' ) def _UpperCAmelCase ( self ) -> int: pass def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.get_tokenizers(do_lower_case=__UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _a = '''[SPECIAL_TOKEN]''' tokenizer.add_special_tokens({'''cls_token''': special_token} ) _a = tokenizer.encode([special_token] , add_special_tokens=__UpperCAmelCase ) self.assertEqual(len(__UpperCAmelCase ) , 1 ) _a = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) self.assertTrue(special_token not in decoded ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): _a , _a = self.get_input_output_texts(__UpperCAmelCase ) _a = tokenizer.tokenize(__UpperCAmelCase ) _a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertNotEqual(len(__UpperCAmelCase ) , 0 ) _a = tokenizer.decode(__UpperCAmelCase ) self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase ) self.assertEqual(text_a.replace(''' ''' , '''''' ) , __UpperCAmelCase ) @unittest.skip('''MGP-STR tokenizer only handles one sequence.''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' ) def _UpperCAmelCase ( self ) -> Optional[Any]: pass
320
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
1
"""simple docstring""" from math import sqrt def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" _a = True # 0 and 1 are none primes. if number <= 1: _a = False for divisor in range(2, int(round(sqrt(_lowerCAmelCase ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _a = False break # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'status' must been from type bool" return status def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _a = list(range(2, n + 1 ) ) _a = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_lowerCAmelCase ) ): for j in range(i + 1, len(_lowerCAmelCase ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _a = 0 # filters actual prime numbers. _a = [x for x in begin_list if x != 0] # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2" _a = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2, n + 1 ): if is_prime(_lowerCAmelCase ): ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0" _a = [] # this list will be returns of the function. # potential prime number factors. _a = 2 _a = number if number == 0 or number == 1: ans.append(_lowerCAmelCase ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_lowerCAmelCase ): while quotient != 1: if is_prime(_lowerCAmelCase ) and (quotient % factor == 0): ans.append(_lowerCAmelCase ) quotient /= factor else: factor += 1 else: ans.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type list" return ans def A_ ( _lowerCAmelCase : Any ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _a = 0 # prime factorization of 'number' _a = prime_factorization(_lowerCAmelCase ) _a = max(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and ( number >= 0 ), "'number' bust been an int and >= 0" _a = 0 # prime factorization of 'number' _a = prime_factorization(_lowerCAmelCase ) _a = min(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type int" return ans def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 == 0, _lowerCAmelCase ), "compare bust been from type bool" return number % 2 == 0 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'number' must been an int" assert isinstance(number % 2 != 0, _lowerCAmelCase ), "compare bust been from type bool" return number % 2 != 0 def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (number > 2) and is_even(_lowerCAmelCase ) ), "'number' must been an int, even and > 2" _a = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _a = get_prime_numbers(_lowerCAmelCase ) _a = len(_lowerCAmelCase ) # run variable for while-loops. _a = 0 _a = None # exit variable. for break up the loops _a = True while i < len_pn and loop: _a = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _a = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (len(_lowerCAmelCase ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Tuple ): """simple docstring""" assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _a = 0 while numbera != 0: _a = numbera % numbera _a = numbera _a = rest # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[int] ): """simple docstring""" assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _a = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _a = prime_factorization(_lowerCAmelCase ) _a = prime_factorization(_lowerCAmelCase ) elif numbera == 1 or numbera == 1: _a = [] _a = [] _a = max(_lowerCAmelCase, _lowerCAmelCase ) _a = 0 _a = 0 _a = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _a = prime_fac_a.count(_lowerCAmelCase ) _a = prime_fac_a.count(_lowerCAmelCase ) for _ in range(max(_lowerCAmelCase, _lowerCAmelCase ) ): ans *= n else: _a = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _a = prime_fac_a.count(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): ans *= n done.append(_lowerCAmelCase ) # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n >= 0), "'number' must been a positive int" _a = 0 _a = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_lowerCAmelCase ): ans += 1 # precondition assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and is_prime( _lowerCAmelCase ), "'ans' must been a prime number and from type int" return ans def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert ( is_prime(_lowerCAmelCase ) and is_prime(_lowerCAmelCase ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _a = p_number_a + 1 # jump to the next number _a = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 while number < p_number_a: ans.append(_lowerCAmelCase ) number += 1 # fetch the next prime number. while not is_prime(_lowerCAmelCase ): number += 1 # precondition assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and ans[0] != p_number_a and ans[len(_lowerCAmelCase ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1" _a = [] # will be returned. for divisor in range(1, n + 1 ): if n % divisor == 0: ans.append(_lowerCAmelCase ) # precondition assert ans[0] == 1 and ans[len(_lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)" return ans def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and ( number > 1 ), "'number' must been an int and >= 1" _a = get_divisors(_lowerCAmelCase ) # precondition assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (divisors[0] == 1) and (divisors[len(_lowerCAmelCase ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _a = gcd(abs(_lowerCAmelCase ), abs(_lowerCAmelCase ) ) # precondition assert ( isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0" _a = 1 # this will be return. for factor in range(1, n + 1 ): ans *= factor return ans def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0" _a = 0 _a = 1 _a = 1 # this will be return for _ in range(n - 1 ): _a = ans ans += fiba _a = tmp return ans
320
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __snake_case = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __snake_case = '''UperNetConfig''' class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = False , __UpperCAmelCase = 1 , ) -> None: super().__init__() _a = nn.Convad( in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , bias=__UpperCAmelCase , dilation=__UpperCAmelCase , ) _a = nn.BatchNormad(__UpperCAmelCase ) _a = nn.ReLU() def _UpperCAmelCase ( self , __UpperCAmelCase ) -> torch.Tensor: _a = self.conv(__UpperCAmelCase ) _a = self.batch_norm(__UpperCAmelCase ) _a = self.activation(__UpperCAmelCase ) return output class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: super().__init__() _a = [ nn.AdaptiveAvgPoolad(__UpperCAmelCase ), UperNetConvModule(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> torch.Tensor: _a = input for layer in self.layers: _a = layer(__UpperCAmelCase ) return hidden_state class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: super().__init__() _a = pool_scales _a = align_corners _a = in_channels _a = channels _a = [] for i, pool_scale in enumerate(__UpperCAmelCase ): _a = UperNetPyramidPoolingBlock(pool_scale=__UpperCAmelCase , in_channels=__UpperCAmelCase , channels=__UpperCAmelCase ) self.blocks.append(__UpperCAmelCase ) self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[torch.Tensor]: _a = [] for ppm in self.blocks: _a = ppm(__UpperCAmelCase ) _a = nn.functional.interpolate( __UpperCAmelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(__UpperCAmelCase ) return ppm_outs class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: super().__init__() _a = config _a = config.pool_scales # e.g. (1, 2, 3, 6) _a = in_channels _a = config.hidden_size _a = False _a = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module _a = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) _a = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module _a = nn.ModuleList() _a = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer _a = UperNetConvModule(__UpperCAmelCase , self.channels , kernel_size=1 ) _a = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(__UpperCAmelCase ) self.fpn_convs.append(__UpperCAmelCase ) _a = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def _UpperCAmelCase ( self ) -> Tuple: self.apply(self._init_weights ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if isinstance(__UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: _a = inputs[-1] _a = [x] psp_outs.extend(self.psp_modules(__UpperCAmelCase ) ) _a = torch.cat(__UpperCAmelCase , dim=1 ) _a = self.bottleneck(__UpperCAmelCase ) return output def _UpperCAmelCase ( self , __UpperCAmelCase ) -> torch.Tensor: # build laterals _a = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(__UpperCAmelCase ) ) # build top-down path _a = len(__UpperCAmelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _a = laterals[i - 1].shape[2:] _a = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=__UpperCAmelCase , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs _a = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): _a = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) _a = torch.cat(__UpperCAmelCase , dim=1 ) _a = self.fpn_bottleneck(__UpperCAmelCase ) _a = self.classifier(__UpperCAmelCase ) return output class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 ) -> None: super().__init__() _a = config _a = config.auxiliary_in_channels _a = config.auxiliary_channels _a = config.auxiliary_num_convs _a = config.auxiliary_concat_input _a = in_index _a = (kernel_size // 2) * dilation _a = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) ) if self.num_convs == 0: _a = nn.Identity() else: _a = nn.Sequential(*__UpperCAmelCase ) if self.concat_input: _a = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=kernel_size // 2 ) _a = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.apply(self._init_weights ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: if isinstance(__UpperCAmelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def _UpperCAmelCase ( self , __UpperCAmelCase ) -> torch.Tensor: # just take the relevant feature maps _a = encoder_hidden_states[self.in_index] _a = self.convs(__UpperCAmelCase ) if self.concat_input: _a = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) _a = self.classifier(__UpperCAmelCase ) return output class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : int = UperNetConfig A_ : Tuple = 'pixel_values' A_ : int = True def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def _UpperCAmelCase ( self ) -> List[str]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = value __snake_case = r''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __snake_case = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , a__ , ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Optional[int]: super().__init__(__UpperCAmelCase ) _a = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) _a = UperNetHead(__UpperCAmelCase , in_channels=self.backbone.channels ) _a = UperNetFCNHead(__UpperCAmelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC ) def _UpperCAmelCase ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Union[tuple, SemanticSegmenterOutput]: _a = return_dict if return_dict is not None else self.config.use_return_dict _a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a = output_attentions if output_attentions is not None else self.config.output_attentions _a = self.backbone.forward_with_filtered_kwargs( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , output_attentions=__UpperCAmelCase ) _a = outputs.feature_maps _a = self.decode_head(__UpperCAmelCase ) _a = nn.functional.interpolate(__UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__UpperCAmelCase ) _a = None if self.auxiliary_head is not None: _a = self.auxiliary_head(__UpperCAmelCase ) _a = nn.functional.interpolate( __UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__UpperCAmelCase ) _a = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss _a = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) _a = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) _a = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) _a = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: _a = (logits,) + outputs[1:] else: _a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
320
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[int] = 'swinv2' A_ : Tuple = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=32 , **__UpperCAmelCase , ) -> Dict: super().__init__(**__UpperCAmelCase ) _a = image_size _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(__UpperCAmelCase ) _a = num_heads _a = window_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = use_absolute_embeddings _a = layer_norm_eps _a = initializer_range _a = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) _a = (0, 0, 0, 0)
