code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float ):
"""simple docstring"""
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance < 0:
raise ValueError('''Resistance cannot be negative''' )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
from math import factorial
__snake_case = {str(d): factorial(d) for d in range(10)}
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
return sum(DIGIT_FACTORIAL[d] for d in str(_lowerCAmelCase ) )
def A_ ( ):
"""simple docstring"""
_a = 7 * factorial(9 ) + 1
return sum(i for i in range(3, _lowerCAmelCase ) if sum_of_digit_factorial(_lowerCAmelCase ) == i )
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
import torch
from diffusers import DiffusionPipeline
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
super().__init__()
self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
def __call__( self ) -> Union[str, Any]:
_a = torch.randn(
(1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , )
_a = 1
_a = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
_a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
_a = scheduler_output - scheduler_output + torch.ones_like(__UpperCAmelCase )
return result
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''',
},
'''merges_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''allenai/led-base-16384''': 16384,
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[int] = VOCAB_FILES_NAMES
A_ : Tuple = PRETRAINED_VOCAB_FILES_MAP
A_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : int = LEDTokenizer
A_ : Tuple = ['input_ids', 'attention_mask']
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , )
_a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , __UpperCAmelCase ) != add_prefix_space:
_a = getattr(__UpperCAmelCase , pre_tok_state.pop('''type''' ) )
_a = add_prefix_space
_a = pre_tok_class(**__UpperCAmelCase )
_a = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
_a = '''post_processor'''
_a = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase )
if tokenizer_component_instance:
_a = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_a = tuple(state['''sep'''] )
if "cls" in state:
_a = tuple(state['''cls'''] )
_a = False
if state.get('''add_prefix_space''' , __UpperCAmelCase ) != add_prefix_space:
_a = add_prefix_space
_a = True
if state.get('''trim_offsets''' , __UpperCAmelCase ) != trim_offsets:
_a = trim_offsets
_a = True
if changes_to_apply:
_a = getattr(__UpperCAmelCase , state.pop('''type''' ) )
_a = component_class(**__UpperCAmelCase )
setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _UpperCAmelCase ( self ) -> str:
if self._mask_token is None:
if self.verbose:
logger.error('''Using mask_token, but it is not set yet.''' )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value
_a = value
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding:
_a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
'''to use it with pretokenized inputs.''' )
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding:
_a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
'''to use it with pretokenized inputs.''' )
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
_a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> int:
_a = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> dict:
_a = super()._pad(
encoded_inputs=__UpperCAmelCase , max_length=__UpperCAmelCase , padding_strategy=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
_a = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_a = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_a = len(encoded_inputs['''global_attention_mask'''] ) != len(__UpperCAmelCase )
if needs_to_be_padded:
_a = len(__UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_a = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
_a = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
__snake_case = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Dict, _lowerCAmelCase : List[str], _lowerCAmelCase : Tuple, _lowerCAmelCase : List[Any]=True, _lowerCAmelCase : Any="pt" ):
"""simple docstring"""
_a = {'''add_prefix_space''': True} if isinstance(_lowerCAmelCase, _lowerCAmelCase ) and not line.startswith(''' ''' ) else {}
_a = padding_side
return tokenizer(
[line], max_length=_lowerCAmelCase, padding='''max_length''' if pad_to_max_length else None, truncation=_lowerCAmelCase, return_tensors=_lowerCAmelCase, add_special_tokens=_lowerCAmelCase, **_lowerCAmelCase, )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : Any=None, ):
"""simple docstring"""
_a = input_ids.ne(_lowerCAmelCase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="train" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , ) -> List[Any]:
super().__init__()
_a = Path(__UpperCAmelCase ).joinpath(type_path + '''.source''' )
_a = Path(__UpperCAmelCase ).joinpath(type_path + '''.target''' )
_a = self.get_char_lens(self.src_file )
_a = max_source_length
_a = max_target_length
assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}'
_a = tokenizer
_a = prefix
if n_obs is not None:
_a = self.src_lens[:n_obs]
_a = src_lang
_a = tgt_lang
def __len__( self ) -> Union[str, Any]:
return len(self.src_lens )
def __getitem__( self , __UpperCAmelCase ) -> Dict[str, torch.Tensor]:
_a = index + 1 # linecache starts at 1
_a = self.prefix + linecache.getline(str(self.src_file ) , __UpperCAmelCase ).rstrip('''\n''' )
_a = linecache.getline(str(self.tgt_file ) , __UpperCAmelCase ).rstrip('''\n''' )
assert source_line, F'empty source line for index {index}'
assert tgt_line, F'empty tgt line for index {index}'
# Need to add eos token manually for T5
if isinstance(self.tokenizer , __UpperCAmelCase ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
_a = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer
)
_a = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer
_a = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_source_length , '''right''' )
_a = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_target_length , '''right''' )
_a = source_inputs['''input_ids'''].squeeze()
_a = target_inputs['''input_ids'''].squeeze()
_a = source_inputs['''attention_mask'''].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def _UpperCAmelCase ( __UpperCAmelCase ) -> Dict:
return [len(__UpperCAmelCase ) for x in Path(__UpperCAmelCase ).open().readlines()]
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict[str, torch.Tensor]:
_a = torch.stack([x['''input_ids'''] for x in batch] )
_a = torch.stack([x['''attention_mask'''] for x in batch] )
_a = torch.stack([x['''decoder_input_ids'''] for x in batch] )
_a = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , __UpperCAmelCase )
else self.tokenizer.pad_token_id
)
_a = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , __UpperCAmelCase )
else self.tokenizer.pad_token_id
)
_a = trim_batch(__UpperCAmelCase , __UpperCAmelCase )
_a , _a = trim_batch(__UpperCAmelCase , __UpperCAmelCase , attention_mask=__UpperCAmelCase )
_a = {
'''input_ids''': source_ids,
'''attention_mask''': source_mask,
'''decoder_input_ids''': y,
}
return batch
__snake_case = getLogger(__name__)
def A_ ( _lowerCAmelCase : List[List] ):
"""simple docstring"""
return list(itertools.chain.from_iterable(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
_a = get_git_info()
save_json(_lowerCAmelCase, os.path.join(_lowerCAmelCase, '''git_log.json''' ) )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int, _lowerCAmelCase : List[Any]=4, **_lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
with open(_lowerCAmelCase, '''w''' ) as f:
json.dump(_lowerCAmelCase, _lowerCAmelCase, indent=_lowerCAmelCase, **_lowerCAmelCase )
def A_ ( _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
with open(_lowerCAmelCase ) as f:
return json.load(_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = git.Repo(search_parent_directories=_lowerCAmelCase )
_a = {
'''repo_id''': str(_lowerCAmelCase ),
'''repo_sha''': str(repo.head.object.hexsha ),
'''repo_branch''': str(repo.active_branch ),
'''hostname''': str(socket.gethostname() ),
}
return repo_infos
def A_ ( _lowerCAmelCase : Callable, _lowerCAmelCase : Iterable ):
"""simple docstring"""
return list(map(_lowerCAmelCase, _lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Any ):
"""simple docstring"""
with open(_lowerCAmelCase, '''wb''' ) as f:
return pickle.dump(_lowerCAmelCase, _lowerCAmelCase )
def A_ ( _lowerCAmelCase : Tuple ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
return re.sub(R'''\b(a|an|the)\b''', ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Union[str, Any] ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : List[Any] ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : str ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_a = normalize_answer(_lowerCAmelCase ).split()
_a = normalize_answer(_lowerCAmelCase ).split()
_a = Counter(_lowerCAmelCase ) & Counter(_lowerCAmelCase )
_a = sum(common.values() )
if num_same == 0:
return 0
_a = 1.0 * num_same / len(_lowerCAmelCase )
_a = 1.0 * num_same / len(_lowerCAmelCase )
_a = (2 * precision * recall) / (precision + recall)
return fa
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
return normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase )
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[str] ):
"""simple docstring"""
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = 0
for hypo, pred in zip(_lowerCAmelCase, _lowerCAmelCase ):
em += exact_match_score(_lowerCAmelCase, _lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
em /= len(_lowerCAmelCase )
return {"em": em}
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
return model_prefix.startswith('''rag''' )
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
_a = '''dropout_rate'''
for p in extra_params:
if getattr(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
if not hasattr(_lowerCAmelCase, _lowerCAmelCase ) and not hasattr(_lowerCAmelCase, equivalent_param[p] ):
logger.info('''config doesn\'t have a `{}` attribute'''.format(_lowerCAmelCase ) )
delattr(_lowerCAmelCase, _lowerCAmelCase )
continue
_a = p if hasattr(_lowerCAmelCase, _lowerCAmelCase ) else equivalent_param[p]
setattr(_lowerCAmelCase, _lowerCAmelCase, getattr(_lowerCAmelCase, _lowerCAmelCase ) )
delattr(_lowerCAmelCase, _lowerCAmelCase )
return hparams, config
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
__snake_case = '''examples/'''
__snake_case = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
__snake_case = {
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
__snake_case = '''README.md'''
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int ):
"""simple docstring"""
with open(_lowerCAmelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f:
_a = f.read()
_a , _a = REPLACE_PATTERNS[pattern]
_a = replace.replace('''VERSION''', _lowerCAmelCase )
_a = re_pattern.sub(_lowerCAmelCase, _lowerCAmelCase )
with open(_lowerCAmelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f:
f.write(_lowerCAmelCase )
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
for folder, directories, fnames in os.walk(_lowerCAmelCase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('''research_projects''' )
if "legacy" in directories:
directories.remove('''legacy''' )
for fname in fnames:
if fname.endswith('''.py''' ):
update_version_in_file(os.path.join(_lowerCAmelCase, _lowerCAmelCase ), _lowerCAmelCase, pattern='''examples''' )
def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Any=False ):
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
if not patch:
update_version_in_examples(_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = '''🤗 Transformers currently provides the following architectures'''
_a = '''1. Want to contribute a new model?'''
with open(_lowerCAmelCase, '''r''', encoding='''utf-8''', newline='''\n''' ) as f:
_a = f.readlines()
# Find the start of the list.
_a = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_a = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('''1.''' ):
_a = lines[index].replace(
'''https://huggingface.co/docs/transformers/main/model_doc''', '''https://huggingface.co/docs/transformers/model_doc''', )
index += 1
with open(_lowerCAmelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f:
f.writelines(_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
with open(REPLACE_FILES['''init'''], '''r''' ) as f:
_a = f.read()
_a = REPLACE_PATTERNS['''init'''][0].search(_lowerCAmelCase ).groups()[0]
return packaging.version.parse(_lowerCAmelCase )
def A_ ( _lowerCAmelCase : Tuple=False ):
"""simple docstring"""
_a = get_version()
if patch and default_version.is_devrelease:
raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' )
if default_version.is_devrelease:
_a = default_version.base_version
elif patch:
_a = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}'
else:
_a = f'{default_version.major}.{default_version.minor + 1}.0'
# Now let's ask nicely if that's the right one.
_a = input(f'Which version are you releasing? [{default_version}]' )
if len(_lowerCAmelCase ) == 0:
_a = default_version
print(f'Updating version to {version}.' )
global_version_update(_lowerCAmelCase, patch=_lowerCAmelCase )
if not patch:
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
def A_ ( ):
"""simple docstring"""
_a = get_version()
_a = f'{current_version.major}.{current_version.minor + 1}.0.dev0'