320
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __snake_case = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
320
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
1
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
1
"""simple docstring""" __snake_case = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def A_ ( _lowerCAmelCase : bytes ): """simple docstring""" if not isinstance(_lowerCAmelCase, _lowerCAmelCase ): _a = f'a bytes-like object is required, not \'{data.__class__.__name__}\'' raise TypeError(_lowerCAmelCase ) _a = ''''''.join(bin(_lowerCAmelCase )[2:].zfill(8 ) for byte in data ) _a = len(_lowerCAmelCase ) % 6 != 0 if padding_needed: # The padding that will be added later _a = b'''=''' * ((6 - len(_lowerCAmelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowerCAmelCase ) % 6) else: _a = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowerCAmelCase ), 6 ) ).encode() + padding ) def A_ ( _lowerCAmelCase : str ): """simple docstring""" if not isinstance(_lowerCAmelCase, _lowerCAmelCase ) and not isinstance(_lowerCAmelCase, _lowerCAmelCase ): _a = ( '''argument should be a bytes-like object or ASCII string, ''' f'not \'{encoded_data.__class__.__name__}\'' ) raise TypeError(_lowerCAmelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowerCAmelCase, _lowerCAmelCase ): try: _a = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) _a = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _a = encoded_data[:-padding] _a = ''''''.join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _a = ''''''.join( bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data ) _a = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowerCAmelCase ), 8 ) ] return bytes(_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _a = [] _a = 11 _a = int('''1''' + '''0''' * digit_len ) for num in range(_lowerCAmelCase, _lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_lowerCAmelCase, _lowerCAmelCase ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 _a = 10 return solutions def A_ ( _lowerCAmelCase : int = 2 ): """simple docstring""" _a = 1.0 for fraction in fraction_list(_lowerCAmelCase ): _a = Fraction(_lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(_lowerCAmelCase ) if __name__ == "__main__": print(solution())
320
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
1
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def A_ ( _lowerCAmelCase : Accelerator, _lowerCAmelCase : DatasetDict, _lowerCAmelCase : List[int], _lowerCAmelCase : List[int], _lowerCAmelCase : int = 16 ): """simple docstring""" _a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) _a = DatasetDict( { '''train''': dataset['''train'''].select(_lowerCAmelCase ), '''validation''': dataset['''train'''].select(_lowerCAmelCase ), '''test''': dataset['''validation'''], } ) def tokenize_function(_lowerCAmelCase : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) _a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=_lowerCAmelCase, max_length=_lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _a = datasets.map( _lowerCAmelCase, batched=_lowerCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a = tokenized_datasets.rename_column('''label''', '''labels''' ) def collate_fn(_lowerCAmelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. _a = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _a = 16 elif accelerator.mixed_precision != "no": _a = 8 else: _a = None return tokenizer.pad( _lowerCAmelCase, padding='''longest''', max_length=_lowerCAmelCase, pad_to_multiple_of=_lowerCAmelCase, return_tensors='''pt''', ) # Instantiate dataloaders. _a = DataLoader( tokenized_datasets['''train'''], shuffle=_lowerCAmelCase, collate_fn=_lowerCAmelCase, batch_size=_lowerCAmelCase ) _a = DataLoader( tokenized_datasets['''validation'''], shuffle=_lowerCAmelCase, collate_fn=_lowerCAmelCase, batch_size=_lowerCAmelCase ) _a = DataLoader( tokenized_datasets['''test'''], shuffle=_lowerCAmelCase, collate_fn=_lowerCAmelCase, batch_size=_lowerCAmelCase ) return train_dataloader, eval_dataloader, test_dataloader def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _a = [] # Download the dataset _a = load_dataset('''glue''', '''mrpc''' ) # Create our splits _a = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config['''lr'''] _a = int(config['''num_epochs'''] ) _a = int(config['''seed'''] ) _a = int(config['''batch_size'''] ) _a = evaluate.load('''glue''', '''mrpc''' ) # If the batch size is too big we use gradient accumulation _a = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _a = batch_size // MAX_GPU_BATCH_SIZE _a = MAX_GPU_BATCH_SIZE set_seed(_lowerCAmelCase ) # New Code # # Create our folds: _a = kfold.split(np.zeros(datasets['''train'''].num_rows ), datasets['''train''']['''label'''] ) _a = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowerCAmelCase ): _a , _a , _a = get_fold_dataloaders( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=_lowerCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a = model.to(accelerator.device ) # Instantiate optimizer _a = AdamW(params=model.parameters(), lr=_lowerCAmelCase ) # Instantiate scheduler _a = get_linear_schedule_with_warmup( optimizer=_lowerCAmelCase, num_warmup_steps=1_00, num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a = accelerator.prepare( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Now we train the model for epoch in range(_lowerCAmelCase ): model.train() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _a = model(**_lowerCAmelCase ) _a = outputs.loss _a = loss / gradient_accumulation_steps accelerator.backward(_lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**_lowerCAmelCase ) _a = outputs.logits.argmax(dim=-1 ) _a , _a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=_lowerCAmelCase, references=_lowerCAmelCase, ) _a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:', _lowerCAmelCase ) # New Code # # We also run predictions on the test set at the very end _a = [] for step, batch in enumerate(_lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a = model(**_lowerCAmelCase ) _a = outputs.logits _a , _a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowerCAmelCase, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _a = torch.cat(_lowerCAmelCase, dim=0 ) _a = torch.stack(_lowerCAmelCase, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _a = metric.compute(predictions=_lowerCAmelCase, references=_lowerCAmelCase ) accelerator.print('''Average test metrics from all folds:''', _lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''', type=_lowerCAmelCase, default=_lowerCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''', ) parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''', type=_lowerCAmelCase, default=3, help='''The number of splits to perform across the dataset''' ) _a = parser.parse_args() _a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(_lowerCAmelCase, _lowerCAmelCase ) if __name__ == "__main__": main()
320
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=128 , __UpperCAmelCase=32 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Union[str, Any]: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ) -> Tuple: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self ) -> Optional[Any]: ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.prepare_config_and_inputs() _a = True _a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = NezhaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) _a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = True _a = NezhaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = NezhaForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = NezhaForNextSentencePrediction(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = NezhaForPreTraining(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , next_sentence_label=__UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: _a = NezhaForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = self.num_labels _a = NezhaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = self.num_labels _a = NezhaForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = self.num_choices _a = NezhaForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Dict = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) A_ : List[Any] = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) A_ : Any = True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]: _a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class in get_values(__UpperCAmelCase ): _a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCAmelCase ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def _UpperCAmelCase ( self ) -> int: _a = NezhaModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def _UpperCAmelCase ( self ) -> Any: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: # This regression test was failing with PyTorch < 1.3 ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _a = None self.model_tester.create_and_check_model_as_decoder( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = NezhaModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow @require_torch_gpu def _UpperCAmelCase ( self ) -> Any: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _a = True _a = model_class(config=__UpperCAmelCase ) _a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) _a = torch.jit.trace( __UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , '''bert.pt''' ) ) _a = torch.jit.load(os.path.join(__UpperCAmelCase , '''bert.pt''' ) , map_location=__UpperCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(__UpperCAmelCase ) ) @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> int: _a = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' ) _a = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _a = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _a = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) _a = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) ) @slow def _UpperCAmelCase ( self ) -> Dict: _a = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' ) _a = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _a = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _a = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , __UpperCAmelCase ) _a = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) )
320
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features __snake_case = logging.get_logger(__name__) __snake_case = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) __snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCamelCase : '''simple docstring''' A_ : str = field( default=a__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(a__ )} ) A_ : str = field( default=a__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) A_ : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : int = field( default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) A_ : int = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) A_ : int = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) A_ : bool = field( default=a__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) A_ : bool = field( default=a__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) A_ : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) A_ : int = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) A_ : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) A_ : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = 'train' A_ : Union[str, Any] = 'dev' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : SquadDataTrainingArguments A_ : List[SquadFeatures] A_ : Split A_ : bool def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = Split.train , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = "pt" , ) -> Union[str, Any]: _a = args _a = is_language_sensitive _a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__UpperCAmelCase , __UpperCAmelCase ): try: _a = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) _a = mode # Load data features from cache or dataset file _a = '''v2''' if args.version_2_with_negative else '''v1''' _a = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _a = cached_features_file + '''.lock''' with FileLock(__UpperCAmelCase ): if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache: _a = time.time() _a = torch.load(__UpperCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _a = self.old_features['''features'''] _a = self.old_features.get('''dataset''' , __UpperCAmelCase ) _a = self.old_features.get('''examples''' , __UpperCAmelCase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ''' future run''' ) else: if mode == Split.dev: _a = self.processor.get_dev_examples(args.data_dir ) else: _a = self.processor.get_train_examples(args.data_dir ) _a , _a = squad_convert_examples_to_features( examples=self.examples , tokenizer=__UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__UpperCAmelCase , ) _a = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , __UpperCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ) -> Union[str, Any]: return len(self.features ) def __getitem__( self , __UpperCAmelCase ) -> Dict[str, torch.Tensor]: # Convert to Tensors and build dataset _a = self.features[i] _a = torch.tensor(feature.input_ids , dtype=torch.long ) _a = torch.tensor(feature.attention_mask , dtype=torch.long ) _a = torch.tensor(feature.token_type_ids , dtype=torch.long ) _a = torch.tensor(feature.cls_index , dtype=torch.long ) _a = torch.tensor(feature.p_mask , dtype=torch.float ) _a = torch.tensor(feature.is_impossible , dtype=torch.float ) _a = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _a = torch.tensor(feature.start_position , dtype=torch.long ) _a = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
320
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
1
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : str = 'vision-encoder-decoder' A_ : List[str] = True def __init__( self , **__UpperCAmelCase ) -> str: super().__init__(**__UpperCAmelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F'A configuraton of type {self.model_type} cannot be instantiated because ' F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' ) _a = kwargs.pop('''encoder''' ) _a = encoder_config.pop('''model_type''' ) _a = kwargs.pop('''decoder''' ) _a = decoder_config.pop('''model_type''' ) _a = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase ) _a = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase ) _a = True @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> PretrainedConfig: logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _a = True _a = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.encoder.to_dict() _a = self.decoder.to_dict() _a = self.__class__.model_type return output class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = version.parse('1.11' ) @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCAmelCase ( self ) -> float: return 1e-4 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict() _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _a = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: import torch _a = OrderedDict() _a = super().generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) _a , _a = dummy_input['''input_ids'''].shape _a = (batch, encoder_sequence, self._config.encoder_hidden_size) _a = dummy_input.pop('''input_ids''' ) _a = dummy_input.pop('''attention_mask''' ) _a = torch.zeros(__UpperCAmelCase ) return common_inputs class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> None: pass def _UpperCAmelCase ( self , __UpperCAmelCase ) -> OnnxConfig: return VisionEncoderDecoderEncoderOnnxConfig(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "default" ) -> OnnxConfig: _a = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__UpperCAmelCase , __UpperCAmelCase )
320
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowerCAmelCase, int(b / 2 ) ) * actual_power(_lowerCAmelCase, int(b / 2 ) ) else: return a * actual_power(_lowerCAmelCase, int(b / 2 ) ) * actual_power(_lowerCAmelCase, int(b / 2 ) ) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ): """simple docstring""" if b < 0: return 1 / actual_power(_lowerCAmelCase, _lowerCAmelCase ) return actual_power(_lowerCAmelCase, _lowerCAmelCase ) if __name__ == "__main__": print(power(-2, -3))
320
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = KandinskyVaaControlnetPipeline A_ : Union[str, Any] = ['image_embeds', 'negative_image_embeds', 'hint'] A_ : Any = ['image_embeds', 'negative_image_embeds', 'hint'] A_ : int = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A_ : Optional[Any] = False @property def _UpperCAmelCase ( self ) -> List[Any]: return 32 @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return 32 @property def _UpperCAmelCase ( self ) -> str: return self.time_input_dim @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.time_input_dim * 4 @property def _UpperCAmelCase ( self ) -> List[str]: return 100 @property def _UpperCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) _a = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def _UpperCAmelCase ( self ) -> Any: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _UpperCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.dummy_unet _a = self.dummy_movq _a = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCAmelCase , ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[str]: _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __UpperCAmelCase ) # create hint _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) if str(__UpperCAmelCase ).startswith('''mps''' ): _a = torch.manual_seed(__UpperCAmelCase ) else: _a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _a = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def _UpperCAmelCase ( self ) -> Any: _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**__UpperCAmelCase ) _a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Any: _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) _a = torch.from_numpy(np.array(__UpperCAmelCase ) ).float() / 255.0 _a = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) _a = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) _a = KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) _a = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) _a = '''A robot, 4k photo''' _a = torch.Generator(device='''cuda''' ).manual_seed(0 ) _a , _a = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a = torch.Generator(device='''cuda''' ).manual_seed(0 ) _a = pipeline( image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , hint=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , output_type='''np''' , ) _a = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
320
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
1
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=4 , ) -> str: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_attention_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_choices def _UpperCAmelCase ( self ) -> List[str]: _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_attention_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCAmelCase , ) return config, input_ids, attention_mask def _UpperCAmelCase ( self ) -> str: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def _UpperCAmelCase ( self ) -> str: _a = FlaxDistilBertModelTester(self ) @slow def _UpperCAmelCase ( self ) -> int: for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''distilbert-base-uncased''' ) _a = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase ) @require_flax class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def _UpperCAmelCase ( self ) -> Tuple: _a = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) _a = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] _a = (1, 11, 768) self.assertEqual(output.shape , __UpperCAmelCase ) _a = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) )
320
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=3 , __UpperCAmelCase=224 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , ) -> int: _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def _UpperCAmelCase ( self ) -> List[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = ViTImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Any: _a = EfficientFormerImageProcessorTester(self ) @property def _UpperCAmelCase ( self ) -> List[Any]: return self.image_proc_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> int: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def _UpperCAmelCase ( self ) -> str: pass def _UpperCAmelCase ( self ) -> List[Any]: # Initialize image_processor _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched _a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> Optional[Any]: # Initialize image_processor _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched _a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> Optional[int]: # Initialize image_processor _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , ) # Test batched _a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['''height'''], self.image_proc_tester.size['''width'''], ) , )
320
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
1
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets __snake_case = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' __snake_case = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' __snake_case = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html''' ] , ) def _UpperCAmelCase ( self ) -> Any: if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('''float''' ) ), "references": datasets.Sequence(datasets.Value('''float''' ) ), } else: return { "predictions": datasets.Value('''float''' ), "references": datasets.Value('''float''' ), } def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="uniform_average" , __UpperCAmelCase=True ) -> Optional[int]: _a = mean_squared_error( __UpperCAmelCase , __UpperCAmelCase , sample_weight=__UpperCAmelCase , multioutput=__UpperCAmelCase , squared=__UpperCAmelCase ) return {"mse": mse}
320
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
1
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = RobertaPreLayerNormConfig.from_pretrained( _lowerCAmelCase, architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict _a = torch.load(hf_hub_download(repo_id=_lowerCAmelCase, filename='''pytorch_model.bin''' ) ) _a = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): _a = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue _a = tensor_value _a = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_lowerCAmelCase, config=_lowerCAmelCase, state_dict=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) # convert tokenizer _a = AutoTokenizer.from_pretrained(_lowerCAmelCase ) tokenizer.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
320
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
1
"""simple docstring""" import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> Optional[int]: _a = '''hf-internal-testing/tiny-random-t5''' _a = AutoTokenizer.from_pretrained(__UpperCAmelCase ) _a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) _a = tokenizer('''This is me''' , return_tensors='''pt''' ) _a = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) _a = model.generate(**__UpperCAmelCase ) _a = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) _a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) _a = model_reloaded.generate(**__UpperCAmelCase ) self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> Any: _a = '''hf-internal-testing/tiny-random-t5''' _a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase ) _a = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(__UpperCAmelCase ): model.save_pretrained(__UpperCAmelCase ) _a = model.reverse_bettertransformer() model.save_pretrained(__UpperCAmelCase )
320
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
1
"""simple docstring""" import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''spiece.model'''} __snake_case = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } __snake_case = { '''google/bigbird-roberta-base''': 4096, '''google/bigbird-roberta-large''': 4096, '''google/bigbird-base-trivia-itc''': 4096, } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = VOCAB_FILES_NAMES A_ : int = PRETRAINED_VOCAB_FILES_MAP A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = ['input_ids', 'attention_mask'] A_ : List[int] = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.sp_model.get_piece_size() def _UpperCAmelCase ( self ) -> int: _a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: _a = self.__dict__.copy() _a = None return state def __setstate__( self , __UpperCAmelCase ) -> List[str]: _a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: return self.sp_model.piece_to_id(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: _a = self.sp_model.IdToPiece(__UpperCAmelCase ) return token def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: _a = [] _a = '''''' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token _a = True _a = [] else: current_sub_tokens.append(__UpperCAmelCase ) _a = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str: _a = kwargs.pop('''use_source_tokenizer''' , __UpperCAmelCase ) _a = self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _a = [] _a = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _a = [] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _a = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(__UpperCAmelCase ) ) else: _a = ''''''.join(__UpperCAmelCase ) _a = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _a = self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , '''wb''' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
320
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Any ): """simple docstring""" _a = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : str, _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = 0 while b > 0: if b & 1: _a = ((res % c) + (a % c)) % c a += a b >>= 1 return res
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = sum(_lowerCAmelCase ) _a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1, n + 1 ): _a = True for i in range(1, s + 1 ): _a = False for i in range(1, n + 1 ): for j in range(1, s + 1 ): _a = dp[i][j - 1] if arr[i - 1] <= j: _a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ), -1, -1 ): if dp[n][j] is True: _a = s - 2 * j break return diff
320