_a = current_version.base_version
# Check with the user we got that right.
_a = input(f'Which version are we developing now? [{dev_version}]' )
if len(_lowerCAmelCase ) == 0:
_a = dev_version
print(f'Updating version to {version}.' )
global_version_update(_lowerCAmelCase )
print('''Cleaning main README, don\'t forget to run `make fix-copies`.''' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
__snake_case = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import argparse
import torch
from ...utils import logging
from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert
logging.set_verbosity_info()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[int], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = AlbertConfig.from_json_file(_lowerCAmelCase )
print(f'Building PyTorch model from configuration: {config}' )
_a = AlbertForPreTraining(_lowerCAmelCase )
# Load weights from tf checkpoint
load_tf_weights_in_albert(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), _lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--albert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained ALBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
__snake_case = 256
# Modulus to hash a string
__snake_case = 1000003
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = len(_lowerCAmelCase )
if p_len > t_len:
return False
_a = 0
_a = 0
_a = 1
# Calculating the hash of pattern and substring of text
for i in range(_lowerCAmelCase ):
_a = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus
_a = (ord(text[i] ) + text_hash * alphabet_size) % modulus
if i == p_len - 1:
continue
_a = (modulus_power * alphabet_size) % modulus
for i in range(0, t_len - p_len + 1 ):
if text_hash == p_hash and text[i : i + p_len] == pattern:
return True
if i == t_len - p_len:
continue
# Calculate the https://en.wikipedia.org/wiki/Rolling_hash
_a = (
(text_hash - ord(text[i] ) * modulus_power) * alphabet_size
+ ord(text[i + p_len] )
) % modulus
return False
def A_ ( ):
"""simple docstring"""
_a = '''abc1abc12'''
_a = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
_a = '''alskfjaldsk23adsfabcabc'''
assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase ) and not rabin_karp(_lowerCAmelCase, _lowerCAmelCase )
# Test 2)
_a = '''ABABX'''
_a = '''ABABZABABYABABX'''
assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase )
# Test 3)
_a = '''AAAB'''
_a = '''ABAAAAAB'''
assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase )
# Test 4)
_a = '''abcdabcy'''
_a = '''abcxabcdabxabcdabcdabcy'''
assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase )
# Test 5)
_a = '''Lü'''
_a = '''Lüsai'''
assert rabin_karp(_lowerCAmelCase, _lowerCAmelCase )
_a = '''Lue'''
assert not rabin_karp(_lowerCAmelCase, _lowerCAmelCase )
print('''Success.''' )
if __name__ == "__main__":
test_rabin_karp()
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = '''ZinengTang/tvlt-base'''
_a = tempfile.mkdtemp()
def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Optional[Any]:
return TvltImageProcessor.from_pretrained(self.checkpoint , **__UpperCAmelCase )
def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> int:
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self ) -> List[str]:
_a = self.get_image_processor()
_a = self.get_feature_extractor()
_a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
_a = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , __UpperCAmelCase )
self.assertIsInstance(processor.image_processor , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> str:
_a = self.get_image_processor()
_a = self.get_feature_extractor()
_a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase )
_a = np.ones([12000] )
_a = feature_extractor(__UpperCAmelCase , return_tensors='''np''' )
_a = processor(audio=__UpperCAmelCase , return_tensors='''np''' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _UpperCAmelCase ( self ) -> int:
_a = self.get_image_processor()
_a = self.get_feature_extractor()
_a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase )
_a = np.ones([3, 224, 224] )
_a = image_processor(__UpperCAmelCase , return_tensors='''np''' )
_a = processor(images=__UpperCAmelCase , return_tensors='''np''' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _UpperCAmelCase ( self ) -> Dict:
_a = self.get_image_processor()
_a = self.get_feature_extractor()
_a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase )
_a = np.ones([12000] )
_a = np.ones([3, 224, 224] )
_a = processor(audio=__UpperCAmelCase , images=__UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] )
# test if it raises when no input is passed
with pytest.raises(__UpperCAmelCase ):
processor()
def _UpperCAmelCase ( self ) -> int:
_a = self.get_image_processor()
_a = self.get_feature_extractor()
_a = TvltProcessor(image_processor=__UpperCAmelCase , feature_extractor=__UpperCAmelCase )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
_a = dataset
_a = process
_a = params
def __len__( self ) -> Any:
return len(self.dataset )
def __getitem__( self , __UpperCAmelCase ) -> List[Any]:
_a = self.dataset[i]
_a = self.process(__UpperCAmelCase , **self.params )
return processed
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Union[str, Any]:
_a = loader
_a = infer
_a = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
_a = None
_a = loader_batch_size
# Internal bookkeeping
_a = None
_a = None
def __len__( self ) -> List[Any]:
return len(self.loader )
def __iter__( self ) -> List[Any]:
_a = iter(self.loader )
return self
def _UpperCAmelCase ( self ) -> str:
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
_a = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
_a = {}
for k, element in self._loader_batch_data.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
# Convert ModelOutput to tuple first
_a = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
_a = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_a = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(__UpperCAmelCase , __UpperCAmelCase ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
_a = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
_a = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
_a = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_a = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
_a = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
_a = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
_a = self._loader_batch_data.__class__(__UpperCAmelCase )
self._loader_batch_index += 1
return result
def _UpperCAmelCase ( self ) -> Optional[Any]:
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
_a = next(self.iterator )
_a = self.infer(__UpperCAmelCase , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(__UpperCAmelCase , torch.Tensor ):
_a = processed
else:
_a = list(processed.keys() )[0]
_a = processed[key]
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = len(__UpperCAmelCase )
else:
_a = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_a = observed_batch_size
# Setting internal index to unwrap the batch
_a = processed
_a = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[Any]:
super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def __iter__( self ) -> int:
_a = iter(self.loader )
_a = None
return self
def _UpperCAmelCase ( self ) -> List[Any]:
if self.subiterator is None:
_a = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
_a = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
_a = self.infer(next(self.iterator ) , **self.params )
_a = next(self.subiterator )
return processed
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __iter__( self ) -> Any:
_a = iter(self.loader )
return self
def _UpperCAmelCase ( self ) -> Any:
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
_a = False
_a = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
_a = self.loader_batch_item()
_a = item.pop('''is_last''' )
accumulator.append(__UpperCAmelCase )
if is_last:
return accumulator
while not is_last:
_a = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(__UpperCAmelCase , torch.Tensor ):
_a = processed
else:
_a = list(processed.keys() )[0]
_a = processed[key]
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = len(__UpperCAmelCase )
else:
_a = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
_a = observed_batch_size
_a = processed
_a = 0
while self._loader_batch_index < self.loader_batch_size:
_a = self.loader_batch_item()
_a = item.pop('''is_last''' )
accumulator.append(__UpperCAmelCase )
if is_last:
return accumulator
else:
_a = processed
_a = item.pop('''is_last''' )
accumulator.append(__UpperCAmelCase )
return accumulator
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
_a = dataset
_a = key
def __len__( self ) -> Optional[Any]:
return len(self.dataset )
def __getitem__( self , __UpperCAmelCase ) -> List[str]:
return self.dataset[i][self.key]
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = dataset
_a = keya
_a = keya
def __len__( self ) -> Optional[Any]:
return len(self.dataset )
def __getitem__( self , __UpperCAmelCase ) -> List[Any]:
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=99 , __UpperCAmelCase=0 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase="last" , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> List[Any]:
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_lengths
_a = use_token_type_ids
_a = use_labels
_a = gelu_activation
_a = sinusoidal_embeddings
_a = causal
_a = asm
_a = n_langs
_a = vocab_size
_a = n_special
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = summary_type
_a = use_proj
_a = scope
def _UpperCAmelCase ( self ) -> List[Any]:
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_input_lengths:
_a = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , 2 ).float()
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _UpperCAmelCase ( self ) -> Optional[int]:
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
_a = FlaubertModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , lengths=__UpperCAmelCase , langs=__UpperCAmelCase )
_a = model(__UpperCAmelCase , langs=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[str]:
_a = FlaubertWithLMHeadModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = FlaubertForQuestionAnsweringSimple(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[Any]:
_a = FlaubertForQuestionAnswering(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase )
_a = model(
__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , p_mask=__UpperCAmelCase , )
_a = model(
__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , )
((_a) , ) = result_with_labels.to_tuple()
_a = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase )
((_a) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = FlaubertForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = self.num_labels
_a = FlaubertForTokenClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = self.num_choices
_a = FlaubertForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : int = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
A_ : Dict = (
{
'feature-extraction': FlaubertModel,
'fill-mask': FlaubertWithLMHeadModel,
'question-answering': FlaubertForQuestionAnsweringSimple,
'text-classification': FlaubertForSequenceClassification,
'token-classification': FlaubertForTokenClassification,
'zero-shot': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Any:
_a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
return inputs_dict
def _UpperCAmelCase ( self ) -> List[str]:
_a = FlaubertModelTester(self )
_a = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 )
def _UpperCAmelCase ( self ) -> int:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = FlaubertModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@slow
@require_torch_gpu
def _UpperCAmelCase ( self ) -> Tuple:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
_a = True
_a = model_class(config=__UpperCAmelCase )
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_a = torch.jit.trace(
__UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) )
_a = torch.jit.load(os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) , map_location=__UpperCAmelCase )
loaded(inputs_dict['''input_ids'''].to(__UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(__UpperCAmelCase ) )
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' )
_a = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
_a = model(__UpperCAmelCase )[0]
_a = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
_a = torch.tensor(
[[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1e-4 ) )
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__snake_case = logging.get_logger(__name__)
__snake_case = {'''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''tokenizer_file''': {
'''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''',
'''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''',
'''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''',
'''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''',
'''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''',
'''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''',
'''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''',
},
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[int] = VOCAB_FILES_NAMES
A_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A_ : Optional[Any] = ['input_ids', 'attention_mask']
A_ : str = None
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> str:
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , **__UpperCAmelCase , )
_a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , __UpperCAmelCase ) != add_prefix_space:
_a = getattr(__UpperCAmelCase , pre_tok_state.pop('''type''' ) )
_a = add_prefix_space
_a = pre_tok_class(**__UpperCAmelCase )
_a = add_prefix_space
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding:
_a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'
''' pretokenized inputs.''' )
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> BatchEncoding:
_a = kwargs.get('''is_split_into_words''' , __UpperCAmelCase )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'
''' pretokenized inputs.''' )
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
_a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[int]:
_a = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] )
if len(__UpperCAmelCase ) > self.model_max_length:
_a = input_ids[-self.model_max_length :]
return input_ids
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
__snake_case = True
except (ImportError, ModuleNotFoundError):
__snake_case = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
re.sub('''<n>''', '''''', _lowerCAmelCase ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' )
for i in range(_lowerCAmelCase ):
for j in range(_lowerCAmelCase ):
if dist[i][j] != float('''inf''' ):
print(int(dist[i][j] ), end='''\t''' )
else:
print('''INF''', end='''\t''' )
print()
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [[float('''inf''' ) for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )]
for i in range(_lowerCAmelCase ):
for j in range(_lowerCAmelCase ):
_a = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(_lowerCAmelCase ):
# looping through rows of graph array
for i in range(_lowerCAmelCase ):
# looping through columns of graph array
for j in range(_lowerCAmelCase ):
if (
dist[i][k] != float('''inf''' )
and dist[k][j] != float('''inf''' )
and dist[i][k] + dist[k][j] < dist[i][j]
):
_a = dist[i][k] + dist[k][j]
_print_dist(_lowerCAmelCase, _lowerCAmelCase )
return dist, v
if __name__ == "__main__":
__snake_case = int(input('''Enter number of vertices: '''))
__snake_case = int(input('''Enter number of edges: '''))
__snake_case = [[float('''inf''') for i in range(v)] for j in range(v)]
for i in range(v):
__snake_case = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print('''\nEdge ''', i + 1)
__snake_case = int(input('''Enter source:'''))
__snake_case = int(input('''Enter destination:'''))
__snake_case = float(input('''Enter weight:'''))
__snake_case = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
__snake_case = frozenset(
[
'''prompt''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
__snake_case = frozenset(['''prompt''', '''negative_prompt'''])
__snake_case = frozenset([])
__snake_case = frozenset(['''image'''])
__snake_case = frozenset(
[
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
__snake_case = frozenset(['''image'''])
__snake_case = frozenset(
[
'''prompt''',
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
__snake_case = frozenset(['''prompt''', '''image''', '''negative_prompt'''])
__snake_case = frozenset(
[
# Text guided image variation with an image mask
'''prompt''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
__snake_case = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt'''])
__snake_case = frozenset(
[
# image variation with an image mask
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
__snake_case = frozenset(['''image''', '''mask_image'''])
__snake_case = frozenset(
[
'''example_image''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
__snake_case = frozenset(['''example_image''', '''image''', '''mask_image'''])
__snake_case = frozenset(['''class_labels'''])
__snake_case = frozenset(['''class_labels'''])
__snake_case = frozenset(['''batch_size'''])
__snake_case = frozenset([])
__snake_case = frozenset(['''batch_size'''])
__snake_case = frozenset([])
__snake_case = frozenset(
[
'''prompt''',
'''audio_length_in_s''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
__snake_case = frozenset(['''prompt''', '''negative_prompt'''])
__snake_case = frozenset(['''input_tokens'''])
__snake_case = frozenset(['''input_tokens'''])
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : List[Any], _lowerCAmelCase : Any ):
"""simple docstring"""
_a = MobileBertConfig.from_json_file(_lowerCAmelCase )
print(f'Building PyTorch model from configuration: {config}' )
_a = MobileBertForPreTraining(_lowerCAmelCase )
# Load weights from tf checkpoint
_a = load_tf_weights_in_mobilebert(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), _lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--mobilebert_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained MobileBERT model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_dpt import DPTImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use DPTImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[int] = MgpstrTokenizer
A_ : Tuple = False
A_ : Any = {}
A_ : Optional[int] = False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
super().setUp()
# fmt: off
_a = ['''[GO]''', '''[s]''', '''0''', '''1''', '''2''', '''3''', '''4''', '''5''', '''6''', '''7''', '''8''', '''9''', '''a''', '''b''', '''c''', '''d''', '''e''', '''f''', '''g''', '''h''', '''i''', '''j''', '''k''', '''l''', '''m''', '''n''', '''o''', '''p''', '''q''', '''r''', '''s''', '''t''', '''u''', '''v''', '''w''', '''x''', '''y''', '''z''']
# fmt: on
_a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' )
def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Optional[Any]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str:
_a = '''tester'''
_a = '''tester'''
return input_text, output_text
@unittest.skip('''MGP-STR always lower cases letters.''' )
def _UpperCAmelCase ( self ) -> int:
pass
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = self.get_tokenizers(do_lower_case=__UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
_a = '''[SPECIAL_TOKEN]'''
tokenizer.add_special_tokens({'''cls_token''': special_token} )
_a = tokenizer.encode([special_token] , add_special_tokens=__UpperCAmelCase )
self.assertEqual(len(__UpperCAmelCase ) , 1 )
_a = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
self.assertTrue(special_token not in decoded )
def _UpperCAmelCase ( self ) -> List[str]:
_a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
_a , _a = self.get_input_output_texts(__UpperCAmelCase )
_a = tokenizer.tokenize(__UpperCAmelCase )
_a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
_a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
_a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertNotEqual(len(__UpperCAmelCase ) , 0 )
_a = tokenizer.decode(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(text_a.replace(''' ''' , '''''' ) , __UpperCAmelCase )
@unittest.skip('''MGP-STR tokenizer only handles one sequence.''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@unittest.skip('''inputs cannot be pretokenized in MgpstrTokenizer''' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
pass
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
from math import sqrt
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (
number >= 0
), "'number' must been an int and positive"
_a = True
# 0 and 1 are none primes.
if number <= 1:
_a = False
for divisor in range(2, int(round(sqrt(_lowerCAmelCase ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
_a = False
break
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'status' must been from type bool"
return status
def A_ ( _lowerCAmelCase : Tuple ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
_a = list(range(2, n + 1 ) )
_a = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_lowerCAmelCase ) ):
for j in range(i + 1, len(_lowerCAmelCase ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
_a = 0
# filters actual prime numbers.
_a = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type list"
return ans
def A_ ( _lowerCAmelCase : List[Any] ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n > 2), "'N' must been an int and > 2"
_a = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1 ):
if is_prime(_lowerCAmelCase ):
ans.append(_lowerCAmelCase )
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type list"
return ans
def A_ ( _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and number >= 0, "'number' must been an int and >= 0"
_a = [] # this list will be returns of the function.
# potential prime number factors.
_a = 2
_a = number
if number == 0 or number == 1:
ans.append(_lowerCAmelCase )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_lowerCAmelCase ):
while quotient != 1:
if is_prime(_lowerCAmelCase ) and (quotient % factor == 0):
ans.append(_lowerCAmelCase )
quotient /= factor
else:
factor += 1
else:
ans.append(_lowerCAmelCase )
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type list"
return ans
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (
number >= 0
), "'number' bust been an int and >= 0"
_a = 0
# prime factorization of 'number'
_a = prime_factorization(_lowerCAmelCase )
_a = max(_lowerCAmelCase )
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type int"
return ans
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (
number >= 0
), "'number' bust been an int and >= 0"
_a = 0
# prime factorization of 'number'
_a = prime_factorization(_lowerCAmelCase )
_a = min(_lowerCAmelCase )
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'ans' must been from type int"
return ans
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'number' must been an int"
assert isinstance(number % 2 == 0, _lowerCAmelCase ), "compare bust been from type bool"
return number % 2 == 0
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ), "'number' must been an int"
assert isinstance(number % 2 != 0, _lowerCAmelCase ), "compare bust been from type bool"
return number % 2 != 0
def A_ ( _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert (
isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (number > 2) and is_even(_lowerCAmelCase )
), "'number' must been an int, even and > 2"
_a = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
_a = get_prime_numbers(_lowerCAmelCase )
_a = len(_lowerCAmelCase )
# run variable for while-loops.
_a = 0
_a = None
# exit variable. for break up the loops
_a = True
while i < len_pn and loop:
_a = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
_a = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_lowerCAmelCase, _lowerCAmelCase )
and (len(_lowerCAmelCase ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Tuple ):
"""simple docstring"""
assert (
isinstance(_lowerCAmelCase, _lowerCAmelCase )
and isinstance(_lowerCAmelCase, _lowerCAmelCase )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
_a = 0
while numbera != 0:
_a = numbera % numbera
_a = numbera
_a = rest
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
assert (
isinstance(_lowerCAmelCase, _lowerCAmelCase )
and isinstance(_lowerCAmelCase, _lowerCAmelCase )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
_a = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
_a = prime_factorization(_lowerCAmelCase )
_a = prime_factorization(_lowerCAmelCase )
elif numbera == 1 or numbera == 1:
_a = []
_a = []
_a = max(_lowerCAmelCase, _lowerCAmelCase )
_a = 0
_a = 0
_a = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
_a = prime_fac_a.count(_lowerCAmelCase )
_a = prime_fac_a.count(_lowerCAmelCase )
for _ in range(max(_lowerCAmelCase, _lowerCAmelCase ) ):
ans *= n
else:
_a = prime_fac_a.count(_lowerCAmelCase )
for _ in range(_lowerCAmelCase ):
ans *= n
done.append(_lowerCAmelCase )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
_a = prime_fac_a.count(_lowerCAmelCase )
for _ in range(_lowerCAmelCase ):
ans *= n
done.append(_lowerCAmelCase )
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n >= 0), "'number' must been a positive int"
_a = 0
_a = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_lowerCAmelCase ):
ans += 1
# precondition
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and is_prime(
_lowerCAmelCase ), "'ans' must been a prime number and from type int"
return ans
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert (
is_prime(_lowerCAmelCase ) and is_prime(_lowerCAmelCase ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
_a = p_number_a + 1 # jump to the next number
_a = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_lowerCAmelCase ):
number += 1
while number < p_number_a:
ans.append(_lowerCAmelCase )
number += 1
# fetch the next prime number.
while not is_prime(_lowerCAmelCase ):
number += 1
# precondition
assert (
isinstance(_lowerCAmelCase, _lowerCAmelCase )
and ans[0] != p_number_a
and ans[len(_lowerCAmelCase ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def A_ ( _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n >= 1), "'n' must been int and >= 1"
_a = [] # will be returned.
for divisor in range(1, n + 1 ):
if n % divisor == 0:
ans.append(_lowerCAmelCase )
# precondition
assert ans[0] == 1 and ans[len(_lowerCAmelCase ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def A_ ( _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (
number > 1
), "'number' must been an int and >= 1"
_a = get_divisors(_lowerCAmelCase )
# precondition
assert (
isinstance(_lowerCAmelCase, _lowerCAmelCase )
and (divisors[0] == 1)
and (divisors[len(_lowerCAmelCase ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
assert (
isinstance(_lowerCAmelCase, _lowerCAmelCase )
and isinstance(_lowerCAmelCase, _lowerCAmelCase )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
_a = gcd(abs(_lowerCAmelCase ), abs(_lowerCAmelCase ) )
# precondition
assert (
isinstance(_lowerCAmelCase, _lowerCAmelCase )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n >= 0), "'n' must been a int and >= 0"
_a = 1 # this will be return.
for factor in range(1, n + 1 ):
ans *= factor
return ans
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) and (n >= 0), "'n' must been an int and >= 0"
_a = 0
_a = 1
_a = 1 # this will be return
for _ in range(n - 1 ):
_a = ans
ans += fiba
_a = tmp
return ans
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {
'''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''],
'''tokenization_electra''': ['''ElectraTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ElectraTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ElectraForCausalLM''',
'''ElectraForMaskedLM''',
'''ElectraForMultipleChoice''',
'''ElectraForPreTraining''',
'''ElectraForQuestionAnswering''',
'''ElectraForSequenceClassification''',
'''ElectraForTokenClassification''',
'''ElectraModel''',
'''ElectraPreTrainedModel''',
'''load_tf_weights_in_electra''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFElectraForMaskedLM''',
'''TFElectraForMultipleChoice''',
'''TFElectraForPreTraining''',
'''TFElectraForQuestionAnswering''',
'''TFElectraForSequenceClassification''',
'''TFElectraForTokenClassification''',
'''TFElectraModel''',
'''TFElectraPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''FlaxElectraForCausalLM''',
'''FlaxElectraForMaskedLM''',
'''FlaxElectraForMultipleChoice''',
'''FlaxElectraForPreTraining''',
'''FlaxElectraForQuestionAnswering''',
'''FlaxElectraForSequenceClassification''',
'''FlaxElectraForTokenClassification''',
'''FlaxElectraModel''',
'''FlaxElectraPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from ... import AutoBackbone
from ...modeling_outputs import SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...utils.backbone_utils import BackboneMixin
from .configuration_upernet import UperNetConfig
__snake_case = [
'''openmmlab/upernet-convnext-tiny''',
# See all UperNet models at https://huggingface.co/models?filter=upernet
]
# General docstring
__snake_case = '''UperNetConfig'''
class __lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 , __UpperCAmelCase = False , __UpperCAmelCase = 1 , ) -> None:
super().__init__()
_a = nn.Convad(
in_channels=__UpperCAmelCase , out_channels=__UpperCAmelCase , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , bias=__UpperCAmelCase , dilation=__UpperCAmelCase , )
_a = nn.BatchNormad(__UpperCAmelCase )
_a = nn.ReLU()
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> torch.Tensor:
_a = self.conv(__UpperCAmelCase )
_a = self.batch_norm(__UpperCAmelCase )
_a = self.activation(__UpperCAmelCase )
return output
class __lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None:
super().__init__()
_a = [
nn.AdaptiveAvgPoolad(__UpperCAmelCase ),
UperNetConvModule(__UpperCAmelCase , __UpperCAmelCase , kernel_size=1 ),
]
for i, layer in enumerate(self.layers ):
self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> torch.Tensor:
_a = input
for layer in self.layers:
_a = layer(__UpperCAmelCase )
return hidden_state
class __lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None:
super().__init__()
_a = pool_scales
_a = align_corners
_a = in_channels
_a = channels
_a = []
for i, pool_scale in enumerate(__UpperCAmelCase ):
_a = UperNetPyramidPoolingBlock(pool_scale=__UpperCAmelCase , in_channels=__UpperCAmelCase , channels=__UpperCAmelCase )
self.blocks.append(__UpperCAmelCase )
self.add_module(str(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[torch.Tensor]:
_a = []
for ppm in self.blocks:
_a = ppm(__UpperCAmelCase )
_a = nn.functional.interpolate(
__UpperCAmelCase , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners )
ppm_outs.append(__UpperCAmelCase )
return ppm_outs
class __lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
super().__init__()
_a = config
_a = config.pool_scales # e.g. (1, 2, 3, 6)
_a = in_channels
_a = config.hidden_size
_a = False
_a = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
# PSP Module
_a = UperNetPyramidPoolingModule(
self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , )
_a = UperNetConvModule(
self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
# FPN Module
_a = nn.ModuleList()
_a = nn.ModuleList()
for in_channels in self.in_channels[:-1]: # skip the top layer
_a = UperNetConvModule(__UpperCAmelCase , self.channels , kernel_size=1 )
_a = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 )
self.lateral_convs.append(__UpperCAmelCase )
self.fpn_convs.append(__UpperCAmelCase )
_a = UperNetConvModule(
len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , )
def _UpperCAmelCase ( self ) -> Tuple:
self.apply(self._init_weights )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if isinstance(__UpperCAmelCase , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
_a = inputs[-1]
_a = [x]
psp_outs.extend(self.psp_modules(__UpperCAmelCase ) )
_a = torch.cat(__UpperCAmelCase , dim=1 )
_a = self.bottleneck(__UpperCAmelCase )
return output
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> torch.Tensor:
# build laterals
_a = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )]
laterals.append(self.psp_forward(__UpperCAmelCase ) )
# build top-down path
_a = len(__UpperCAmelCase )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
_a = laterals[i - 1].shape[2:]
_a = laterals[i - 1] + nn.functional.interpolate(
laterals[i] , size=__UpperCAmelCase , mode='''bilinear''' , align_corners=self.align_corners )
# build outputs
_a = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )]
# append psp feature
fpn_outs.append(laterals[-1] )
for i in range(used_backbone_levels - 1 , 0 , -1 ):
_a = nn.functional.interpolate(
fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners )
_a = torch.cat(__UpperCAmelCase , dim=1 )
_a = self.fpn_bottleneck(__UpperCAmelCase )
_a = self.classifier(__UpperCAmelCase )
return output
class __lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = 2 , __UpperCAmelCase = 3 , __UpperCAmelCase = 1 ) -> None:
super().__init__()
_a = config
_a = config.auxiliary_in_channels
_a = config.auxiliary_channels
_a = config.auxiliary_num_convs
_a = config.auxiliary_concat_input
_a = in_index
_a = (kernel_size // 2) * dilation
_a = []
convs.append(
UperNetConvModule(
self.in_channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) )
for i in range(self.num_convs - 1 ):
convs.append(
UperNetConvModule(
self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=__UpperCAmelCase , dilation=__UpperCAmelCase ) )
if self.num_convs == 0:
_a = nn.Identity()
else:
_a = nn.Sequential(*__UpperCAmelCase )
if self.concat_input:
_a = UperNetConvModule(
self.in_channels + self.channels , self.channels , kernel_size=__UpperCAmelCase , padding=kernel_size // 2 )
_a = nn.Convad(self.channels , config.num_labels , kernel_size=1 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
self.apply(self._init_weights )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
if isinstance(__UpperCAmelCase , nn.Convad ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> torch.Tensor:
# just take the relevant feature maps
_a = encoder_hidden_states[self.in_index]
_a = self.convs(__UpperCAmelCase )
if self.concat_input:
_a = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) )
_a = self.classifier(__UpperCAmelCase )
return output
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : int = UperNetConfig
A_ : Tuple = 'pixel_values'
A_ : int = True
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
module.backbone.init_weights()
module.decode_head.init_weights()
module.auxiliary_head.init_weights()
def _UpperCAmelCase ( self ) -> List[str]:
self.backbone.init_weights()
self.decode_head.init_weights()
self.auxiliary_head.init_weights()
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = value
__snake_case = r'''
Parameters:
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
'''
__snake_case = r'''
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See
`attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
'''
@add_start_docstrings(
'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , a__ , )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> Optional[int]:
super().__init__(__UpperCAmelCase )
_a = AutoBackbone.from_config(config.backbone_config )
# Semantic segmentation head(s)
_a = UperNetHead(__UpperCAmelCase , in_channels=self.backbone.channels )
_a = UperNetFCNHead(__UpperCAmelCase ) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) )
@replace_return_docstrings(output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC )
def _UpperCAmelCase ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Union[tuple, SemanticSegmenterOutput]:
_a = return_dict if return_dict is not None else self.config.use_return_dict
_a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_a = output_attentions if output_attentions is not None else self.config.output_attentions
_a = self.backbone.forward_with_filtered_kwargs(
__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , output_attentions=__UpperCAmelCase )
_a = outputs.feature_maps
_a = self.decode_head(__UpperCAmelCase )
_a = nn.functional.interpolate(__UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__UpperCAmelCase )
_a = None
if self.auxiliary_head is not None:
_a = self.auxiliary_head(__UpperCAmelCase )
_a = nn.functional.interpolate(
__UpperCAmelCase , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=__UpperCAmelCase )
_a = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError('''The number of labels should be greater than one''' )
else:
# compute weighted loss
_a = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index )
_a = loss_fct(__UpperCAmelCase , __UpperCAmelCase )
_a = loss_fct(__UpperCAmelCase , __UpperCAmelCase )
_a = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
_a = (logits,) + outputs[1:]
else:
_a = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/swinv2-tiny-patch4-window8-256''': (
'''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json'''
),
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[int] = 'swinv2'
A_ : Tuple = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=32 , **__UpperCAmelCase , ) -> Dict:
super().__init__(**__UpperCAmelCase )
_a = image_size
_a = patch_size
_a = num_channels
_a = embed_dim
_a = depths
_a = len(__UpperCAmelCase )
_a = num_heads
_a = window_size
_a = mlp_ratio
_a = qkv_bias
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = drop_path_rate
_a = hidden_act
_a = use_absolute_embeddings
_a = layer_norm_eps
_a = initializer_range
_a = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_a = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
_a = (0, 0, 0, 0)
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this script dumps information about the environment
import os
import sys
import transformers
__snake_case = '''3'''
print('''Python version:''', sys.version)
print('''transformers version:''', transformers.__version__)
try:
import torch
print('''Torch version:''', torch.__version__)
print('''Cuda available:''', torch.cuda.is_available())
print('''Cuda version:''', torch.version.cuda)
print('''CuDNN version:''', torch.backends.cudnn.version())
print('''Number of GPUs available:''', torch.cuda.device_count())
print('''NCCL version:''', torch.cuda.nccl.version())
except ImportError:
print('''Torch version:''', None)
try:
import deepspeed
print('''DeepSpeed version:''', deepspeed.__version__)
except ImportError:
print('''DeepSpeed version:''', None)
try:
import tensorflow as tf
print('''TensorFlow version:''', tf.__version__)
print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU''')))
print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU''')))
except ImportError:
print('''TensorFlow version:''', None)
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
__snake_case = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def A_ ( _lowerCAmelCase : bytes ):
"""simple docstring"""
if not isinstance(_lowerCAmelCase, _lowerCAmelCase ):
_a = f'a bytes-like object is required, not \'{data.__class__.__name__}\''
raise TypeError(_lowerCAmelCase )
_a = ''''''.join(bin(_lowerCAmelCase )[2:].zfill(8 ) for byte in data )
_a = len(_lowerCAmelCase ) % 6 != 0
if padding_needed:
# The padding that will be added later
_a = b'''=''' * ((6 - len(_lowerCAmelCase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_lowerCAmelCase ) % 6)
else:
_a = b''''''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(_lowerCAmelCase ), 6 ) ).encode()
+ padding
)
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
if not isinstance(_lowerCAmelCase, _lowerCAmelCase ) and not isinstance(_lowerCAmelCase, _lowerCAmelCase ):
_a = (
'''argument should be a bytes-like object or ASCII string, '''
f'not \'{encoded_data.__class__.__name__}\''
)
raise TypeError(_lowerCAmelCase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_lowerCAmelCase, _lowerCAmelCase ):
try:
_a = encoded_data.decode('''utf-8''' )
except UnicodeDecodeError:
raise ValueError('''base64 encoded data should only contain ASCII characters''' )
_a = encoded_data.count('''=''' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_lowerCAmelCase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_a = encoded_data[:-padding]
_a = ''''''.join(
bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_a = ''''''.join(
bin(B64_CHARSET.index(_lowerCAmelCase ) )[2:].zfill(6 ) for char in encoded_data )
_a = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(_lowerCAmelCase ), 8 )
]
return bytes(_lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
from fractions import Fraction
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
return (
num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den
)
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
_a = 11
_a = int('''1''' + '''0''' * digit_len )
for num in range(_lowerCAmelCase, _lowerCAmelCase ):
while den <= 99:
if (num != den) and (num % 10 == den // 10) and (den % 10 != 0):
if is_digit_cancelling(_lowerCAmelCase, _lowerCAmelCase ):
solutions.append(f'{num}/{den}' )
den += 1
num += 1
_a = 10
return solutions
def A_ ( _lowerCAmelCase : int = 2 ):
"""simple docstring"""
_a = 1.0
for fraction in fraction_list(_lowerCAmelCase ):
_a = Fraction(_lowerCAmelCase )
result *= frac.denominator / frac.numerator
return int(_lowerCAmelCase )
if __name__ == "__main__":
print(solution())
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__snake_case = 16
__snake_case = 32
def A_ ( _lowerCAmelCase : Accelerator, _lowerCAmelCase : DatasetDict, _lowerCAmelCase : List[int], _lowerCAmelCase : List[int], _lowerCAmelCase : int = 16 ):
"""simple docstring"""
_a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
_a = DatasetDict(
{
'''train''': dataset['''train'''].select(_lowerCAmelCase ),
'''validation''': dataset['''train'''].select(_lowerCAmelCase ),
'''test''': dataset['''validation'''],
} )
def tokenize_function(_lowerCAmelCase : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
_a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=_lowerCAmelCase, max_length=_lowerCAmelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_a = datasets.map(
_lowerCAmelCase, batched=_lowerCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_a = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(_lowerCAmelCase : List[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_a = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_a = 16
elif accelerator.mixed_precision != "no":
_a = 8
else:
_a = None
return tokenizer.pad(
_lowerCAmelCase, padding='''longest''', max_length=_lowerCAmelCase, pad_to_multiple_of=_lowerCAmelCase, return_tensors='''pt''', )