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __lowerCamelCase : '''simple docstring''' def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: return None class __lowerCamelCase : '''simple docstring''' def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: return None class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Tuple = [ # (model_name, model_kwargs) ('bert-base-cased', {}), ('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> Optional[int]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase , '''tf''' , 12 , **__UpperCAmelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__UpperCAmelCase , '''pt''' , 12 , **__UpperCAmelCase ) @require_torch @slow def _UpperCAmelCase ( self ) -> List[str]: from transformers import BertModel _a = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(__UpperCAmelCase ) ) vocab_file.flush() _a = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _a = BertModel(BertConfig(vocab_size=len(__UpperCAmelCase ) ) ) model.save_pretrained(__UpperCAmelCase ) self._test_export(__UpperCAmelCase , '''pt''' , 12 , __UpperCAmelCase ) @require_tf @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _a = self._test_export(__UpperCAmelCase , '''tf''' , 12 , **__UpperCAmelCase ) _a = quantize(Path(__UpperCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def _UpperCAmelCase ( self ) -> Tuple: for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _a = self._test_export(__UpperCAmelCase , '''pt''' , 12 , **__UpperCAmelCase ) _a = quantize(__UpperCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]: try: # Compute path with TemporaryDirectory() as tempdir: _a = Path(__UpperCAmelCase ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) return path except Exception as e: self.fail(__UpperCAmelCase ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> Optional[int]: from transformers import BertModel _a = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _a = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__UpperCAmelCase , __UpperCAmelCase , '''pt''' ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> List[Any]: from transformers import TFBertModel _a = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _a = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__UpperCAmelCase , __UpperCAmelCase , '''tf''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = FeatureExtractionPipeline(__UpperCAmelCase , __UpperCAmelCase ) _a = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] _a , _a , _a , _a = infer_shapes(__UpperCAmelCase , __UpperCAmelCase ) # Assert all variables are present self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __UpperCAmelCase ) self.assertSequenceEqual(variable_names[3:] , __UpperCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def _UpperCAmelCase ( self ) -> List[str]: _a = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] _a = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} _a , _a = ensure_valid_input(FuncContiguousArgs() , __UpperCAmelCase , __UpperCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__UpperCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__UpperCAmelCase ) , set(__UpperCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__UpperCAmelCase , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _a , _a = ensure_valid_input(FuncNonContiguousArgs() , __UpperCAmelCase , __UpperCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__UpperCAmelCase ) , 1 ) self.assertEqual(len(__UpperCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
320
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = KandinskyImgaImgPipeline A_ : int = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] A_ : str = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] A_ : List[Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] A_ : List[Any] = False @property def _UpperCAmelCase ( self ) -> Optional[Any]: return 32 @property def _UpperCAmelCase ( self ) -> Dict: return 32 @property def _UpperCAmelCase ( self ) -> Tuple: return self.time_input_dim @property def _UpperCAmelCase ( self ) -> str: return self.time_input_dim * 4 @property def _UpperCAmelCase ( self ) -> List[str]: return 100 @property def _UpperCAmelCase ( self ) -> Any: _a = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def _UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) _a = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) _a = MultilingualCLIP(__UpperCAmelCase ) _a = text_encoder.eval() return text_encoder @property def _UpperCAmelCase ( self ) -> str: torch.manual_seed(0 ) _a = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _a = UNetaDConditionModel(**__UpperCAmelCase ) return model @property def _UpperCAmelCase ( self ) -> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) _a = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCAmelCase ( self ) -> List[Any]: _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_unet _a = self.dummy_movq _a = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.00085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } _a = DDIMScheduler(**__UpperCAmelCase ) _a = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> int: _a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase ) # create init_image _a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) _a = image.cpu().permute(0 , 2 , 3 , 1 )[0] _a = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((256, 256) ) if str(__UpperCAmelCase ).startswith('''mps''' ): _a = torch.manual_seed(__UpperCAmelCase ) else: _a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _a = { '''prompt''': '''horse''', '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _UpperCAmelCase ( self ) -> int: _a = '''cpu''' _a = self.get_dummy_components() _a = self.pipeline_class(**__UpperCAmelCase ) _a = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) ) _a = output.images _a = pipe( **self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _a = np.array( [0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Any: _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_img2img_frog.npy''' ) _a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) _a = '''A red cartoon frog, 4k''' _a = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__UpperCAmelCase ) _a = KandinskyImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa ) _a = pipeline.to(__UpperCAmelCase ) pipeline.set_progress_bar_config(disable=__UpperCAmelCase ) _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a , _a = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() _a = pipeline( __UpperCAmelCase , image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) _a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
320
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50_00_00_00 ): """simple docstring""" _a = set() _a = int((limit - 24) ** (1 / 2) ) _a = set(range(3, prime_square_limit + 1, 2 ) ) primes.add(2 ) for p in range(3, prime_square_limit + 1, 2 ): if p not in primes: continue primes.difference_update(set(range(p * p, prime_square_limit + 1, _lowerCAmelCase ) ) ) for primea in primes: _a = primea * primea for primea in primes: _a = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: _a = primea * primea * primea * primea _a = square + cube + tetr if total >= limit: break ret.add(_lowerCAmelCase ) return len(_lowerCAmelCase ) if __name__ == "__main__": print(f'{solution() = }')
320
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
1
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = get_failure_array(_lowerCAmelCase ) # 2) Step through text searching for pattern _a , _a = 0, 0 # index into text, pattern while i < len(_lowerCAmelCase ): if pattern[j] == text[i]: if j == (len(_lowerCAmelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: _a = failure[j - 1] continue i += 1 return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = [0] _a = 0 _a = 1 while j < len(_lowerCAmelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: _a = failure[i - 1] continue j += 1 failure.append(_lowerCAmelCase ) return failure if __name__ == "__main__": # Test 1) __snake_case = '''abc1abc12''' __snake_case = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' __snake_case = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) __snake_case = '''ABABX''' __snake_case = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) __snake_case = '''AAAB''' __snake_case = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) __snake_case = '''abcdabcy''' __snake_case = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) __snake_case = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
320
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
1
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : Tuple ): """simple docstring""" _a = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase, torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _a = load_file(_lowerCAmelCase ) _a = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _a = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) _a = pipeline.text_encoder else: _a = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) _a = pipeline.unet # find the target layer _a = layer_infos.pop(0 ) while len(_lowerCAmelCase ) > -1: try: _a = curr_layer.__getattr__(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = layer_infos.pop(0 ) elif len(_lowerCAmelCase ) == 0: break except Exception: if len(_lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _a = layer_infos.pop(0 ) _a = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''', '''lora_up''' ) ) pair_keys.append(_lowerCAmelCase ) else: pair_keys.append(_lowerCAmelCase ) pair_keys.append(key.replace('''lora_up''', '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _a = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _a = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase, _lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: _a = state_dict[pair_keys[0]].to(torch.floataa ) _a = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase, _lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(_lowerCAmelCase ) return pipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __snake_case = parser.parse_args() __snake_case = args.base_model_path __snake_case = args.checkpoint_path __snake_case = args.dump_path __snake_case = args.lora_prefix_unet __snake_case = args.lora_prefix_text_encoder __snake_case = args.alpha __snake_case = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __snake_case = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
320
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
1
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __snake_case = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class __lowerCamelCase : '''simple docstring''' A_ : str = PegasusConfig A_ : Any = {} A_ : List[Any] = 'gelu' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ) -> Any: _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = eos_token_id _a = pad_token_id _a = bos_token_id def _UpperCAmelCase ( self ) -> List[str]: _a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _a = np.concatenate([input_ids, eos_tensor] , axis=1 ) _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _a = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = 20 _a = model_class_name(__UpperCAmelCase ) _a = model.encode(inputs_dict['''input_ids'''] ) _a , _a = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _a = model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase ) _a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) _a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a = model.decode( decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , ) _a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _a = model.decode( decoder_input_ids[:, -1:] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCAmelCase , ) _a = model.decode(__UpperCAmelCase , __UpperCAmelCase ) _a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = 20 _a = model_class_name(__UpperCAmelCase ) _a = model.encode(inputs_dict['''input_ids'''] ) _a , _a = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) _a = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _a = model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase ) _a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _a = model.decode( decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , ) _a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) _a = model.decode( decoder_input_ids[:, -1:] , __UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , ) _a = model.decode(__UpperCAmelCase , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase ) _a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Any, _lowerCAmelCase : Any, _lowerCAmelCase : Dict=None, _lowerCAmelCase : Optional[int]=None, ): """simple docstring""" if attention_mask is None: _a = np.not_equal(_lowerCAmelCase, config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _a = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ), ], axis=-1, ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) A_ : int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () A_ : Dict = True A_ : Any = False A_ : Optional[Any] = False A_ : int = False def _UpperCAmelCase ( self ) -> Tuple: _a = FlaxPegasusModelTester(self ) _a = ConfigTester(self , config_class=__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def _UpperCAmelCase ( self ) -> Optional[Any]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> str: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) _a = model_class(__UpperCAmelCase ) @jax.jit def encode_jitted(__UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ): return model.encode(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase ) with self.subTest('''JIT Enabled''' ): _a = encode_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _a = encode_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self ) -> Optional[int]: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _a = model_class(__UpperCAmelCase ) _a = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) _a = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): return model.decode( decoder_input_ids=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , encoder_outputs=__UpperCAmelCase , ) with self.subTest('''JIT Enabled''' ): _a = decode_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _a = decode_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: for model_class_name in self.all_model_classes: _a = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__UpperCAmelCase ) _a = np.ones((1, 1) ) _a = model(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> str: _a = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' ) _a = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' ) _a = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _a = [ '''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''', '''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''np''' , truncation=__UpperCAmelCase , max_length=512 , padding=__UpperCAmelCase ) _a = model.generate(**__UpperCAmelCase , num_beams=2 ).sequences _a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) assert tgt_text == decoded