# Instantiate dataloaders.
_a = DataLoader(
tokenized_datasets['''train'''], shuffle=_lowerCAmelCase, collate_fn=_lowerCAmelCase, batch_size=_lowerCAmelCase )
_a = DataLoader(
tokenized_datasets['''validation'''], shuffle=_lowerCAmelCase, collate_fn=_lowerCAmelCase, batch_size=_lowerCAmelCase )
_a = DataLoader(
tokenized_datasets['''test'''], shuffle=_lowerCAmelCase, collate_fn=_lowerCAmelCase, batch_size=_lowerCAmelCase )
return train_dataloader, eval_dataloader, test_dataloader
def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
_a = []
# Download the dataset
_a = load_dataset('''glue''', '''mrpc''' )
# Create our splits
_a = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
_a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_a = config['''lr''']
_a = int(config['''num_epochs'''] )
_a = int(config['''seed'''] )
_a = int(config['''batch_size'''] )
_a = evaluate.load('''glue''', '''mrpc''' )
# If the batch size is too big we use gradient accumulation
_a = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_a = batch_size // MAX_GPU_BATCH_SIZE
_a = MAX_GPU_BATCH_SIZE
set_seed(_lowerCAmelCase )
# New Code #
# Create our folds:
_a = kfold.split(np.zeros(datasets['''train'''].num_rows ), datasets['''train''']['''label'''] )
_a = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(_lowerCAmelCase ):
_a , _a , _a = get_fold_dataloaders(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=_lowerCAmelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_a = model.to(accelerator.device )
# Instantiate optimizer
_a = AdamW(params=model.parameters(), lr=_lowerCAmelCase )
# Instantiate scheduler
_a = get_linear_schedule_with_warmup(
optimizer=_lowerCAmelCase, num_warmup_steps=1_00, num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps, )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_a , _a , _a , _a , _a = accelerator.prepare(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
# Now we train the model
for epoch in range(_lowerCAmelCase ):
model.train()
for step, batch in enumerate(_lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_a = model(**_lowerCAmelCase )
_a = outputs.loss
_a = loss / gradient_accumulation_steps
accelerator.backward(_lowerCAmelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_a = model(**_lowerCAmelCase )
_a = outputs.logits.argmax(dim=-1 )
_a , _a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=_lowerCAmelCase, references=_lowerCAmelCase, )
_a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:', _lowerCAmelCase )
# New Code #
# We also run predictions on the test set at the very end
_a = []
for step, batch in enumerate(_lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_a = model(**_lowerCAmelCase )
_a = outputs.logits
_a , _a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(_lowerCAmelCase, dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
_a = torch.cat(_lowerCAmelCase, dim=0 )
_a = torch.stack(_lowerCAmelCase, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
_a = metric.compute(predictions=_lowerCAmelCase, references=_lowerCAmelCase )
accelerator.print('''Average test metrics from all folds:''', _lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''', type=_lowerCAmelCase, default=_lowerCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' )
# New Code #
parser.add_argument('''--num_folds''', type=_lowerCAmelCase, default=3, help='''The number of splits to perform across the dataset''' )
_a = parser.parse_args()
_a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(_lowerCAmelCase, _lowerCAmelCase )
if __name__ == "__main__":
main()
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=128 , __UpperCAmelCase=32 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Union[str, Any]:
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = scope
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self ) -> Tuple:
return NezhaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def _UpperCAmelCase ( self ) -> Optional[Any]:
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = self.prepare_config_and_inputs()
_a = True
_a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = NezhaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
_a = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = True
_a = NezhaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
_a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = NezhaForMaskedLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_a = NezhaForNextSentencePrediction(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = NezhaForPreTraining(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , next_sentence_label=__UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
_a = NezhaForQuestionAnswering(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
_a = self.num_labels
_a = NezhaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = self.num_labels
_a = NezhaForTokenClassification(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_a = self.num_choices
_a = NezhaForMultipleChoice(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Dict = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
A_ : List[Any] = (
{
'feature-extraction': NezhaModel,
'fill-mask': NezhaForMaskedLM,
'question-answering': NezhaForQuestionAnswering,
'text-classification': NezhaForSequenceClassification,
'token-classification': NezhaForTokenClassification,
'zero-shot': NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
A_ : Any = True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]:
_a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
if return_labels:
if model_class in get_values(__UpperCAmelCase ):
_a = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCAmelCase )
_a = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase )
return inputs_dict
def _UpperCAmelCase ( self ) -> int:
_a = NezhaModelTester(self )
_a = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def _UpperCAmelCase ( self ) -> Any:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# This regression test was failing with PyTorch < 1.3
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
_a = None
self.model_tester.create_and_check_model_as_decoder(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , )
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[str]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = NezhaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@slow
@require_torch_gpu
def _UpperCAmelCase ( self ) -> Any:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
_a = True
_a = model_class(config=__UpperCAmelCase )
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_a = torch.jit.trace(
__UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , '''bert.pt''' ) )
_a = torch.jit.load(os.path.join(__UpperCAmelCase , '''bert.pt''' ) , map_location=__UpperCAmelCase )
loaded(inputs_dict['''input_ids'''].to(__UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(__UpperCAmelCase ) )
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def _UpperCAmelCase ( self ) -> int:
_a = NezhaModel.from_pretrained('''sijunhe/nezha-cn-base''' )
_a = torch.tensor([[0, 1, 2, 3, 4, 5]] )
_a = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
_a = torch.Size((1, 6, 768) )
self.assertEqual(output.shape , __UpperCAmelCase )
_a = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> Dict:
_a = NezhaForMaskedLM.from_pretrained('''sijunhe/nezha-cn-base''' )
_a = torch.tensor([[0, 1, 2, 3, 4, 5]] )
_a = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
_a = torch.Size((1, 6, 21128) )
self.assertEqual(output.shape , __UpperCAmelCase )
_a = torch.tensor(
[[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) )
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
__snake_case = logging.get_logger(__name__)
__snake_case = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
__snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __lowerCamelCase :
'''simple docstring'''
A_ : str = field(
default=a__ , metadata={'help': 'Model type selected in the list: ' + ', '.join(a__ )} )
A_ : str = field(
default=a__ , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
A_ : int = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
A_ : int = field(
default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , )
A_ : int = field(
default=64 , metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
} , )
A_ : int = field(
default=30 , metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
} , )
A_ : bool = field(
default=a__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
A_ : bool = field(
default=a__ , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
A_ : float = field(
default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
A_ : int = field(
default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
A_ : int = field(
default=0 , metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
} , )
A_ : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = 'train'
A_ : Union[str, Any] = 'dev'
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : SquadDataTrainingArguments
A_ : List[SquadFeatures]
A_ : Split
A_ : bool
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = Split.train , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = "pt" , ) -> Union[str, Any]:
_a = args
_a = is_language_sensitive
_a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
try:
_a = Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
_a = mode
# Load data features from cache or dataset file
_a = '''v2''' if args.version_2_with_negative else '''v1'''
_a = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_a = cached_features_file + '''.lock'''
with FileLock(__UpperCAmelCase ):
if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache:
_a = time.time()
_a = torch.load(__UpperCAmelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
_a = self.old_features['''features''']
_a = self.old_features.get('''dataset''' , __UpperCAmelCase )
_a = self.old_features.get('''examples''' , __UpperCAmelCase )
logger.info(
F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
''' future run''' )
else:
if mode == Split.dev:
_a = self.processor.get_dev_examples(args.data_dir )
else:
_a = self.processor.get_train_examples(args.data_dir )
_a , _a = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__UpperCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__UpperCAmelCase , )
_a = time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , __UpperCAmelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self ) -> Union[str, Any]:
return len(self.features )
def __getitem__( self , __UpperCAmelCase ) -> Dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
_a = self.features[i]
_a = torch.tensor(feature.input_ids , dtype=torch.long )
_a = torch.tensor(feature.attention_mask , dtype=torch.long )
_a = torch.tensor(feature.token_type_ids , dtype=torch.long )
_a = torch.tensor(feature.cls_index , dtype=torch.long )
_a = torch.tensor(feature.p_mask , dtype=torch.float )
_a = torch.tensor(feature.is_impossible , dtype=torch.float )
_a = {
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
_a = torch.tensor(feature.start_position , dtype=torch.long )
_a = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
import copy
from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto.configuration_auto import AutoConfig
if TYPE_CHECKING:
from ... import PreTrainedTokenizerBase, TensorType
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : str = 'vision-encoder-decoder'
A_ : List[str] = True
def __init__( self , **__UpperCAmelCase ) -> str:
super().__init__(**__UpperCAmelCase )
if "encoder" not in kwargs or "decoder" not in kwargs:
raise ValueError(
F'A configuraton of type {self.model_type} cannot be instantiated because '
F'not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}' )
_a = kwargs.pop('''encoder''' )
_a = encoder_config.pop('''model_type''' )
_a = kwargs.pop('''decoder''' )
_a = decoder_config.pop('''model_type''' )
_a = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase )
_a = AutoConfig.for_model(__UpperCAmelCase , **__UpperCAmelCase )
_a = True
@classmethod
def _UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> PretrainedConfig:
logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' )
_a = True
_a = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = copy.deepcopy(self.__dict__ )
_a = self.encoder.to_dict()
_a = self.decoder.to_dict()
_a = self.__class__.model_type
return output
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = version.parse('1.11' )
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def _UpperCAmelCase ( self ) -> float:
return 1e-4
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict()
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
_a = {0: '''batch''', 1: '''encoder_sequence'''}
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
import torch
_a = OrderedDict()
_a = super().generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
_a , _a = dummy_input['''input_ids'''].shape
_a = (batch, encoder_sequence, self._config.encoder_hidden_size)
_a = dummy_input.pop('''input_ids''' )
_a = dummy_input.pop('''attention_mask''' )
_a = torch.zeros(__UpperCAmelCase )
return common_inputs
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> None:
pass
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> OnnxConfig:
return VisionEncoderDecoderEncoderOnnxConfig(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "default" ) -> OnnxConfig:
_a = encoder_config.hidden_size
return VisionEncoderDecoderDecoderOnnxConfig(__UpperCAmelCase , __UpperCAmelCase )
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
if b == 0:
return 1
if (b % 2) == 0:
return actual_power(_lowerCAmelCase, int(b / 2 ) ) * actual_power(_lowerCAmelCase, int(b / 2 ) )
else:
return a * actual_power(_lowerCAmelCase, int(b / 2 ) ) * actual_power(_lowerCAmelCase, int(b / 2 ) )
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
if b < 0:
return 1 / actual_power(_lowerCAmelCase, _lowerCAmelCase )
return actual_power(_lowerCAmelCase, _lowerCAmelCase )
if __name__ == "__main__":
print(power(-2, -3))
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = KandinskyVaaControlnetPipeline
A_ : Union[str, Any] = ['image_embeds', 'negative_image_embeds', 'hint']
A_ : Any = ['image_embeds', 'negative_image_embeds', 'hint']
A_ : int = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
A_ : Optional[Any] = False
@property
def _UpperCAmelCase ( self ) -> List[Any]:
return 32
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return 32
@property
def _UpperCAmelCase ( self ) -> str:
return self.time_input_dim
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return self.time_input_dim * 4
@property
def _UpperCAmelCase ( self ) -> List[str]:
return 100
@property
def _UpperCAmelCase ( self ) -> Tuple:
torch.manual_seed(0 )
_a = {
'''in_channels''': 8,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image_hint''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
_a = UNetaDConditionModel(**__UpperCAmelCase )
return model
@property
def _UpperCAmelCase ( self ) -> Any:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
_a = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.dummy_unet
_a = self.dummy_movq
_a = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__UpperCAmelCase , )
_a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> List[str]:
_a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
_a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__UpperCAmelCase )
# create hint
_a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
if str(__UpperCAmelCase ).startswith('''mps''' ):
_a = torch.manual_seed(__UpperCAmelCase )
else:
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
_a = {
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''hint''': hint,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''guidance_scale''': 4.0,
'''num_inference_steps''': 2,
'''output_type''': '''np''',
}
return inputs
def _UpperCAmelCase ( self ) -> Any:
_a = '''cpu'''
_a = self.get_dummy_components()
_a = self.pipeline_class(**__UpperCAmelCase )
_a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
_a = output.images
_a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_a = np.array(
[0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> Any:
_a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' )
_a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/hint_image_cat.png''' )
_a = torch.from_numpy(np.array(__UpperCAmelCase ) ).float() / 255.0
_a = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
_a = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(__UpperCAmelCase )
_a = KandinskyVaaControlnetPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa )
_a = pipeline.to(__UpperCAmelCase )
pipeline.set_progress_bar_config(disable=__UpperCAmelCase )
_a = '''A robot, 4k photo'''
_a = torch.Generator(device='''cuda''' ).manual_seed(0 )
_a , _a = pipe_prior(
__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
_a = torch.Generator(device='''cuda''' ).manual_seed(0 )
_a = pipeline(
image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , hint=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , output_type='''np''' , )
_a = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=4 , ) -> str:
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_attention_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_choices
def _UpperCAmelCase ( self ) -> List[str]:
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_attention_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__UpperCAmelCase , )
return config, input_ids, attention_mask
def _UpperCAmelCase ( self ) -> str:
_a = self.prepare_config_and_inputs()
_a , _a , _a = config_and_inputs
_a = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Union[str, Any] = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def _UpperCAmelCase ( self ) -> str:
_a = FlaxDistilBertModelTester(self )
@slow
def _UpperCAmelCase ( self ) -> int:
for model_class_name in self.all_model_classes:
_a = model_class_name.from_pretrained('''distilbert-base-uncased''' )
_a = model(np.ones((1, 1) ) )
self.assertIsNotNone(__UpperCAmelCase )
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def _UpperCAmelCase ( self ) -> Tuple:
_a = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' )
_a = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_a = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_a = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
_a = (1, 11, 768)
self.assertEqual(output.shape , __UpperCAmelCase )
_a = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __UpperCAmelCase , atol=1e-4 ) )
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=3 , __UpperCAmelCase=224 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , ) -> int:
_a = size if size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
_a = image_mean
_a = image_std
def _UpperCAmelCase ( self ) -> List[Any]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[int] = ViTImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> Any:
_a = EfficientFormerImageProcessorTester(self )
@property
def _UpperCAmelCase ( self ) -> List[Any]:
return self.image_proc_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> int:
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) )
def _UpperCAmelCase ( self ) -> str:
pass
def _UpperCAmelCase ( self ) -> List[Any]:
# Initialize image_processor
_a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image )
# Test not batched input
_a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
_a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
def _UpperCAmelCase ( self ) -> Optional[Any]:
# Initialize image_processor
_a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , np.ndarray )
# Test not batched input
_a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
_a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
def _UpperCAmelCase ( self ) -> Optional[int]:
# Initialize image_processor
_a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_proc_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
# Test not batched input
_a = image_processor(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
# Test batched
_a = image_processor(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size['''height'''],
self.image_proc_tester.size['''width'''],
) , )
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
__snake_case = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
__snake_case = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
__snake_case = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
'''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html'''
] , )
def _UpperCAmelCase ( self ) -> Any:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value('''float''' ) ),
"references": datasets.Sequence(datasets.Value('''float''' ) ),
}
else:
return {
"predictions": datasets.Value('''float''' ),
"references": datasets.Value('''float''' ),
}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="uniform_average" , __UpperCAmelCase=True ) -> Optional[int]:
_a = mean_squared_error(
__UpperCAmelCase , __UpperCAmelCase , sample_weight=__UpperCAmelCase , multioutput=__UpperCAmelCase , squared=__UpperCAmelCase )
return {"mse": mse}
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = RobertaPreLayerNormConfig.from_pretrained(
_lowerCAmelCase, architectures=['''RobertaPreLayerNormForMaskedLM'''] )
# convert state_dict
_a = torch.load(hf_hub_download(repo_id=_lowerCAmelCase, filename='''pytorch_model.bin''' ) )
_a = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('''roberta.''' ):
_a = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ):
continue
_a = tensor_value
_a = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=_lowerCAmelCase, config=_lowerCAmelCase, state_dict=_lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
# convert tokenizer
_a = AutoTokenizer.from_pretrained(_lowerCAmelCase )
tokenizer.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint-repo''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__snake_case = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = '''hf-internal-testing/tiny-random-t5'''
_a = AutoTokenizer.from_pretrained(__UpperCAmelCase )
_a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
_a = tokenizer('''This is me''' , return_tensors='''pt''' )
_a = model.to_bettertransformer()
self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
_a = model.generate(**__UpperCAmelCase )
_a = model.reverse_bettertransformer()
self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCAmelCase )
_a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
self.assertFalse(
any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
_a = model_reloaded.generate(**__UpperCAmelCase )
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) )
def _UpperCAmelCase ( self ) -> Any:
_a = '''hf-internal-testing/tiny-random-t5'''
_a = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
_a = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__UpperCAmelCase ):
model.save_pretrained(__UpperCAmelCase )
_a = model.reverse_bettertransformer()
model.save_pretrained(__UpperCAmelCase )
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''spiece.model'''}
__snake_case = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
}
}
__snake_case = {
'''google/bigbird-roberta-base''': 4096,
'''google/bigbird-roberta-large''': 4096,
'''google/bigbird-base-trivia-itc''': 4096,
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = VOCAB_FILES_NAMES
A_ : int = PRETRAINED_VOCAB_FILES_MAP
A_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = ['input_ids', 'attention_mask']
A_ : List[int] = []
def __init__( self , __UpperCAmelCase , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
_a = vocab_file
_a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__UpperCAmelCase )
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return self.sp_model.get_piece_size()
def _UpperCAmelCase ( self ) -> int:
_a = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ) -> Any:
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self , __UpperCAmelCase ) -> List[str]:
_a = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_a = {}
_a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
return self.sp_model.piece_to_id(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
_a = self.sp_model.IdToPiece(__UpperCAmelCase )
return token
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str:
_a = []
_a = ''''''
_a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__UpperCAmelCase ) + token
_a = True
_a = []
else:
current_sub_tokens.append(__UpperCAmelCase )
_a = False
out_string += self.sp_model.decode(__UpperCAmelCase )
return out_string.strip()
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str:
_a = kwargs.pop('''use_source_tokenizer''' , __UpperCAmelCase )
_a = self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_a = []
_a = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
_a = []
sub_texts.append(__UpperCAmelCase )
else:
current_sub_text.append(__UpperCAmelCase )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_a = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(__UpperCAmelCase ) )
else:
_a = ''''''.join(__UpperCAmelCase )
_a = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_a = self.clean_up_tokenization(__UpperCAmelCase )
return clean_text
else:
return text
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , '''wb''' ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (out_vocab_file,)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a = [self.cls_token_id]
_a = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : str, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
_a = 0
while b > 0:
if b & 1:
_a = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = sum(_lowerCAmelCase )
_a = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1, n + 1 ):
_a = True
for i in range(1, s + 1 ):
_a = False
for i in range(1, n + 1 ):
for j in range(1, s + 1 ):
_a = dp[i][j - 1]
if arr[i - 1] <= j:
_a = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ), -1, -1 ):
if dp[n][j] is True:
_a = s - 2 * j
break
return diff
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class __lowerCamelCase :
'''simple docstring'''
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
return None
class __lowerCamelCase :
'''simple docstring'''
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
return None
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = [
# (model_name, model_kwargs)
('bert-base-cased', {}),
('gpt2', {'use_cache': False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCAmelCase , '''tf''' , 12 , **__UpperCAmelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__UpperCAmelCase , '''pt''' , 12 , **__UpperCAmelCase )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> List[str]:
from transformers import BertModel
_a = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words''']
with NamedTemporaryFile(mode='''w+t''' ) as vocab_file:
vocab_file.write('''\n'''.join(__UpperCAmelCase ) )
vocab_file.flush()
_a = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
_a = BertModel(BertConfig(vocab_size=len(__UpperCAmelCase ) ) )
model.save_pretrained(__UpperCAmelCase )
self._test_export(__UpperCAmelCase , '''pt''' , 12 , __UpperCAmelCase )
@require_tf
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
_a = self._test_export(__UpperCAmelCase , '''tf''' , 12 , **__UpperCAmelCase )
_a = quantize(Path(__UpperCAmelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size:
self.fail('''Quantized model is bigger than initial ONNX model''' )
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Tuple:
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
_a = self._test_export(__UpperCAmelCase , '''pt''' , 12 , **__UpperCAmelCase )
_a = quantize(__UpperCAmelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__UpperCAmelCase ).stat().st_size:
self.fail('''Quantized model is bigger than initial ONNX model''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]:
try:
# Compute path
with TemporaryDirectory() as tempdir:
_a = Path(__UpperCAmelCase ).joinpath('''model.onnx''' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )
return path
except Exception as e:
self.fail(__UpperCAmelCase )
@require_torch
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
from transformers import BertModel
_a = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) )
_a = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' )
self._test_infer_dynamic_axis(__UpperCAmelCase , __UpperCAmelCase , '''pt''' )
@require_tf
@require_tokenizers
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
from transformers import TFBertModel
_a = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) )
_a = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' )
self._test_infer_dynamic_axis(__UpperCAmelCase , __UpperCAmelCase , '''tf''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
_a = FeatureExtractionPipeline(__UpperCAmelCase , __UpperCAmelCase )
_a = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1''']
_a , _a , _a , _a = infer_shapes(__UpperCAmelCase , __UpperCAmelCase )
# Assert all variables are present
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __UpperCAmelCase )
self.assertSequenceEqual(variable_names[3:] , __UpperCAmelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} )
self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} )
def _UpperCAmelCase ( self ) -> List[str]:
_a = ['''input_ids''', '''attention_mask''', '''token_type_ids''']
_a = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]}
_a , _a = ensure_valid_input(FuncContiguousArgs() , __UpperCAmelCase , __UpperCAmelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__UpperCAmelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__UpperCAmelCase ) , set(__UpperCAmelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__UpperCAmelCase , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
_a , _a = ensure_valid_input(FuncNonContiguousArgs() , __UpperCAmelCase , __UpperCAmelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__UpperCAmelCase ) , 1 )
self.assertEqual(len(__UpperCAmelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens['''input_ids'''] )
self.assertEqual(ordered_input_names[0] , '''input_ids''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' )
self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import XLMRobertaTokenizerFast
from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = KandinskyImgaImgPipeline
A_ : int = ['prompt', 'image_embeds', 'negative_image_embeds', 'image']
A_ : str = [
'prompt',
'negative_prompt',
'image_embeds',
'negative_image_embeds',
'image',
]
A_ : List[Any] = [
'generator',
'height',
'width',
'strength',
'guidance_scale',
'negative_prompt',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
A_ : List[Any] = False
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
return 32
@property
def _UpperCAmelCase ( self ) -> Dict:
return 32
@property
def _UpperCAmelCase ( self ) -> Tuple:
return self.time_input_dim
@property
def _UpperCAmelCase ( self ) -> str:
return self.time_input_dim * 4
@property
def _UpperCAmelCase ( self ) -> List[str]:
return 100
@property
def _UpperCAmelCase ( self ) -> Any:
_a = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' )
return tokenizer
@property
def _UpperCAmelCase ( self ) -> Any:
torch.manual_seed(0 )
_a = MCLIPConfig(
numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , )
_a = MultilingualCLIP(__UpperCAmelCase )
_a = text_encoder.eval()
return text_encoder
@property
def _UpperCAmelCase ( self ) -> str:
torch.manual_seed(0 )
_a = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''text_image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''text_image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
_a = UNetaDConditionModel(**__UpperCAmelCase )
return model
@property
def _UpperCAmelCase ( self ) -> List[str]:
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def _UpperCAmelCase ( self ) -> Any:
torch.manual_seed(0 )
_a = VQModel(**self.dummy_movq_kwargs )
return model
def _UpperCAmelCase ( self ) -> List[Any]:
_a = self.dummy_text_encoder
_a = self.dummy_tokenizer
_a = self.dummy_unet
_a = self.dummy_movq
_a = {
'''num_train_timesteps''': 1000,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.00085,
'''beta_end''': 0.012,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
_a = DDIMScheduler(**__UpperCAmelCase )
_a = {
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> int:
_a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
_a = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(__UpperCAmelCase )
# create init_image
_a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
_a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_a = Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('''RGB''' ).resize((256, 256) )
if str(__UpperCAmelCase ).startswith('''mps''' ):
_a = torch.manual_seed(__UpperCAmelCase )
else:
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
_a = {
'''prompt''': '''horse''',
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 10,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def _UpperCAmelCase ( self ) -> int:
_a = '''cpu'''
_a = self.get_dummy_components()
_a = self.pipeline_class(**__UpperCAmelCase )
_a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_a = pipe(**self.get_dummy_inputs(__UpperCAmelCase ) )
_a = output.images
_a = pipe(
**self.get_dummy_inputs(__UpperCAmelCase ) , return_dict=__UpperCAmelCase , )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_a = np.array(
[0.61474943, 0.6073539, 0.43308544, 0.5928269, 0.47493595, 0.46755973, 0.4613838, 0.45368797, 0.50119233] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> Any:
_a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinsky/kandinsky_img2img_frog.npy''' )
_a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
_a = '''A red cartoon frog, 4k'''
_a = KandinskyPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(__UpperCAmelCase )
_a = KandinskyImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-1''' , torch_dtype=torch.floataa )
_a = pipeline.to(__UpperCAmelCase )
pipeline.set_progress_bar_config(disable=__UpperCAmelCase )
_a = torch.Generator(device='''cpu''' ).manual_seed(0 )
_a , _a = pipe_prior(
__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
_a = pipeline(
__UpperCAmelCase , image=__UpperCAmelCase , image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , )
_a = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase )
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50_00_00_00 ):
"""simple docstring"""
_a = set()
_a = int((limit - 24) ** (1 / 2) )
_a = set(range(3, prime_square_limit + 1, 2 ) )
primes.add(2 )
for p in range(3, prime_square_limit + 1, 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p, prime_square_limit + 1, _lowerCAmelCase ) ) )
for primea in primes:
_a = primea * primea
for primea in primes:
_a = primea * primea * primea
if square + cube >= limit - 16:
break
for primea in primes:
_a = primea * primea * primea * primea
_a = square + cube + tetr
if total >= limit:
break
ret.add(_lowerCAmelCase )
return len(_lowerCAmelCase )
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = get_failure_array(_lowerCAmelCase )
# 2) Step through text searching for pattern
_a , _a = 0, 0 # index into text, pattern
while i < len(_lowerCAmelCase ):
if pattern[j] == text[i]:
if j == (len(_lowerCAmelCase ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
_a = failure[j - 1]
continue
i += 1
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
_a = [0]
_a = 0
_a = 1
while j < len(_lowerCAmelCase ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
_a = failure[i - 1]
continue
j += 1
failure.append(_lowerCAmelCase )
return failure
if __name__ == "__main__":
# Test 1)
__snake_case = '''abc1abc12'''
__snake_case = '''alskfjaldsabc1abc1abc12k23adsfabcabc'''
__snake_case = '''alskfjaldsk23adsfabcabc'''
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
__snake_case = '''ABABX'''
__snake_case = '''ABABZABABYABABX'''
assert kmp(pattern, text)
# Test 3)
__snake_case = '''AAAB'''
__snake_case = '''ABAAAAAB'''
assert kmp(pattern, text)
# Test 4)
__snake_case = '''abcdabcy'''
__snake_case = '''abcxabcdabxabcdabcdabcy'''
assert kmp(pattern, text)
# Test 5)
__snake_case = '''aabaabaaa'''
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
_a = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase, torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
_a = load_file(_lowerCAmelCase )
_a = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
_a = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' )
_a = pipeline.text_encoder
else:
_a = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' )
_a = pipeline.unet
# find the target layer
_a = layer_infos.pop(0 )
while len(_lowerCAmelCase ) > -1:
try:
_a = curr_layer.__getattr__(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = layer_infos.pop(0 )
elif len(_lowerCAmelCase ) == 0:
break
except Exception:
if len(_lowerCAmelCase ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
_a = layer_infos.pop(0 )
_a = []
if "lora_down" in key:
pair_keys.append(key.replace('''lora_down''', '''lora_up''' ) )
pair_keys.append(_lowerCAmelCase )
else:
pair_keys.append(_lowerCAmelCase )
pair_keys.append(key.replace('''lora_up''', '''lora_down''' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
_a = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
_a = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase, _lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 )
else:
_a = state_dict[pair_keys[0]].to(torch.floataa )
_a = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase, _lowerCAmelCase )
# update visited list
for item in pair_keys:
visited.append(_lowerCAmelCase )
return pipeline
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.'''
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors'''
)
parser.add_argument(
'''--lora_prefix_text_encoder''',
default='''lora_te''',
type=str,
help='''The prefix of text encoder weight in safetensors''',
)
parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''')
parser.add_argument(
'''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.'''
)
parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''')
__snake_case = parser.parse_args()
__snake_case = args.base_model_path
__snake_case = args.checkpoint_path
__snake_case = args.dump_path
__snake_case = args.lora_prefix_unet
__snake_case = args.lora_prefix_text_encoder
__snake_case = args.alpha
__snake_case = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
__snake_case = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__snake_case = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __lowerCamelCase :
'''simple docstring'''
A_ : str = PegasusConfig
A_ : Any = {}
A_ : List[Any] = 'gelu'
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=20 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , ) -> Any:
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = eos_token_id
_a = pad_token_id
_a = bos_token_id
def _UpperCAmelCase ( self ) -> List[str]:
_a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_a = np.concatenate([input_ids, eos_tensor] , axis=1 )
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_a = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, inputs_dict
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_a = 20
_a = model_class_name(__UpperCAmelCase )
_a = model.encode(inputs_dict['''input_ids'''] )
_a , _a = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
_a = model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase )
_a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
_a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a = model.decode(
decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
_a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
_a = model.decode(
decoder_input_ids[:, -1:] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCAmelCase , )
_a = model.decode(__UpperCAmelCase , __UpperCAmelCase )
_a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_a = 20
_a = model_class_name(__UpperCAmelCase )
_a = model.encode(inputs_dict['''input_ids'''] )
_a , _a = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
_a = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_a = model.init_cache(decoder_input_ids.shape[0] , __UpperCAmelCase , __UpperCAmelCase )
_a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a = model.decode(
decoder_input_ids[:, :-1] , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
_a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
_a = model.decode(
decoder_input_ids[:, -1:] , __UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCAmelCase , decoder_position_ids=__UpperCAmelCase , )
_a = model.decode(__UpperCAmelCase , __UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase )
_a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Any, _lowerCAmelCase : Any, _lowerCAmelCase : Dict=None, _lowerCAmelCase : Optional[int]=None, ):
"""simple docstring"""
if attention_mask is None:
_a = np.not_equal(_lowerCAmelCase, config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_a = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape, dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ).astype(np.inta ),
], axis=-1, )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Union[str, Any] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
A_ : int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
A_ : Dict = True
A_ : Any = False
A_ : Optional[Any] = False
A_ : int = False
def _UpperCAmelCase ( self ) -> Tuple:
_a = FlaxPegasusModelTester(self )
_a = ConfigTester(self , config_class=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> str:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_a = model_class(__UpperCAmelCase )
@jax.jit
def encode_jitted(__UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ):
return model.encode(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
with self.subTest('''JIT Enabled''' ):
_a = encode_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_a = encode_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = model_class(__UpperCAmelCase )
_a = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
_a = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
return model.decode(
decoder_input_ids=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , encoder_outputs=__UpperCAmelCase , )
with self.subTest('''JIT Enabled''' ):
_a = decode_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_a = decode_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
for model_class_name in self.all_model_classes:
_a = model_class_name.from_pretrained('''google/pegasus-large''' , from_pt=__UpperCAmelCase )
_a = np.ones((1, 1) )
_a = model(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
_a = FlaxPegasusForConditionalGeneration.from_pretrained('''google/pegasus-xsum''' )
_a = PegasusTokenizer.from_pretrained('''google/pegasus-xsum''' )
_a = [
''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''',
''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''',
]
_a = [
'''California\'s largest electricity provider has turned off power to hundreds of thousands of customers.''',
'''Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''np''' , truncation=__UpperCAmelCase , max_length=512 , padding=__UpperCAmelCase )
_a = model.generate(**__UpperCAmelCase , num_beams=2 ).sequences
_a = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
assert tgt_text == decoded
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_x_clip''': [
'''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XCLIPConfig''',
'''XCLIPTextConfig''',
'''XCLIPVisionConfig''',
],
'''processing_x_clip''': ['''XCLIPProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XCLIPModel''',
'''XCLIPPreTrainedModel''',
'''XCLIPTextModel''',
'''XCLIPVisionModel''',
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
return str(_lowerCAmelCase ) == str(_lowerCAmelCase )[::-1]
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
return int(_lowerCAmelCase ) + int(str(_lowerCAmelCase )[::-1] )
def A_ ( _lowerCAmelCase : int = 1_00_00 ):
"""simple docstring"""
_a = []
for num in range(1, _lowerCAmelCase ):
_a = 0
_a = num
while iterations < 50:
_a = sum_reverse(_lowerCAmelCase )
iterations += 1
if is_palindrome(_lowerCAmelCase ):
break
else:
lychrel_nums.append(_lowerCAmelCase )
return len(_lowerCAmelCase )
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__snake_case = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Union[str, Any] = XGLMTokenizer
A_ : Any = XGLMTokenizerFast
A_ : Optional[int] = True
A_ : Dict = True
def _UpperCAmelCase ( self ) -> Union[str, Any]:
super().setUp()
# We have a SentencePiece fixture for testing
_a = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def _UpperCAmelCase ( self ) -> str:
_a = '''<pad>'''
_a = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[str]:
_a = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(__UpperCAmelCase ) , 1008 )
def _UpperCAmelCase ( self ) -> Optional[int]:
self.assertEqual(self.get_tokenizer().vocab_size , 1008 )
def _UpperCAmelCase ( self ) -> int:
_a = XGLMTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
_a = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def _UpperCAmelCase ( self ) -> int:
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(__UpperCAmelCase , f.name )
_a = XGLMTokenizer(f.name , keep_accents=__UpperCAmelCase )
_a = pickle.dumps(__UpperCAmelCase )
pickle.loads(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
if not self.test_rust_tokenizer:
return
_a = self.get_tokenizer()
_a = self.get_rust_tokenizer()
_a = '''I was born in 92000, and this is falsé.'''