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case = { '''configuration_x_clip''': [ '''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XCLIPConfig''', '''XCLIPTextConfig''', '''XCLIPVisionConfig''', ], '''processing_x_clip''': ['''XCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XCLIPModel''', '''XCLIPPreTrainedModel''', '''XCLIPTextModel''', '''XCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int ): """simple docstring""" return str(_lowerCAmelCase ) == str(_lowerCAmelCase )[::-1] def A_ ( _lowerCAmelCase : int ): """simple docstring""" return int(_lowerCAmelCase ) + int(str(_lowerCAmelCase )[::-1] ) def A_ ( _lowerCAmelCase : int = 1_00_00 ): """simple docstring""" _a = [] for num in range(1, _lowerCAmelCase ): _a = 0 _a = num while iterations < 50: _a = sum_reverse(_lowerCAmelCase ) iterations += 1 if is_palindrome(_lowerCAmelCase ): break else: lychrel_nums.append(_lowerCAmelCase ) return len(_lowerCAmelCase ) if __name__ == "__main__": print(f'{solution() = }')
320
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = XGLMTokenizer A_ : Any = XGLMTokenizerFast A_ : Optional[int] = True A_ : Dict = True def _UpperCAmelCase ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _a = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self ) -> str: _a = '''<pad>''' _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[str]: _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(__UpperCAmelCase ) , 1008 ) def _UpperCAmelCase ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def _UpperCAmelCase ( self ) -> int: _a = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) _a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def _UpperCAmelCase ( self ) -> int: return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__UpperCAmelCase , f.name ) _a = XGLMTokenizer(f.name , keep_accents=__UpperCAmelCase ) _a = pickle.dumps(__UpperCAmelCase ) pickle.loads(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: if not self.test_rust_tokenizer: return _a = self.get_tokenizer() _a = self.get_rust_tokenizer() _a = '''I was born in 92000, and this is falsé.''' _a = tokenizer.tokenize(__UpperCAmelCase ) _a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = self.get_rust_tokenizer() _a = tokenizer.encode(__UpperCAmelCase ) _a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def _UpperCAmelCase ( self ) -> Tuple: _a = '''Hello World!''' _a = [2, 31227, 4447, 35] self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off _a = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) ) @slow def _UpperCAmelCase ( self ) -> int: # fmt: off _a = { '''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''facebook/xglm-564M''' , padding=__UpperCAmelCase , )
320
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __snake_case = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def A_ ( _lowerCAmelCase : int ): """simple docstring""" _a = EfficientNetConfig() _a = CONFIG_MAP[model_name]['''hidden_dim'''] _a = CONFIG_MAP[model_name]['''width_coef'''] _a = CONFIG_MAP[model_name]['''depth_coef'''] _a = CONFIG_MAP[model_name]['''image_size'''] _a = CONFIG_MAP[model_name]['''dropout_rate'''] _a = CONFIG_MAP[model_name]['''dw_padding'''] _a = '''huggingface/label-files''' _a = '''imagenet-1k-id2label.json''' _a = 10_00 _a = json.load(open(hf_hub_download(_lowerCAmelCase, _lowerCAmelCase, repo_type='''dataset''' ), '''r''' ) ) _a = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _a = idalabel _a = {v: k for k, v in idalabel.items()} return config def A_ ( ): """simple docstring""" _a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _a = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw ) return im def A_ ( _lowerCAmelCase : str ): """simple docstring""" _a = CONFIG_MAP[model_name]['''image_size'''] _a = EfficientNetImageProcessor( size={'''height''': size, '''width''': size}, image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3], do_center_crop=_lowerCAmelCase, ) return preprocessor def A_ ( _lowerCAmelCase : int ): """simple docstring""" _a = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] _a = sorted(set(_lowerCAmelCase ) ) _a = len(_lowerCAmelCase ) _a = {b: str(_lowerCAmelCase ) for b, i in zip(_lowerCAmelCase, range(_lowerCAmelCase ) )} _a = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: _a = block_name_mapping[b] rename_keys.append((f'block{b}_expand_conv/kernel:0', f'encoder.blocks.{hf_b}.expansion.expand_conv.weight') ) rename_keys.append((f'block{b}_expand_bn/gamma:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.weight') ) rename_keys.append((f'block{b}_expand_bn/beta:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.bias') ) rename_keys.append( (f'block{b}_expand_bn/moving_mean:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') ) rename_keys.append( (f'block{b}_expand_bn/moving_variance:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') ) rename_keys.append( (f'block{b}_dwconv/depthwise_kernel:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') ) rename_keys.append((f'block{b}_bn/gamma:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') ) rename_keys.append((f'block{b}_bn/beta:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') ) rename_keys.append( (f'block{b}_bn/moving_mean:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') ) rename_keys.append( (f'block{b}_bn/moving_variance:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') ) rename_keys.append((f'block{b}_se_reduce/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') ) rename_keys.append((f'block{b}_se_reduce/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') ) rename_keys.append((f'block{b}_se_expand/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') ) rename_keys.append((f'block{b}_se_expand/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') ) rename_keys.append( (f'block{b}_project_conv/kernel:0', f'encoder.blocks.{hf_b}.projection.project_conv.weight') ) rename_keys.append((f'block{b}_project_bn/gamma:0', f'encoder.blocks.{hf_b}.projection.project_bn.weight') ) rename_keys.append((f'block{b}_project_bn/beta:0', f'encoder.blocks.{hf_b}.projection.project_bn.bias') ) rename_keys.append( (f'block{b}_project_bn/moving_mean:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_mean') ) rename_keys.append( (f'block{b}_project_bn/moving_variance:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_var') ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) _a = {} for item in rename_keys: if item[0] in original_param_names: _a = '''efficientnet.''' + item[1] _a = '''classifier.weight''' _a = '''classifier.bias''' return key_mapping def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Any, _lowerCAmelCase : List[Any] ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue _a = key_mapping[key] if "_conv" in key and "kernel" in key: _a = torch.from_numpy(_lowerCAmelCase ).permute(3, 2, 0, 1 ) elif "depthwise_kernel" in key: _a = torch.from_numpy(_lowerCAmelCase ).permute(2, 3, 0, 1 ) elif "kernel" in key: _a = torch.from_numpy(np.transpose(_lowerCAmelCase ) ) else: _a = torch.from_numpy(_lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : str ): """simple docstring""" _a = model_classes[model_name]( include_top=_lowerCAmelCase, weights='''imagenet''', input_tensor=_lowerCAmelCase, input_shape=_lowerCAmelCase, pooling=_lowerCAmelCase, classes=10_00, classifier_activation='''softmax''', ) _a = original_model.trainable_variables _a = original_model.non_trainable_variables _a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: _a = param.numpy() _a = list(tf_params.keys() ) # Load HuggingFace model _a = get_efficientnet_config(_lowerCAmelCase ) _a = EfficientNetForImageClassification(_lowerCAmelCase ).eval() _a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) _a = rename_keys(_lowerCAmelCase ) replace_params(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) # Initialize preprocessor and preprocess input image _a = convert_image_processor(_lowerCAmelCase ) _a = preprocessor(images=prepare_img(), return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): _a = hf_model(**_lowerCAmelCase ) _a = outputs.logits.detach().numpy() # Original model inference _a = False _a = CONFIG_MAP[model_name]['''image_size'''] _a = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST ) _a = image.img_to_array(_lowerCAmelCase ) _a = np.expand_dims(_lowerCAmelCase, axis=0 ) _a = original_model.predict(_lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(_lowerCAmelCase, _lowerCAmelCase, atol=1e-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(_lowerCAmelCase ): os.mkdir(_lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(_lowerCAmelCase ) preprocessor.save_pretrained(_lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(f'Pushing converted {model_name} to the hub...' ) _a = f'efficientnet-{model_name}' preprocessor.push_to_hub(_lowerCAmelCase ) hf_model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __snake_case = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
320
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class __lowerCamelCase ( datasets.BuilderConfig ): '''simple docstring''' A_ : Optional[datasets.Features] = None class __lowerCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' A_ : List[str] = PandasConfig def _UpperCAmelCase ( self ) -> Tuple: return datasets.DatasetInfo(features=self.config.features ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if not self.config.data_files: raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' ) _a = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCAmelCase , (str, list, tuple) ): _a = data_files if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a = [dl_manager.iter_files(__UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _a = [] for split_name, files in data_files.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _a = [dl_manager.iter_files(__UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__UpperCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def _UpperCAmelCase ( self , __UpperCAmelCase ) -> pa.Table: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _a = table_cast(__UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: for i, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase ) ): with open(__UpperCAmelCase , '''rb''' ) as f: _a = pa.Table.from_pandas(pd.read_pickle(__UpperCAmelCase ) ) yield i, self._cast_table(__UpperCAmelCase )
320
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
320
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : str = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> int: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
1
"""simple docstring""" import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _a = VideoClassificationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase , top_k=2 ) _a = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: for example in examples: _a = video_classifier(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )}, {'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' _a = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) _a = pipeline( '''video-classification''' , model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , frame_sampling_rate=4 ) _a = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) _a = video_classifier(__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) _a = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def _UpperCAmelCase ( self ) -> Union[str, Any]: pass
320
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case = logging.get_logger(__name__) __snake_case = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCamelCase ( a__ , a__ ): '''simple docstring''' A_ : Tuple = 'nat' A_ : Tuple = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=[3, 4, 6, 5] , __UpperCAmelCase=[2, 4, 8, 16] , __UpperCAmelCase=7 , __UpperCAmelCase=3.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(__UpperCAmelCase ) _a = num_heads _a = kernel_size _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = layer_norm_eps _a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) _a = layer_scale_init_value _a = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(__UpperCAmelCase ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
320