_a = tokenizer.tokenize(__UpperCAmelCase )
_a = rust_tokenizer.tokenize(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
_a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
_a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
_a = self.get_rust_tokenizer()
_a = tokenizer.encode(__UpperCAmelCase )
_a = rust_tokenizer.encode(__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''Hello World!'''
_a = [2, 31227, 4447, 35]
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth'''
)
# fmt: off
_a = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@slow
def _UpperCAmelCase ( self ) -> int:
# fmt: off
_a = {
'''input_ids''': [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]],
'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name='''facebook/xglm-564M''' , padding=__UpperCAmelCase , )
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''b0''': efficientnet.EfficientNetBa,
'''b1''': efficientnet.EfficientNetBa,
'''b2''': efficientnet.EfficientNetBa,
'''b3''': efficientnet.EfficientNetBa,
'''b4''': efficientnet.EfficientNetBa,
'''b5''': efficientnet.EfficientNetBa,
'''b6''': efficientnet.EfficientNetBa,
'''b7''': efficientnet.EfficientNetBa,
}
__snake_case = {
'''b0''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.0,
'''image_size''': 224,
'''dropout_rate''': 0.2,
'''dw_padding''': [],
},
'''b1''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.1,
'''image_size''': 240,
'''dropout_rate''': 0.2,
'''dw_padding''': [16],
},
'''b2''': {
'''hidden_dim''': 1408,
'''width_coef''': 1.1,
'''depth_coef''': 1.2,
'''image_size''': 260,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 8, 16],
},
'''b3''': {
'''hidden_dim''': 1536,
'''width_coef''': 1.2,
'''depth_coef''': 1.4,
'''image_size''': 300,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 18],
},
'''b4''': {
'''hidden_dim''': 1792,
'''width_coef''': 1.4,
'''depth_coef''': 1.8,
'''image_size''': 380,
'''dropout_rate''': 0.4,
'''dw_padding''': [6],
},
'''b5''': {
'''hidden_dim''': 2048,
'''width_coef''': 1.6,
'''depth_coef''': 2.2,
'''image_size''': 456,
'''dropout_rate''': 0.4,
'''dw_padding''': [13, 27],
},
'''b6''': {
'''hidden_dim''': 2304,
'''width_coef''': 1.8,
'''depth_coef''': 2.6,
'''image_size''': 528,
'''dropout_rate''': 0.5,
'''dw_padding''': [31],
},
'''b7''': {
'''hidden_dim''': 2560,
'''width_coef''': 2.0,
'''depth_coef''': 3.1,
'''image_size''': 600,
'''dropout_rate''': 0.5,
'''dw_padding''': [18],
},
}
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
_a = EfficientNetConfig()
_a = CONFIG_MAP[model_name]['''hidden_dim''']
_a = CONFIG_MAP[model_name]['''width_coef''']
_a = CONFIG_MAP[model_name]['''depth_coef''']
_a = CONFIG_MAP[model_name]['''image_size''']
_a = CONFIG_MAP[model_name]['''dropout_rate''']
_a = CONFIG_MAP[model_name]['''dw_padding''']
_a = '''huggingface/label-files'''
_a = '''imagenet-1k-id2label.json'''
_a = 10_00
_a = json.load(open(hf_hub_download(_lowerCAmelCase, _lowerCAmelCase, repo_type='''dataset''' ), '''r''' ) )
_a = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
_a = idalabel
_a = {v: k for k, v in idalabel.items()}
return config
def A_ ( ):
"""simple docstring"""
_a = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_a = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw )
return im
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
_a = CONFIG_MAP[model_name]['''image_size''']
_a = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size}, image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3], do_center_crop=_lowerCAmelCase, )
return preprocessor
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
_a = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
_a = sorted(set(_lowerCAmelCase ) )
_a = len(_lowerCAmelCase )
_a = {b: str(_lowerCAmelCase ) for b, i in zip(_lowerCAmelCase, range(_lowerCAmelCase ) )}
_a = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
_a = block_name_mapping[b]
rename_keys.append((f'block{b}_expand_conv/kernel:0', f'encoder.blocks.{hf_b}.expansion.expand_conv.weight') )
rename_keys.append((f'block{b}_expand_bn/gamma:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.weight') )
rename_keys.append((f'block{b}_expand_bn/beta:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.bias') )
rename_keys.append(
(f'block{b}_expand_bn/moving_mean:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_mean') )
rename_keys.append(
(f'block{b}_expand_bn/moving_variance:0', f'encoder.blocks.{hf_b}.expansion.expand_bn.running_var') )
rename_keys.append(
(f'block{b}_dwconv/depthwise_kernel:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight') )
rename_keys.append((f'block{b}_bn/gamma:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight') )
rename_keys.append((f'block{b}_bn/beta:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias') )
rename_keys.append(
(f'block{b}_bn/moving_mean:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean') )
rename_keys.append(
(f'block{b}_bn/moving_variance:0', f'encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var') )
rename_keys.append((f'block{b}_se_reduce/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.weight') )
rename_keys.append((f'block{b}_se_reduce/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.reduce.bias') )
rename_keys.append((f'block{b}_se_expand/kernel:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.weight') )
rename_keys.append((f'block{b}_se_expand/bias:0', f'encoder.blocks.{hf_b}.squeeze_excite.expand.bias') )
rename_keys.append(
(f'block{b}_project_conv/kernel:0', f'encoder.blocks.{hf_b}.projection.project_conv.weight') )
rename_keys.append((f'block{b}_project_bn/gamma:0', f'encoder.blocks.{hf_b}.projection.project_bn.weight') )
rename_keys.append((f'block{b}_project_bn/beta:0', f'encoder.blocks.{hf_b}.projection.project_bn.bias') )
rename_keys.append(
(f'block{b}_project_bn/moving_mean:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_mean') )
rename_keys.append(
(f'block{b}_project_bn/moving_variance:0', f'encoder.blocks.{hf_b}.projection.project_bn.running_var') )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
_a = {}
for item in rename_keys:
if item[0] in original_param_names:
_a = '''efficientnet.''' + item[1]
_a = '''classifier.weight'''
_a = '''classifier.bias'''
return key_mapping
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Any, _lowerCAmelCase : List[Any] ):
"""simple docstring"""
for key, value in tf_params.items():
if "normalization" in key:
continue
_a = key_mapping[key]
if "_conv" in key and "kernel" in key:
_a = torch.from_numpy(_lowerCAmelCase ).permute(3, 2, 0, 1 )
elif "depthwise_kernel" in key:
_a = torch.from_numpy(_lowerCAmelCase ).permute(2, 3, 0, 1 )
elif "kernel" in key:
_a = torch.from_numpy(np.transpose(_lowerCAmelCase ) )
else:
_a = torch.from_numpy(_lowerCAmelCase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : str ):
"""simple docstring"""
_a = model_classes[model_name](
include_top=_lowerCAmelCase, weights='''imagenet''', input_tensor=_lowerCAmelCase, input_shape=_lowerCAmelCase, pooling=_lowerCAmelCase, classes=10_00, classifier_activation='''softmax''', )
_a = original_model.trainable_variables
_a = original_model.non_trainable_variables
_a = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
_a = param.numpy()
_a = list(tf_params.keys() )
# Load HuggingFace model
_a = get_efficientnet_config(_lowerCAmelCase )
_a = EfficientNetForImageClassification(_lowerCAmelCase ).eval()
_a = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
_a = rename_keys(_lowerCAmelCase )
replace_params(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
# Initialize preprocessor and preprocess input image
_a = convert_image_processor(_lowerCAmelCase )
_a = preprocessor(images=prepare_img(), return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
_a = hf_model(**_lowerCAmelCase )
_a = outputs.logits.detach().numpy()
# Original model inference
_a = False
_a = CONFIG_MAP[model_name]['''image_size''']
_a = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST )
_a = image.img_to_array(_lowerCAmelCase )
_a = np.expand_dims(_lowerCAmelCase, axis=0 )
_a = original_model.predict(_lowerCAmelCase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_lowerCAmelCase, _lowerCAmelCase, atol=1e-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(_lowerCAmelCase ):
os.mkdir(_lowerCAmelCase )
# Save converted model and image processor
hf_model.save_pretrained(_lowerCAmelCase )
preprocessor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
# Push model and image processor to hub
print(f'Pushing converted {model_name} to the hub...' )
_a = f'efficientnet-{model_name}'
preprocessor.push_to_hub(_lowerCAmelCase )
hf_model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''b0''',
type=str,
help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''hf_model''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''')
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
__snake_case = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class __lowerCamelCase ( datasets.BuilderConfig ):
'''simple docstring'''
A_ : Optional[datasets.Features] = None
class __lowerCamelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
A_ : List[str] = PandasConfig
def _UpperCAmelCase ( self ) -> Tuple:
return datasets.DatasetInfo(features=self.config.features )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if not self.config.data_files:
raise ValueError(F'At least one data file must be specified, but got data_files={self.config.data_files}' )
_a = dl_manager.download_and_extract(self.config.data_files )
if isinstance(__UpperCAmelCase , (str, list, tuple) ):
_a = data_files
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_a = [dl_manager.iter_files(__UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
_a = []
for split_name, files in data_files.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_a = [dl_manager.iter_files(__UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=__UpperCAmelCase , gen_kwargs={'''files''': files} ) )
return splits
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> pa.Table:
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_a = table_cast(__UpperCAmelCase , self.config.features.arrow_schema )
return pa_table
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
for i, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase ) ):
with open(__UpperCAmelCase , '''rb''' ) as f:
_a = pa.Table.from_pandas(pd.read_pickle(__UpperCAmelCase ) )
yield i, self._cast_table(__UpperCAmelCase )
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__snake_case = {
'''configuration_efficientnet''': [
'''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''EfficientNetConfig''',
'''EfficientNetOnnxConfig''',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''EfficientNetImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''EfficientNetForImageClassification''',
'''EfficientNetModel''',
'''EfficientNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_efficientnet import (
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
EfficientNetConfig,
EfficientNetOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientnet import EfficientNetImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientnet import (
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientNetForImageClassification,
EfficientNetModel,
EfficientNetPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : str = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> int:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = hf_hub_download(
repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
_a = VideoClassificationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase , top_k=2 )
_a = [
example_video_filepath,
'''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''',
]
return video_classifier, examples
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
for example in examples:
_a = video_classifier(__UpperCAmelCase )
self.assertEqual(
__UpperCAmelCase , [
{'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )},
{'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )},
] , )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification'''
_a = VideoMAEFeatureExtractor(
size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} )
_a = pipeline(
'''video-classification''' , model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , frame_sampling_rate=4 )
_a = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' )
_a = video_classifier(__UpperCAmelCase , top_k=2 )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , )
_a = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
[{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}],
[{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}],
] , )
@require_tf
def _UpperCAmelCase ( self ) -> Union[str, Any]:
pass
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class __lowerCamelCase ( a__ , a__ ):
'''simple docstring'''
A_ : Tuple = 'nat'
A_ : Tuple = {
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=[3, 4, 6, 5] , __UpperCAmelCase=[2, 4, 8, 16] , __UpperCAmelCase=7 , __UpperCAmelCase=3.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_a = patch_size
_a = num_channels
_a = embed_dim
_a = depths
_a = len(__UpperCAmelCase )
_a = num_heads
_a = kernel_size
_a = mlp_ratio
_a = qkv_bias
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = drop_path_rate
_a = hidden_act
_a = layer_norm_eps
_a = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_a = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
_a = layer_scale_init_value
_a = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(__UpperCAmelCase ) + 1 )]
_a , _a = get_aligned_output_features_output_indices(
out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__snake_case = {
'''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''MobileViTFeatureExtractor''']
__snake_case = ['''MobileViTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileViTForImageClassification''',
'''MobileViTForSemanticSegmentation''',
'''MobileViTModel''',
'''MobileViTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFMobileViTForImageClassification''',
'''TFMobileViTForSemanticSegmentation''',
'''TFMobileViTModel''',
'''TFMobileViTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=sys.maxsize ) -> Union[str, Any]:
_a = '''bilinear'''
_a = max_size
_a = short_edge_length
def __call__( self , __UpperCAmelCase ) -> Tuple:
_a = []
for img in imgs:
_a , _a = img.shape[:2]
# later: provide list and randomly choose index for resize
_a = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
_a = size * 1.0 / min(__UpperCAmelCase , __UpperCAmelCase )
if h < w:
_a , _a = size, scale * w
else:
_a , _a = scale * h, size
if max(__UpperCAmelCase , __UpperCAmelCase ) > self.max_size:
_a = self.max_size * 1.0 / max(__UpperCAmelCase , __UpperCAmelCase )
_a = newh * scale
_a = neww * scale
_a = int(neww + 0.5 )
_a = int(newh + 0.5 )
if img.dtype == np.uinta:
_a = Image.fromarray(__UpperCAmelCase )
_a = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
_a = np.asarray(__UpperCAmelCase )
else:
_a = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
_a = nn.functional.interpolate(
__UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=__UpperCAmelCase ).squeeze(0 )
img_augs.append(__UpperCAmelCase )
return img_augs
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> List[Any]:
_a = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
_a = cfg.INPUT.FORMAT
_a = cfg.SIZE_DIVISIBILITY
_a = cfg.PAD_VALUE
_a = cfg.INPUT.MAX_SIZE_TEST
_a = cfg.MODEL.DEVICE
_a = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
_a = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
_a = lambda __UpperCAmelCase : (x - self.pixel_mean) / self.pixel_std
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_a = tuple(max(__UpperCAmelCase ) for s in zip(*[img.shape for img in images] ) )
_a = [im.shape[-2:] for im in images]
_a = [
nn.functional.pad(
__UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(__UpperCAmelCase , __UpperCAmelCase )
]
return torch.stack(__UpperCAmelCase ), torch.tensor(__UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> Dict:
with torch.no_grad():
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = [images]
if single_image:
assert len(__UpperCAmelCase ) == 1
for i in range(len(__UpperCAmelCase ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(__UpperCAmelCase , images.pop(__UpperCAmelCase ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
__UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(__UpperCAmelCase ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
_a = torch.tensor([im.shape[:2] for im in images] )
_a = self.aug(__UpperCAmelCase )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
_a = [self.normalizer(__UpperCAmelCase ) for x in images]
# now pad them to do the following operations
_a , _a = self.pad(__UpperCAmelCase )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
_a = torch.true_divide(__UpperCAmelCase , __UpperCAmelCase )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : List[Any] ):
"""simple docstring"""
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple[int, int] ):
"""simple docstring"""
assert torch.isfinite(_lowerCAmelCase ).all(), "Box tensor contains infinite or NaN!"