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''MobileViTFeatureExtractor'''] __snake_case = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=sys.maxsize ) -> Union[str, Any]: _a = '''bilinear''' _a = max_size _a = short_edge_length def __call__( self , __UpperCAmelCase ) -> Tuple: _a = [] for img in imgs: _a , _a = img.shape[:2] # later: provide list and randomly choose index for resize _a = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _a = size * 1.0 / min(__UpperCAmelCase , __UpperCAmelCase ) if h < w: _a , _a = size, scale * w else: _a , _a = scale * h, size if max(__UpperCAmelCase , __UpperCAmelCase ) > self.max_size: _a = self.max_size * 1.0 / max(__UpperCAmelCase , __UpperCAmelCase ) _a = newh * scale _a = neww * scale _a = int(neww + 0.5 ) _a = int(newh + 0.5 ) if img.dtype == np.uinta: _a = Image.fromarray(__UpperCAmelCase ) _a = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _a = np.asarray(__UpperCAmelCase ) else: _a = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _a = nn.functional.interpolate( __UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=__UpperCAmelCase ).squeeze(0 ) img_augs.append(__UpperCAmelCase ) return img_augs class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> List[Any]: _a = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _a = cfg.INPUT.FORMAT _a = cfg.SIZE_DIVISIBILITY _a = cfg.PAD_VALUE _a = cfg.INPUT.MAX_SIZE_TEST _a = cfg.MODEL.DEVICE _a = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _a = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _a = lambda __UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _a = tuple(max(__UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) ) _a = [im.shape[-2:] for im in images] _a = [ nn.functional.pad( __UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(__UpperCAmelCase , __UpperCAmelCase ) ] return torch.stack(__UpperCAmelCase ), torch.tensor(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> Dict: with torch.no_grad(): if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = [images] if single_image: assert len(__UpperCAmelCase ) == 1 for i in range(len(__UpperCAmelCase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(__UpperCAmelCase , images.pop(__UpperCAmelCase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( __UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(__UpperCAmelCase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _a = torch.tensor([im.shape[:2] for im in images] ) _a = self.aug(__UpperCAmelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _a = [self.normalizer(__UpperCAmelCase ) for x in images] # now pad them to do the following operations _a , _a = self.pad(__UpperCAmelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _a = torch.true_divide(__UpperCAmelCase , __UpperCAmelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : List[Any] ): """simple docstring""" boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple[int, int] ): """simple docstring""" assert torch.isfinite(_lowerCAmelCase ).all(), "Box tensor contains infinite or NaN!" _a , _a = box_size tensor[:, 0].clamp_(min=0, max=_lowerCAmelCase ) tensor[:, 1].clamp_(min=0, max=_lowerCAmelCase ) tensor[:, 2].clamp_(min=0, max=_lowerCAmelCase ) tensor[:, 3].clamp_(min=0, max=_lowerCAmelCase )
320
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , ) -> Tuple: _a = size if size is not None else {'''shortest_edge''': 18} _a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_center_crop _a = crop_size _a = do_normalize _a = image_mean _a = image_std def _UpperCAmelCase ( self ) -> Any: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Tuple = LevitImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = LevitImageProcessingTester(self ) @property def _UpperCAmelCase ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _UpperCAmelCase ( self ) -> Union[str, Any]: pass def _UpperCAmelCase ( self ) -> Any: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> Any: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _UpperCAmelCase ( self ) -> Tuple: # Initialize image_processing _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(__UpperCAmelCase , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
320
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : str ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
1
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def A_ ( _lowerCAmelCase : np.ndarray ): """simple docstring""" _a , _a , _a = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def A_ ( _lowerCAmelCase : np.ndarray ): """simple docstring""" return (gray > 1_27) & (gray <= 2_55) def A_ ( _lowerCAmelCase : np.ndarray, _lowerCAmelCase : np.ndarray ): """simple docstring""" _a = np.zeros_like(_lowerCAmelCase ) _a = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image _a = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): _a = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() _a = int(summation > 0 ) return output if __name__ == "__main__": # read original image __snake_case = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' __snake_case = np.array(Image.open(lena_path)) # kernel to be applied __snake_case = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __snake_case = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __snake_case = Image.fromarray(output).convert('''RGB''') pil_img.save('''result_dilation.png''')
320
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
1
"""simple docstring""" from sklearn.metrics import fa_score import datasets __snake_case = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' __snake_case = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric("f1") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' __snake_case = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase="binary" , __UpperCAmelCase=None ) -> str: _a = fa_score( __UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase , pos_label=__UpperCAmelCase , average=__UpperCAmelCase , sample_weight=__UpperCAmelCase ) return {"f1": float(__UpperCAmelCase ) if score.size == 1 else score}
320
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
1
"""simple docstring""" import numpy as np def A_ ( _lowerCAmelCase : np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) def A_ ( _lowerCAmelCase : np.array ): """simple docstring""" return vector * sigmoid(1.7_0_2 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
1
"""simple docstring""" from PIL import Image def A_ ( _lowerCAmelCase : Image, _lowerCAmelCase : float ): """simple docstring""" def brightness(_lowerCAmelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(_lowerCAmelCase ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 __snake_case = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
320
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __snake_case = {'''UserAgent''': UserAgent().random} def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" _a = script.contents[0] _a = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Optional[Any]: _a = F'https://www.instagram.com/{username}/' _a = self.get_json() def _UpperCAmelCase ( self ) -> dict: _a = requests.get(self.url , headers=__UpperCAmelCase ).text _a = BeautifulSoup(__UpperCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ) -> str: return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self ) -> str: return F'{self.fullname} ({self.username}) is {self.biography}' @property def _UpperCAmelCase ( self ) -> str: return self.user_data["username"] @property def _UpperCAmelCase ( self ) -> str: return self.user_data["full_name"] @property def _UpperCAmelCase ( self ) -> str: return self.user_data["biography"] @property def _UpperCAmelCase ( self ) -> str: return self.user_data["business_email"] @property def _UpperCAmelCase ( self ) -> str: return self.user_data["external_url"] @property def _UpperCAmelCase ( self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def _UpperCAmelCase ( self ) -> int: return self.user_data["edge_follow"]["count"] @property def _UpperCAmelCase ( self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _UpperCAmelCase ( self ) -> str: return self.user_data["profile_pic_url_hd"] @property def _UpperCAmelCase ( self ) -> bool: return self.user_data["is_verified"] @property def _UpperCAmelCase ( self ) -> bool: return self.user_data["is_private"] def A_ ( _lowerCAmelCase : str = "github" ): """simple docstring""" import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions _a = InstagramUser(_lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data, _lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __snake_case = InstagramUser('''github''') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
320
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
1
"""simple docstring""" import math import sys def A_ ( _lowerCAmelCase : int ): """simple docstring""" if number != int(_lowerCAmelCase ): raise ValueError('''the value of input must be a natural number''' ) if number < 0: raise ValueError('''the value of input must not be a negative number''' ) if number == 0: return 1 _a = [-1] * (number + 1) _a = 0 for i in range(1, number + 1 ): _a = sys.maxsize _a = int(math.sqrt(_lowerCAmelCase ) ) for j in range(1, root + 1 ): _a = 1 + answers[i - (j**2)] _a = min(_lowerCAmelCase, _lowerCAmelCase ) _a = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A_ ( _lowerCAmelCase : str = "laptop" ): """simple docstring""" _a = f'https://www.amazon.in/laptop/s?k={product}' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(_lowerCAmelCase, headers=_lowerCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''', attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''}, ), soup.find_all('''div''', attrs={'''class''': '''a-row a-size-base a-color-base'''} ), ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''', attrs={'''class''': '''a-offscreen'''} ).text try: _a = item.find('''span''', attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''', attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''', '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) ) ) * 1_00 ) except ValueError: _a = float('''nan''' ) except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": __snake_case = '''headphones''' get_amazon_product_data(product).to_csv(f'Amazon Product Data for {product}.csv')
320
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 10, _lowerCAmelCase : int = 22 ): """simple docstring""" _a = range(1, _lowerCAmelCase ) _a = range(1, _lowerCAmelCase ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(10, 22) = }')
320
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : int = 'pix2struct_text_model' A_ : int = ['past_key_values'] A_ : Tuple = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __UpperCAmelCase=50244 , __UpperCAmelCase=768 , __UpperCAmelCase=64 , __UpperCAmelCase=2048 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=1.0 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Any: _a = vocab_size _a = hidden_size _a = d_kv _a = d_ff _a = num_layers _a = num_heads _a = relative_attention_num_buckets _a = relative_attention_max_distance _a = dropout_rate _a = layer_norm_epsilon _a = initializer_factor _a = use_cache _a = eos_token_id _a = decoder_start_token_id # for backwards compatibility _a = dense_act_fn super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , is_decoder=__UpperCAmelCase , **__UpperCAmelCase , ) @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) _a , _a = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": _a = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'pix2struct_vision_model' def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=768 , __UpperCAmelCase=2048 , __UpperCAmelCase=64 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=1e-6 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-1_0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=4096 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , **__UpperCAmelCase , ) -> Optional[Any]: super().__init__(**__UpperCAmelCase ) _a = hidden_size _a = patch_embed_hidden_size _a = d_ff _a = dropout_rate _a = num_hidden_layers _a = num_attention_heads _a = initializer_range _a = initializer_factor _a = attention_dropout _a = layer_norm_eps _a = dense_act_fn _a = seq_len _a = relative_attention_num_buckets _a = relative_attention_max_distance _a = d_kv @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) _a , _a = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": _a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'pix2struct' A_ : Optional[int] = True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Optional[int]: super().__init__(tie_word_embeddings=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) if text_config is None: _a = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: _a = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) _a = PixaStructTextConfig(**__UpperCAmelCase ) _a = PixaStructVisionConfig(**__UpperCAmelCase ) _a = self.text_config.decoder_start_token_id _a = self.text_config.pad_token_id _a = self.text_config.eos_token_id _a = initializer_factor _a = initializer_range _a = self.initializer_range _a = self.initializer_range _a = is_vqa @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = copy.deepcopy(self.__dict__ ) _a = self.text_config.to_dict() _a = self.vision_config.to_dict() _a = self.__class__.model_type return output
320
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def A_ ( _lowerCAmelCase : Tuple ): """simple docstring""" if "cls_token" in name: _a = name.replace('''cls_token''', '''vit.embeddings.cls_token''' ) if "mask_token" in name: _a = name.replace('''mask_token''', '''decoder.mask_token''' ) if "decoder_pos_embed" in name: _a = name.replace('''decoder_pos_embed''', '''decoder.decoder_pos_embed''' ) if "pos_embed" in name and "decoder" not in name: _a = name.replace('''pos_embed''', '''vit.embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _a = name.replace('''patch_embed.proj''', '''vit.embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _a = name.replace('''patch_embed.norm''', '''vit.embeddings.norm''' ) if "decoder_blocks" in name: _a = name.replace('''decoder_blocks''', '''decoder.decoder_layers''' ) if "blocks" in name: _a = name.replace('''blocks''', '''vit.encoder.layer''' ) if "attn.proj" in name: _a = name.replace('''attn.proj''', '''attention.output.dense''' ) if "attn" in name: _a = name.replace('''attn''', '''attention.self''' ) if "norm1" in name: _a = name.replace('''norm1''', '''layernorm_before''' ) if "norm2" in name: _a = name.replace('''norm2''', '''layernorm_after''' ) if "mlp.fc1" in name: _a = name.replace('''mlp.fc1''', '''intermediate.dense''' ) if "mlp.fc2" in name: _a = name.replace('''mlp.fc2''', '''output.dense''' ) if "decoder_embed" in name: _a = name.replace('''decoder_embed''', '''decoder.decoder_embed''' ) if "decoder_norm" in name: _a = name.replace('''decoder_norm''', '''decoder.decoder_norm''' ) if "decoder_pred" in name: _a = name.replace('''decoder_pred''', '''decoder.decoder_pred''' ) if "norm.weight" in name and "decoder" not in name: _a = name.replace('''norm.weight''', '''vit.layernorm.weight''' ) if "norm.bias" in name and "decoder" not in name: _a = name.replace('''norm.bias''', '''vit.layernorm.bias''' ) return name def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Union[str, Any] ): """simple docstring""" for key in orig_state_dict.copy().keys(): _a = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: _a = key.split('''.''' ) _a = int(key_split[1] ) if "decoder_blocks" in key: _a = config.decoder_hidden_size _a = '''decoder.decoder_layers.''' if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] elif "bias" in key: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = config.hidden_size _a = '''vit.encoder.layer.''' if "weight" in key: _a = val[:dim, :] _a = val[dim : dim * 2, :] _a = val[-dim:, :] elif "bias" in key: _a = val[:dim] _a = val[dim : dim * 2] _a = val[-dim:] else: _a = val return orig_state_dict def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _a = ViTMAEConfig() if "large" in checkpoint_url: _a = 10_24 _a = 40_96 _a = 24 _a = 16 elif "huge" in checkpoint_url: _a = 14 _a = 12_80 _a = 51_20 _a = 32 _a = 16 _a = ViTMAEForPreTraining(_lowerCAmelCase ) _a = torch.hub.load_state_dict_from_url(_lowerCAmelCase, map_location='''cpu''' )['''model'''] _a = ViTMAEImageProcessor(size=config.image_size ) _a = convert_state_dict(_lowerCAmelCase, _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() _a = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg''' _a = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw ) _a = ViTMAEImageProcessor(size=config.image_size ) _a = image_processor(images=_lowerCAmelCase, return_tensors='''pt''' ) # forward pass torch.manual_seed(2 ) _a = model(**_lowerCAmelCase ) _a = outputs.logits if "large" in checkpoint_url: _a = torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: _a = torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: _a = torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3], _lowerCAmelCase, atol=1e-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __snake_case = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
320
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
1
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''', [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=13_37, num_examples=42, dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=13_37, num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ], ) def A_ ( _lowerCAmelCase : SplitDict ): """simple docstring""" _a = split_dict._to_yaml_list() assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = SplitDict._from_yaml_list(_lowerCAmelCase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _a = None # the split name of split_dict takes over the name of the split info object _a = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''', [SplitInfo(), SplitInfo(dataset_name=_lowerCAmelCase ), SplitInfo(dataset_name='''my_dataset''' )] ) def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _a = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
320
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[str]: super().__init__() self.register_modules( vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , ) def _UpperCAmelCase ( self , __UpperCAmelCase = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: self.enable_attention_slicing(__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase , __UpperCAmelCase = 512 , __UpperCAmelCase = 512 , __UpperCAmelCase = 50 , __UpperCAmelCase = 7.5 , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[Any]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = 1 elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = len(__UpperCAmelCase ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(__UpperCAmelCase )}.' ) # get prompt text embeddings _a = self.tokenizer( __UpperCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , ) _a = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _a = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( '''The following part of your input was truncated because CLIP can only handle sequences up to''' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _a = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _a = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _a , _a , _a = text_embeddings.shape _a = text_embeddings.repeat(1 , __UpperCAmelCase , 1 ) _a = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCAmelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _a = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _a = 42 if negative_prompt is None: _a = [''''''] elif type(__UpperCAmelCase ) is not type(__UpperCAmelCase ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase )} !=' F' {type(__UpperCAmelCase )}.' ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): _a = [negative_prompt] elif batch_size != len(__UpperCAmelCase ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ''' the batch size of `prompt`.''' ) else: _a = negative_prompt _a = text_input_ids.shape[-1] _a = self.tokenizer( __UpperCAmelCase , padding='''max_length''' , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' , ) _a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _a = uncond_embeddings.shape[1] _a = uncond_embeddings.repeat(__UpperCAmelCase , __UpperCAmelCase , 1 ) _a = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _a = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _a = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _a = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _a = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _a = torch.randn( __UpperCAmelCase , generator=__UpperCAmelCase , device='''cpu''' , dtype=__UpperCAmelCase ).to(self.device ) _a = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device='''cpu''' , dtype=__UpperCAmelCase ).to( self.device ) else: _a = torch.randn( __UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase ) _a = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _a = latents_reference.to(self.device ) _a = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _a = (latents_shape[3] - latents_shape_reference[3]) // 2 _a = (latents_shape[2] - latents_shape_reference[2]) // 2 _a = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _a = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _a = 0 if dx < 0 else dx _a = 0 if dy < 0 else dy _a = max(-dx , 0 ) _a = max(-dy , 0 ) # import pdb # pdb.set_trace() _a = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(__UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _a = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _a = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _a = {} if accepts_eta: _a = eta for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance _a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _a = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase ) # predict the noise residual _a = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ).sample # perform guidance if do_classifier_free_guidance: _a , _a = noise_pred.chunk(2 ) _a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = 1 / 0.18215 * latents _a = self.vae.decode(__UpperCAmelCase ).sample _a = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _a = self.feature_extractor(self.numpy_to_pil(__UpperCAmelCase ) , return_tensors='''pt''' ).to( self.device ) _a , _a = self.safety_checker( images=__UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _a = None if output_type == "pil": _a = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase )
320
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 10_00 ): """simple docstring""" _a = -1 _a = 0 for a in range(1, n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _a = (n * n - 2 * a * n) // (2 * n - 2 * a) _a = n - a - b if c * c == (a * a + b * b): _a = a * b * c if candidate >= product: _a = candidate return product if __name__ == "__main__": print(f'{solution() = }')
320
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
1
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } __snake_case = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } __snake_case = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = set() _a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _a = char _a = set(_lowerCAmelCase ) return pairs class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Any = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , **__UpperCAmelCase , ) -> str: super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = vocab_file _a = merges_file _a = {} _a = 0 _a = 1 _a = 2 _a = 3 self.add_from_file(__UpperCAmelCase ) _a = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: _a = merges_handle.read().split('''\n''' )[:-1] _a = [tuple(merge.split()[:-1] ) for merge in merges] _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self ) -> Optional[int]: return len(self.encoder ) def _UpperCAmelCase ( self ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: if token in self.cache: return self.cache[token] _a = tuple(__UpperCAmelCase ) _a = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _a = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: _a = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _a , _a = bigram _a = [] _a = 0 while i < len(__UpperCAmelCase ): try: _a = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _a = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a = tuple(__UpperCAmelCase ) _a = new_word if len(__UpperCAmelCase ) == 1: break else: _a = get_pairs(__UpperCAmelCase ) _a = '''@@ '''.join(__UpperCAmelCase ) _a = word[:-4] _a = word return word def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: _a = [] _a = re.findall(r'''\S+\n?''' , __UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(''' ''' ) ) ) return split_tokens def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: return self.decoder.get(__UpperCAmelCase , self.unk_token ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: _a = ''' '''.join(__UpperCAmelCase ).replace('''@@ ''' , '''''' ).strip() return out_string def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.merges_file , __UpperCAmelCase ) return out_vocab_file, out_merge_file def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): try: with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(__UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F'Incorrect encoding detected in {f}, please rebuild the dataset' ) return _a = f.readlines() for lineTmp in lines: _a = lineTmp.strip() _a = line.rfind(''' ''' ) if idx == -1: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' ) _a = line[:idx] _a = len(self.encoder )
320
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'vit_mae' def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=512 , __UpperCAmelCase=8 , __UpperCAmelCase=2048 , __UpperCAmelCase=0.75 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: super().__init__(**__UpperCAmelCase ) _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = layer_norm_eps _a = image_size _a = patch_size _a = num_channels _a = qkv_bias _a = decoder_num_attention_heads _a = decoder_hidden_size _a = decoder_num_hidden_layers _a = decoder_intermediate_size _a = mask_ratio _a = norm_pix_loss
320
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ): """simple docstring""" return number | (1 << position) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ): """simple docstring""" return number & ~(1 << position) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ): """simple docstring""" return number ^ (1 << position) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ): """simple docstring""" return ((number >> position) & 1) == 1 def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
1
"""simple docstring""" def A_ ( _lowerCAmelCase : list ): """simple docstring""" def merge(_lowerCAmelCase : list, _lowerCAmelCase : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(_lowerCAmelCase ) <= 1: return collection _a = len(_lowerCAmelCase ) // 2 return merge(merge_sort(collection[:mid] ), merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __snake_case = input('''Enter numbers separated by a comma:\n''').strip() __snake_case = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
320
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
1
"""simple docstring""" import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def A_ ( _lowerCAmelCase : int ): """simple docstring""" _a = {} _a = tokenizer(example['''content'''], truncation=_lowerCAmelCase )['''input_ids'''] _a = len(example['''content'''] ) / len(output['''input_ids'''] ) return output __snake_case = HfArgumentParser(PretokenizationArguments) __snake_case = parser.parse_args() if args.num_workers is None: __snake_case = multiprocessing.cpu_count() __snake_case = AutoTokenizer.from_pretrained(args.tokenizer_dir) __snake_case = time.time() __snake_case = load_dataset(args.dataset_name, split='''train''') print(f'Dataset loaded in {time.time()-t_start:.2f}s') __snake_case = time.time() __snake_case = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(f'Dataset tokenized in {time.time()-t_start:.2f}s') __snake_case = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f'Data pushed to the hub in {time.time()-t_start:.2f}s')