_a , _a = box_size
tensor[:, 0].clamp_(min=0, max=_lowerCAmelCase )
tensor[:, 1].clamp_(min=0, max=_lowerCAmelCase )
tensor[:, 2].clamp_(min=0, max=_lowerCAmelCase )
tensor[:, 3].clamp_(min=0, max=_lowerCAmelCase )
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , ) -> Tuple:
_a = size if size is not None else {'''shortest_edge''': 18}
_a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_center_crop
_a = crop_size
_a = do_normalize
_a = image_mean
_a = image_std
def _UpperCAmelCase ( self ) -> Any:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Tuple = LevitImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = LevitImageProcessingTester(self )
@property
def _UpperCAmelCase ( self ) -> Any:
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_center_crop''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
pass
def _UpperCAmelCase ( self ) -> Any:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def _UpperCAmelCase ( self ) -> Any:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , np.ndarray )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def _UpperCAmelCase ( self ) -> Tuple:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
return " ".join(input_str.split()[::-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {
'''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig''']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''RemBertTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''RemBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RemBertForCausalLM''',
'''RemBertForMaskedLM''',
'''RemBertForMultipleChoice''',
'''RemBertForQuestionAnswering''',
'''RemBertForSequenceClassification''',
'''RemBertForTokenClassification''',
'''RemBertLayer''',
'''RemBertModel''',
'''RemBertPreTrainedModel''',
'''load_tf_weights_in_rembert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRemBertForCausalLM''',
'''TFRemBertForMaskedLM''',
'''TFRemBertForMultipleChoice''',
'''TFRemBertForQuestionAnswering''',
'''TFRemBertForSequenceClassification''',
'''TFRemBertForTokenClassification''',
'''TFRemBertLayer''',
'''TFRemBertModel''',
'''TFRemBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use FlavaImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
from pathlib import Path
import numpy as np
from PIL import Image
def A_ ( _lowerCAmelCase : np.ndarray ):
"""simple docstring"""
_a , _a , _a = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2]
return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b
def A_ ( _lowerCAmelCase : np.ndarray ):
"""simple docstring"""
return (gray > 1_27) & (gray <= 2_55)
def A_ ( _lowerCAmelCase : np.ndarray, _lowerCAmelCase : np.ndarray ):
"""simple docstring"""
_a = np.zeros_like(_lowerCAmelCase )
_a = np.zeros(
(image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) )
# Copy image to padded image
_a = image
# Iterate over image & apply kernel
for x in range(image.shape[1] ):
for y in range(image.shape[0] ):
_a = (
kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]]
).sum()
_a = int(summation > 0 )
return output
if __name__ == "__main__":
# read original image
__snake_case = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg'''
__snake_case = np.array(Image.open(lena_path))
# kernel to be applied
__snake_case = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
__snake_case = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element)
# Save the output image
__snake_case = Image.fromarray(output).convert('''RGB''')
pil_img.save('''result_dilation.png''')
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
from sklearn.metrics import fa_score
import datasets
__snake_case = '''
The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:
F1 = 2 * (precision * recall) / (precision + recall)
'''
__snake_case = '''
Args:
predictions (`list` of `int`): Predicted labels.
references (`list` of `int`): Ground truth labels.
labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.
pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.
average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.
- \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.
- \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.
- \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.
- \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.
- \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).
sample_weight (`list` of `float`): Sample weights Defaults to None.
Returns:
f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.
Examples:
Example 1-A simple binary example
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])
>>> print(results)
{\'f1\': 0.5}
Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)
>>> print(round(results[\'f1\'], 2))
0.67
Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.
>>> f1_metric = datasets.load_metric("f1")
>>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])
>>> print(round(results[\'f1\'], 2))
0.35
Example 4-A multiclass example, with different values for the `average` input.
>>> predictions = [0, 2, 1, 0, 0, 1]
>>> references = [0, 1, 2, 0, 1, 2]
>>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")
>>> print(round(results[\'f1\'], 2))
0.33
>>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")
>>> print(round(results[\'f1\'], 2))
0.27
>>> results = f1_metric.compute(predictions=predictions, references=references, average=None)
>>> print(results)
{\'f1\': array([0.8, 0. , 0. ])}
'''
__snake_case = '''
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase="binary" , __UpperCAmelCase=None ) -> str:
_a = fa_score(
__UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase , pos_label=__UpperCAmelCase , average=__UpperCAmelCase , sample_weight=__UpperCAmelCase )
return {"f1": float(__UpperCAmelCase ) if score.size == 1 else score}
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
import numpy as np
def A_ ( _lowerCAmelCase : np.array ):
"""simple docstring"""
return 1 / (1 + np.exp(-vector ))
def A_ ( _lowerCAmelCase : np.array ):
"""simple docstring"""
return vector * sigmoid(1.7_0_2 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
from PIL import Image
def A_ ( _lowerCAmelCase : Image, _lowerCAmelCase : float ):
"""simple docstring"""
def brightness(_lowerCAmelCase : int ) -> float:
return 1_28 + level + (c - 1_28)
if not -2_5_5.0 <= level <= 2_5_5.0:
raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' )
return img.point(_lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('''image_data/lena.jpg''') as img:
# Change brightness to 100
__snake_case = change_brightness(img, 100)
brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
__snake_case = {'''UserAgent''': UserAgent().random}
def A_ ( _lowerCAmelCase : Tuple ):
"""simple docstring"""
_a = script.contents[0]
_a = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> Optional[Any]:
_a = F'https://www.instagram.com/{username}/'
_a = self.get_json()
def _UpperCAmelCase ( self ) -> dict:
_a = requests.get(self.url , headers=__UpperCAmelCase ).text
_a = BeautifulSoup(__UpperCAmelCase , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__( self ) -> str:
return F'{self.__class__.__name__}(\'{self.username}\')'
def __str__( self ) -> str:
return F'{self.fullname} ({self.username}) is {self.biography}'
@property
def _UpperCAmelCase ( self ) -> str:
return self.user_data["username"]
@property
def _UpperCAmelCase ( self ) -> str:
return self.user_data["full_name"]
@property
def _UpperCAmelCase ( self ) -> str:
return self.user_data["biography"]
@property
def _UpperCAmelCase ( self ) -> str:
return self.user_data["business_email"]
@property
def _UpperCAmelCase ( self ) -> str:
return self.user_data["external_url"]
@property
def _UpperCAmelCase ( self ) -> int:
return self.user_data["edge_followed_by"]["count"]
@property
def _UpperCAmelCase ( self ) -> int:
return self.user_data["edge_follow"]["count"]
@property
def _UpperCAmelCase ( self ) -> int:
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def _UpperCAmelCase ( self ) -> str:
return self.user_data["profile_pic_url_hd"]
@property
def _UpperCAmelCase ( self ) -> bool:
return self.user_data["is_verified"]
@property
def _UpperCAmelCase ( self ) -> bool:
return self.user_data["is_private"]
def A_ ( _lowerCAmelCase : str = "github" ):
"""simple docstring"""
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
_a = InstagramUser(_lowerCAmelCase )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data, _lowerCAmelCase )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 1_50
assert instagram_user.number_of_followers > 12_00_00
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = InstagramUser('''github''')
print(instagram_user)
print(f'{instagram_user.number_of_posts = }')
print(f'{instagram_user.number_of_followers = }')
print(f'{instagram_user.number_of_followings = }')
print(f'{instagram_user.email = }')
print(f'{instagram_user.website = }')
print(f'{instagram_user.profile_picture_url = }')
print(f'{instagram_user.is_verified = }')
print(f'{instagram_user.is_private = }')
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import math
import sys
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
if number != int(_lowerCAmelCase ):
raise ValueError('''the value of input must be a natural number''' )
if number < 0:
raise ValueError('''the value of input must not be a negative number''' )
if number == 0:
return 1
_a = [-1] * (number + 1)
_a = 0
for i in range(1, number + 1 ):
_a = sys.maxsize
_a = int(math.sqrt(_lowerCAmelCase ) )
for j in range(1, root + 1 ):
_a = 1 + answers[i - (j**2)]
_a = min(_lowerCAmelCase, _lowerCAmelCase )
_a = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def A_ ( _lowerCAmelCase : str = "laptop" ):
"""simple docstring"""
_a = f'https://www.amazon.in/laptop/s?k={product}'
_a = {
'''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''',
'''Accept-Language''': '''en-US, en;q=0.5''',
}
_a = BeautifulSoup(requests.get(_lowerCAmelCase, headers=_lowerCAmelCase ).text )
# Initialize a Pandas dataframe with the column titles
_a = DataFrame(
columns=[
'''Product Title''',
'''Product Link''',
'''Current Price of the product''',
'''Product Rating''',
'''MRP of the product''',
'''Discount''',
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
'''div''', attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''}, ), soup.find_all('''div''', attrs={'''class''': '''a-row a-size-base a-color-base'''} ), ):
try:
_a = item.ha.text
_a = '''https://www.amazon.in/''' + item.ha.a['''href''']
_a = item.find('''span''', attrs={'''class''': '''a-offscreen'''} ).text
try:
_a = item.find('''span''', attrs={'''class''': '''a-icon-alt'''} ).text
except AttributeError:
_a = '''Not available'''
try:
_a = (
'''₹'''
+ item.find(
'''span''', attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1]
)
except AttributeError:
_a = ''''''
try:
_a = float(
(
(
float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) )
- float(product_price.strip('''₹''' ).replace(''',''', '''''' ) )
)
/ float(product_mrp.strip('''₹''' ).replace(''',''', '''''' ) )
)
* 1_00 )
except ValueError:
_a = float('''nan''' )
except AttributeError:
pass
_a = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
_a = ''' '''
_a = ''' '''
data_frame.index += 1
return data_frame
if __name__ == "__main__":
__snake_case = '''headphones'''
get_amazon_product_data(product).to_csv(f'Amazon Product Data for {product}.csv')
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 10, _lowerCAmelCase : int = 22 ):
"""simple docstring"""
_a = range(1, _lowerCAmelCase )
_a = range(1, _lowerCAmelCase )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'{solution(10, 22) = }')
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''google/pix2struct-textcaps-base''': (
'''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json'''
),
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : int = 'pix2struct_text_model'
A_ : int = ['past_key_values']
A_ : Tuple = {
'hidden_size': 'hidden_size',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__( self , __UpperCAmelCase=50244 , __UpperCAmelCase=768 , __UpperCAmelCase=64 , __UpperCAmelCase=2048 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-6 , __UpperCAmelCase=1.0 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Any:
_a = vocab_size
_a = hidden_size
_a = d_kv
_a = d_ff
_a = num_layers
_a = num_heads
_a = relative_attention_num_buckets
_a = relative_attention_max_distance
_a = dropout_rate
_a = layer_norm_epsilon
_a = initializer_factor
_a = use_cache
_a = eos_token_id
_a = decoder_start_token_id
# for backwards compatibility
_a = dense_act_fn
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , is_decoder=__UpperCAmelCase , **__UpperCAmelCase , )
@classmethod
def _UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__UpperCAmelCase )
_a , _a = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the text config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
_a = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'pix2struct_vision_model'
def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=768 , __UpperCAmelCase=2048 , __UpperCAmelCase=64 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=1e-6 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-1_0 , __UpperCAmelCase=1.0 , __UpperCAmelCase=4096 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__(**__UpperCAmelCase )
_a = hidden_size
_a = patch_embed_hidden_size
_a = d_ff
_a = dropout_rate
_a = num_hidden_layers
_a = num_attention_heads
_a = initializer_range
_a = initializer_factor
_a = attention_dropout
_a = layer_norm_eps
_a = dense_act_fn
_a = seq_len
_a = relative_attention_num_buckets
_a = relative_attention_max_distance
_a = d_kv
@classmethod
def _UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ) -> "PretrainedConfig":
cls._set_token_in_kwargs(__UpperCAmelCase )
_a , _a = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase )
# get the vision config dict if we are loading from Pix2StructConfig
if config_dict.get('''model_type''' ) == "pix2struct":
_a = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'pix2struct'
A_ : Optional[int] = True
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Optional[int]:
super().__init__(tie_word_embeddings=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase )
if text_config is None:
_a = {}
logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' )
if vision_config is None:
_a = {}
logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' )
_a = PixaStructTextConfig(**__UpperCAmelCase )
_a = PixaStructVisionConfig(**__UpperCAmelCase )
_a = self.text_config.decoder_start_token_id
_a = self.text_config.pad_token_id
_a = self.text_config.eos_token_id
_a = initializer_factor
_a = initializer_range
_a = self.initializer_range
_a = self.initializer_range
_a = is_vqa
@classmethod
def _UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> int:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = copy.deepcopy(self.__dict__ )
_a = self.text_config.to_dict()
_a = self.vision_config.to_dict()
_a = self.__class__.model_type
return output
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def A_ ( _lowerCAmelCase : Tuple ):
"""simple docstring"""
if "cls_token" in name:
_a = name.replace('''cls_token''', '''vit.embeddings.cls_token''' )
if "mask_token" in name:
_a = name.replace('''mask_token''', '''decoder.mask_token''' )
if "decoder_pos_embed" in name:
_a = name.replace('''decoder_pos_embed''', '''decoder.decoder_pos_embed''' )
if "pos_embed" in name and "decoder" not in name:
_a = name.replace('''pos_embed''', '''vit.embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
_a = name.replace('''patch_embed.proj''', '''vit.embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
_a = name.replace('''patch_embed.norm''', '''vit.embeddings.norm''' )
if "decoder_blocks" in name:
_a = name.replace('''decoder_blocks''', '''decoder.decoder_layers''' )
if "blocks" in name:
_a = name.replace('''blocks''', '''vit.encoder.layer''' )
if "attn.proj" in name:
_a = name.replace('''attn.proj''', '''attention.output.dense''' )
if "attn" in name:
_a = name.replace('''attn''', '''attention.self''' )
if "norm1" in name:
_a = name.replace('''norm1''', '''layernorm_before''' )
if "norm2" in name:
_a = name.replace('''norm2''', '''layernorm_after''' )
if "mlp.fc1" in name:
_a = name.replace('''mlp.fc1''', '''intermediate.dense''' )
if "mlp.fc2" in name:
_a = name.replace('''mlp.fc2''', '''output.dense''' )
if "decoder_embed" in name:
_a = name.replace('''decoder_embed''', '''decoder.decoder_embed''' )
if "decoder_norm" in name:
_a = name.replace('''decoder_norm''', '''decoder.decoder_norm''' )
if "decoder_pred" in name:
_a = name.replace('''decoder_pred''', '''decoder.decoder_pred''' )
if "norm.weight" in name and "decoder" not in name:
_a = name.replace('''norm.weight''', '''vit.layernorm.weight''' )
if "norm.bias" in name and "decoder" not in name:
_a = name.replace('''norm.bias''', '''vit.layernorm.bias''' )
return name
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
_a = orig_state_dict.pop(_lowerCAmelCase )
if "qkv" in key:
_a = key.split('''.''' )
_a = int(key_split[1] )
if "decoder_blocks" in key:
_a = config.decoder_hidden_size
_a = '''decoder.decoder_layers.'''