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
1
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
1
"""simple docstring""" from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class __lowerCamelCase ( a__ , a__ ): '''simple docstring''' A_ : Union[str, Any] = 'pixel_values' A_ : Optional[Any] = False A_ : Optional[Any] = TimmBackboneConfig def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , '''timm''' ) super().__init__(__UpperCAmelCase ) _a = config if config.backbone is None: raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(__UpperCAmelCase , '''out_features''' ) and config.out_features is not None: raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' ) _a = getattr(__UpperCAmelCase , '''use_pretrained_backbone''' , __UpperCAmelCase ) if pretrained is None: raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' ) # We just take the final layer by default. This matches the default for the transformers models. _a = config.out_indices if getattr(__UpperCAmelCase , '''out_indices''' , __UpperCAmelCase ) is not None else (-1,) _a = timm.create_model( config.backbone , pretrained=__UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCAmelCase , **__UpperCAmelCase , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _a = self._backbone.return_layers _a = {layer['''module''']: str(__UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__UpperCAmelCase ) @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''vision''', '''timm'''] ) from ...models.timm_backbone import TimmBackboneConfig _a = kwargs.pop('''config''' , TimmBackboneConfig() ) _a = kwargs.pop('''use_timm_backbone''' , __UpperCAmelCase ) if not use_timm: raise ValueError('''use_timm_backbone must be True for timm backbones''' ) _a = kwargs.pop('''num_channels''' , config.num_channels ) _a = kwargs.pop('''features_only''' , config.features_only ) _a = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone ) _a = kwargs.pop('''out_indices''' , config.out_indices ) _a = TimmBackboneConfig( backbone=__UpperCAmelCase , num_channels=__UpperCAmelCase , features_only=__UpperCAmelCase , use_pretrained_backbone=__UpperCAmelCase , out_indices=__UpperCAmelCase , ) return super()._from_config(__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: pass def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[BackboneOutput, Tuple[Tensor, ...]]: _a = return_dict if return_dict is not None else self.config.use_return_dict _a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _a = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('''Cannot output attentions for timm backbones at the moment''' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _a = self._all_layers _a = self._backbone(__UpperCAmelCase , **__UpperCAmelCase ) _a = self._return_layers _a = tuple(hidden_states[i] for i in self.out_indices ) else: _a = self._backbone(__UpperCAmelCase , **__UpperCAmelCase ) _a = None _a = tuple(__UpperCAmelCase ) _a = tuple(__UpperCAmelCase ) if hidden_states is not None else None if not return_dict: _a = (feature_maps,) if output_hidden_states: _a = output + (hidden_states,) return output return BackboneOutput(feature_maps=__UpperCAmelCase , hidden_states=__UpperCAmelCase , attentions=__UpperCAmelCase )
320
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
1
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase = 0 ) -> Optional[Any]: _a = key def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) _a = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__UpperCAmelCase ) ^ key ) for ch in content] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> list[str]: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) _a = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(__UpperCAmelCase ) ^ key ) for ch in content] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> str: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) _a = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _a = '''''' for ch in content: ans += chr(ord(__UpperCAmelCase ) ^ key ) return ans def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> str: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) _a = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _a = '''''' for ch in content: ans += chr(ord(__UpperCAmelCase ) ^ key ) return ans def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> bool: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) try: with open(__UpperCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(__UpperCAmelCase , __UpperCAmelCase ) ) except OSError: return False return True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> bool: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) try: with open(__UpperCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(__UpperCAmelCase , __UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
320
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''', '''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''', '''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''', '''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''', '''funnel-transformer/intermediate''': ( '''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json''' ), '''funnel-transformer/intermediate-base''': ( '''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json''' ), '''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''', '''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''', '''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''', '''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''', } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Tuple = 'funnel' A_ : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', } def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=[4, 4, 4] , __UpperCAmelCase=None , __UpperCAmelCase=2 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=64 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=None , __UpperCAmelCase=1e-9 , __UpperCAmelCase="mean" , __UpperCAmelCase="relative_shift" , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> int: _a = vocab_size _a = block_sizes _a = [1] * len(__UpperCAmelCase ) if block_repeats is None else block_repeats assert len(__UpperCAmelCase ) == len( self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length." _a = num_decoder_layers _a = d_model _a = n_head _a = d_head _a = d_inner _a = hidden_act _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = initializer_range _a = initializer_std _a = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.' _a = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.' _a = attention_type _a = separate_cls _a = truncate_seq _a = pool_q_only super().__init__(**__UpperCAmelCase ) @property def _UpperCAmelCase ( self ) -> List[Any]: return sum(self.block_sizes ) @num_hidden_layers.setter def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: raise NotImplementedError( '''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' ) @property def _UpperCAmelCase ( self ) -> Tuple: return len(self.block_sizes ) @num_blocks.setter def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int: raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
320
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __snake_case = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput __snake_case = '''scheduler_config.json''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 1 A_ : Optional[Any] = 2 A_ : List[str] = 3 A_ : List[str] = 4 A_ : str = 5 A_ : List[Any] = 6 A_ : Optional[int] = 7 A_ : int = 8 A_ : Tuple = 9 A_ : Dict = 10 A_ : List[str] = 11 A_ : Any = 12 A_ : List[str] = 13 A_ : List[str] = 14 @dataclass class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : torch.FloatTensor class __lowerCamelCase : '''simple docstring''' A_ : Union[str, Any] = SCHEDULER_CONFIG_NAME A_ : Union[str, Any] = [] A_ : Dict = True @classmethod def _UpperCAmelCase ( cls , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Dict: _a , _a , _a = cls.load_config( pretrained_model_name_or_path=__UpperCAmelCase , subfolder=__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , return_commit_hash=__UpperCAmelCase , **__UpperCAmelCase , ) return cls.from_config(__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , **__UpperCAmelCase ) -> List[str]: self.save_config(save_directory=__UpperCAmelCase , push_to_hub=__UpperCAmelCase , **__UpperCAmelCase ) @property def _UpperCAmelCase ( self ) -> str: return self._get_compatibles() @classmethod def _UpperCAmelCase ( cls ) -> Optional[int]: _a = list(set([cls.__name__] + cls._compatibles ) ) _a = importlib.import_module(__name__.split('''.''' )[0] ) _a = [ getattr(__UpperCAmelCase , __UpperCAmelCase ) for c in compatible_classes_str if hasattr(__UpperCAmelCase , __UpperCAmelCase ) ] return compatible_classes
320
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
1
"""simple docstring""" import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} # See all LED models at https://huggingface.co/models?filter=LED __snake_case = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } __snake_case = { '''allenai/led-base-16384''': 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def A_ ( ): """simple docstring""" _a = ( list(range(ord('''!''' ), ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ), ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ), ord('''ÿ''' ) + 1 ) ) ) _a = bs[:] _a = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCAmelCase ) cs.append(2**8 + n ) n += 1 _a = [chr(_lowerCAmelCase ) for n in cs] return dict(zip(_lowerCAmelCase, _lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _a = set() _a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _a = char return pairs class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : str = VOCAB_FILES_NAMES A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[str] = ['input_ids', 'attention_mask'] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> int: _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) with open(__UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle: _a = json.load(__UpperCAmelCase ) _a = {v: k for k, v in self.encoder.items()} _a = errors # how to handle errors in decoding _a = bytes_to_unicode() _a = {v: k for k, v in self.byte_encoder.items()} with open(__UpperCAmelCase , encoding='''utf-8''' ) as merges_handle: _a = merges_handle.read().split('''\n''' )[1:-1] _a = [tuple(merge.split() ) for merge in bpe_merges] _a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) _a = {} _a = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _a = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def _UpperCAmelCase ( self ) -> List[str]: return len(self.encoder ) def _UpperCAmelCase ( self ) -> Any: return dict(self.encoder , **self.added_tokens_encoder ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if token in self.cache: return self.cache[token] _a = tuple(__UpperCAmelCase ) _a = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: _a = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _a , _a = bigram _a = [] _a = 0 while i < len(__UpperCAmelCase ): try: _a = word.index(__UpperCAmelCase , __UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _a = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a = tuple(__UpperCAmelCase ) _a = new_word if len(__UpperCAmelCase ) == 1: break else: _a = get_pairs(__UpperCAmelCase ) _a = ''' '''.join(__UpperCAmelCase ) _a = word return word def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: _a = [] for token in re.findall(self.pat , __UpperCAmelCase ): _a = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(''' ''' ) ) return bpe_tokens def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: return self.decoder.get(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _a = ''''''.join(__UpperCAmelCase ) _a = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + '''\n''' ) _a = 0 with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) _a = token_index writer.write(''' '''.join(__UpperCAmelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase ) -> List[Any]: _a = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()): _a = ''' ''' + text return (text, kwargs) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> dict: _a = super()._pad( encoded_inputs=__UpperCAmelCase , max_length=__UpperCAmelCase , padding_strategy=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , ) # Load from model defaults if return_attention_mask is None: _a = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _a = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _a = len(encoded_inputs['''global_attention_mask'''] ) != len(__UpperCAmelCase ) if needs_to_be_padded: _a = len(__UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _a = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": _a = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" from collections.abc import Sequence def A_ ( _lowerCAmelCase : Sequence[float], _lowerCAmelCase : float ): """simple docstring""" return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Sequence[float], _lowerCAmelCase : float ): """simple docstring""" _a = 0.0 for coeff in reversed(_lowerCAmelCase ): _a = result * x + coeff return result if __name__ == "__main__": __snake_case = (0.0, 0.0, 5.0, 9.3, 7.0) __snake_case = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
320
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
1
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
1