if "weight" in key:
_a = val[:dim, :]
_a = val[dim : dim * 2, :]
_a = val[-dim:, :]
elif "bias" in key:
_a = val[:dim]
_a = val[dim : dim * 2]
_a = val[-dim:]
else:
_a = config.hidden_size
_a = '''vit.encoder.layer.'''
if "weight" in key:
_a = val[:dim, :]
_a = val[dim : dim * 2, :]
_a = val[-dim:, :]
elif "bias" in key:
_a = val[:dim]
_a = val[dim : dim * 2]
_a = val[-dim:]
else:
_a = val
return orig_state_dict
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
_a = ViTMAEConfig()
if "large" in checkpoint_url:
_a = 10_24
_a = 40_96
_a = 24
_a = 16
elif "huge" in checkpoint_url:
_a = 14
_a = 12_80
_a = 51_20
_a = 32
_a = 16
_a = ViTMAEForPreTraining(_lowerCAmelCase )
_a = torch.hub.load_state_dict_from_url(_lowerCAmelCase, map_location='''cpu''' )['''model''']
_a = ViTMAEImageProcessor(size=config.image_size )
_a = convert_state_dict(_lowerCAmelCase, _lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
_a = '''https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg'''
_a = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw )
_a = ViTMAEImageProcessor(size=config.image_size )
_a = image_processor(images=_lowerCAmelCase, return_tensors='''pt''' )
# forward pass
torch.manual_seed(2 )
_a = model(**_lowerCAmelCase )
_a = outputs.logits
if "large" in checkpoint_url:
_a = torch.tensor(
[[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] )
elif "huge" in checkpoint_url:
_a = torch.tensor(
[[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] )
else:
_a = torch.tensor(
[[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] )
# verify logits
assert torch.allclose(logits[0, :3, :3], _lowerCAmelCase, atol=1e-4 )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(_lowerCAmelCase )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
__snake_case = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
import pytest
from datasets.splits import SplitDict, SplitInfo
from datasets.utils.py_utils import asdict
@pytest.mark.parametrize(
'''split_dict''', [
SplitDict(),
SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=13_37, num_examples=42, dataset_name='''my_dataset''' )} ),
SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=13_37, num_examples=42 )} ),
SplitDict({'''train''': SplitInfo()} ),
], )
def A_ ( _lowerCAmelCase : SplitDict ):
"""simple docstring"""
_a = split_dict._to_yaml_list()
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = SplitDict._from_yaml_list(_lowerCAmelCase )
for split_name, split_info in split_dict.items():
# dataset_name field is deprecated, and is therefore not part of the YAML dump
_a = None
# the split name of split_dict takes over the name of the split info object
_a = split_name
assert split_dict == reloaded
@pytest.mark.parametrize(
'''split_info''', [SplitInfo(), SplitInfo(dataset_name=_lowerCAmelCase ), SplitInfo(dataset_name='''my_dataset''' )] )
def A_ ( _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
_a = asdict(SplitDict({'''train''': split_info} ) )
assert "dataset_name" in split_dict_asdict["train"]
assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import inspect
from typing import Callable, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import DiffusionPipeline
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import logging
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[str]:
super().__init__()
self.register_modules(
vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , )
def _UpperCAmelCase ( self , __UpperCAmelCase = "auto" ) -> int:
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_a = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
self.enable_attention_slicing(__UpperCAmelCase )
@torch.no_grad()
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = 512 , __UpperCAmelCase = 512 , __UpperCAmelCase = 50 , __UpperCAmelCase = 7.5 , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[Any]:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = 1
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = len(__UpperCAmelCase )
else:
raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}' )
if height % 8 != 0 or width % 8 != 0:
raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' )
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or callback_steps <= 0)
):
raise ValueError(
F'`callback_steps` has to be a positive integer but is {callback_steps} of type'
F' {type(__UpperCAmelCase )}.' )
# get prompt text embeddings
_a = self.tokenizer(
__UpperCAmelCase , padding='''max_length''' , max_length=self.tokenizer.model_max_length , return_tensors='''pt''' , )
_a = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
_a = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] )
logger.warning(
'''The following part of your input was truncated because CLIP can only handle sequences up to'''
F' {self.tokenizer.model_max_length} tokens: {removed_text}' )
_a = text_input_ids[:, : self.tokenizer.model_max_length]
if text_embeddings is None:
_a = self.text_encoder(text_input_ids.to(self.device ) )[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
_a , _a , _a = text_embeddings.shape
_a = text_embeddings.repeat(1 , __UpperCAmelCase , 1 )
_a = text_embeddings.view(bs_embed * num_images_per_prompt , __UpperCAmelCase , -1 )
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
_a = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
_a = 42
if negative_prompt is None:
_a = ['''''']
elif type(__UpperCAmelCase ) is not type(__UpperCAmelCase ):
raise TypeError(
F'`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase )} !='
F' {type(__UpperCAmelCase )}.' )
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = [negative_prompt]
elif batch_size != len(__UpperCAmelCase ):
raise ValueError(
F'`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase )}, but `prompt`:'
F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches'
''' the batch size of `prompt`.''' )
else:
_a = negative_prompt
_a = text_input_ids.shape[-1]
_a = self.tokenizer(
__UpperCAmelCase , padding='''max_length''' , max_length=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' , )
_a = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
_a = uncond_embeddings.shape[1]
_a = uncond_embeddings.repeat(__UpperCAmelCase , __UpperCAmelCase , 1 )
_a = uncond_embeddings.view(batch_size * num_images_per_prompt , __UpperCAmelCase , -1 )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
_a = torch.cat([uncond_embeddings, text_embeddings] )
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
_a = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8)
_a = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64)
_a = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
_a = torch.randn(
__UpperCAmelCase , generator=__UpperCAmelCase , device='''cpu''' , dtype=__UpperCAmelCase ).to(self.device )
_a = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device='''cpu''' , dtype=__UpperCAmelCase ).to(
self.device )
else:
_a = torch.randn(
__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase )
_a = torch.randn(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=__UpperCAmelCase )
else:
if latents_reference.shape != latents_shape:
raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' )
_a = latents_reference.to(self.device )
_a = latents.to(self.device )
# This is the key part of the pipeline where we
# try to ensure that the generated images w/ the same seed
# but different sizes actually result in similar images
_a = (latents_shape[3] - latents_shape_reference[3]) // 2
_a = (latents_shape[2] - latents_shape_reference[2]) // 2
_a = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx
_a = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy
_a = 0 if dx < 0 else dx
_a = 0 if dy < 0 else dy
_a = max(-dx , 0 )
_a = max(-dy , 0 )
# import pdb
# pdb.set_trace()
_a = latents_reference[:, :, dy : dy + h, dx : dx + w]
# set timesteps
self.scheduler.set_timesteps(__UpperCAmelCase )
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
_a = self.scheduler.timesteps.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_a = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
_a = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_a = {}
if accepts_eta:
_a = eta
for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_a = self.scheduler.scale_model_input(__UpperCAmelCase , __UpperCAmelCase )
# predict the noise residual
_a = self.unet(__UpperCAmelCase , __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase ).sample
# perform guidance
if do_classifier_free_guidance:
_a , _a = noise_pred.chunk(2 )
_a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = 1 / 0.18215 * latents
_a = self.vae.decode(__UpperCAmelCase ).sample
_a = (image / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if self.safety_checker is not None:
_a = self.feature_extractor(self.numpy_to_pil(__UpperCAmelCase ) , return_tensors='''pt''' ).to(
self.device )
_a , _a = self.safety_checker(
images=__UpperCAmelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) )
else:
_a = None
if output_type == "pil":
_a = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=__UpperCAmelCase , nsfw_content_detected=__UpperCAmelCase )
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 10_00 ):
"""simple docstring"""
_a = -1
_a = 0
for a in range(1, n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
_a = (n * n - 2 * a * n) // (2 * n - 2 * a)
_a = n - a - b
if c * c == (a * a + b * b):
_a = a * b * c
if candidate >= product:
_a = candidate
return product
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''vocab_file''': '''vocab.txt''',
'''merges_file''': '''bpe.codes''',
}
__snake_case = {
'''vocab_file''': {
'''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''',
'''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''',
},
'''merges_file''': {
'''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''',
'''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''',
},
}
__snake_case = {
'''vinai/phobert-base''': 256,
'''vinai/phobert-large''': 256,
}
def A_ ( _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_a = set()
_a = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_a = char
_a = set(_lowerCAmelCase )
return pairs
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Any = VOCAB_FILES_NAMES
A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A_ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , **__UpperCAmelCase , ) -> str:
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = vocab_file
_a = merges_file
_a = {}
_a = 0
_a = 1
_a = 2
_a = 3
self.add_from_file(__UpperCAmelCase )
_a = {v: k for k, v in self.encoder.items()}
with open(__UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
_a = merges_handle.read().split('''\n''' )[:-1]
_a = [tuple(merge.split()[:-1] ) for merge in merges]
_a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a = [self.cls_token_id]
_a = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return len(self.encoder )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return dict(self.encoder , **self.added_tokens_encoder )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
if token in self.cache:
return self.cache[token]
_a = tuple(__UpperCAmelCase )
_a = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
_a = get_pairs(__UpperCAmelCase )
if not pairs:
return token
while True:
_a = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
_a , _a = bigram
_a = []
_a = 0
while i < len(__UpperCAmelCase ):
try:
_a = word.index(__UpperCAmelCase , __UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_a = j
if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_a = tuple(__UpperCAmelCase )
_a = new_word
if len(__UpperCAmelCase ) == 1:
break
else:
_a = get_pairs(__UpperCAmelCase )
_a = '''@@ '''.join(__UpperCAmelCase )
_a = word[:-4]
_a = word
return word
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_a = []
_a = re.findall(r'''\S+\n?''' , __UpperCAmelCase )
for token in words:
split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(''' ''' ) ) )
return split_tokens
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str:
return self.decoder.get(__UpperCAmelCase , self.unk_token )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_a = ''' '''.join(__UpperCAmelCase ).replace('''@@ ''' , '''''' ).strip()
return out_string
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
if os.path.abspath(self.merges_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.merges_file , __UpperCAmelCase )
return out_vocab_file, out_merge_file
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
try:
with open(__UpperCAmelCase , '''r''' , encoding='''utf-8''' ) as fd:
self.add_from_file(__UpperCAmelCase )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(F'Incorrect encoding detected in {f}, please rebuild the dataset' )
return
_a = f.readlines()
for lineTmp in lines:
_a = lineTmp.strip()
_a = line.rfind(''' ''' )
if idx == -1:
raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt>\'''' )
_a = line[:idx]
_a = len(self.encoder )
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''',
# See all ViT MAE models at https://huggingface.co/models?filter=vit-mae
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'vit_mae'
def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=224 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=16 , __UpperCAmelCase=512 , __UpperCAmelCase=8 , __UpperCAmelCase=2048 , __UpperCAmelCase=0.75 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
super().__init__(**__UpperCAmelCase )
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = initializer_range
_a = layer_norm_eps
_a = image_size
_a = patch_size
_a = num_channels
_a = qkv_bias
_a = decoder_num_attention_heads
_a = decoder_hidden_size
_a = decoder_num_hidden_layers
_a = decoder_intermediate_size
_a = mask_ratio
_a = norm_pix_loss
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
return number | (1 << position)
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
return number & ~(1 << position)
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
return number ^ (1 << position)
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
return ((number >> position) & 1) == 1
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
return int((number & (1 << position)) != 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : list ):
"""simple docstring"""
def merge(_lowerCAmelCase : list, _lowerCAmelCase : list ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_lowerCAmelCase ) <= 1:
return collection
_a = len(_lowerCAmelCase ) // 2
return merge(merge_sort(collection[:mid] ), merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = input('''Enter numbers separated by a comma:\n''').strip()
__snake_case = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
import multiprocessing
import time
from arguments import PretokenizationArguments
from datasets import load_dataset
from transformers import AutoTokenizer, HfArgumentParser
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
_a = {}
_a = tokenizer(example['''content'''], truncation=_lowerCAmelCase )['''input_ids''']
_a = len(example['''content'''] ) / len(output['''input_ids'''] )
return output
__snake_case = HfArgumentParser(PretokenizationArguments)
__snake_case = parser.parse_args()
if args.num_workers is None:
__snake_case = multiprocessing.cpu_count()
__snake_case = AutoTokenizer.from_pretrained(args.tokenizer_dir)
__snake_case = time.time()
__snake_case = load_dataset(args.dataset_name, split='''train''')
print(f'Dataset loaded in {time.time()-t_start:.2f}s')
__snake_case = time.time()
__snake_case = ds.map(
tokenize,
num_proc=args.num_workers,
remove_columns=[
'''repo_name''',
'''path''',
'''copies''',
'''size''',
'''content''',
'''license''',
'''hash''',
'''line_mean''',
'''line_max''',
'''alpha_frac''',
'''autogenerated''',
],
)
print(f'Dataset tokenized in {time.time()-t_start:.2f}s')
__snake_case = time.time()
ds.push_to_hub(args.tokenized_data_repo)
print(f'Data pushed to the hub in {time.time()-t_start:.2f}s')
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__snake_case = {
'''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''],
'''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''AdaptiveEmbedding''',
'''TransfoXLForSequenceClassification''',
'''TransfoXLLMHeadModel''',
'''TransfoXLModel''',
'''TransfoXLPreTrainedModel''',
'''load_tf_weights_in_transfo_xl''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFAdaptiveEmbedding''',
'''TFTransfoXLForSequenceClassification''',
'''TFTransfoXLLMHeadModel''',
'''TFTransfoXLMainLayer''',
'''TFTransfoXLModel''',
'''TFTransfoXLPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class __lowerCamelCase ( a__ , a__ ):
'''simple docstring'''
A_ : Union[str, Any] = 'pixel_values'
A_ : Optional[Any] = False
A_ : Optional[Any] = TimmBackboneConfig
def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , '''timm''' )
super().__init__(__UpperCAmelCase )
_a = config
if config.backbone is None:
raise ValueError('''backbone is not set in the config. Please set it to a timm model name.''' )
if config.backbone not in timm.list_models():
raise ValueError(F'backbone {config.backbone} is not supported by timm.' )
if hasattr(__UpperCAmelCase , '''out_features''' ) and config.out_features is not None:
raise ValueError('''out_features is not supported by TimmBackbone. Please use out_indices instead.''' )
_a = getattr(__UpperCAmelCase , '''use_pretrained_backbone''' , __UpperCAmelCase )
if pretrained is None:
raise ValueError('''use_pretrained_backbone is not set in the config. Please set it to True or False.''' )
# We just take the final layer by default. This matches the default for the transformers models.
_a = config.out_indices if getattr(__UpperCAmelCase , '''out_indices''' , __UpperCAmelCase ) is not None else (-1,)
_a = timm.create_model(
config.backbone , pretrained=__UpperCAmelCase , features_only=config.features_only , in_chans=config.num_channels , out_indices=__UpperCAmelCase , **__UpperCAmelCase , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
_a = self._backbone.return_layers
_a = {layer['''module''']: str(__UpperCAmelCase ) for i, layer in enumerate(self._backbone.feature_info.info )}
super()._init_backbone(__UpperCAmelCase )
@classmethod
def _UpperCAmelCase ( cls , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''vision''', '''timm'''] )
from ...models.timm_backbone import TimmBackboneConfig
_a = kwargs.pop('''config''' , TimmBackboneConfig() )
_a = kwargs.pop('''use_timm_backbone''' , __UpperCAmelCase )
if not use_timm:
raise ValueError('''use_timm_backbone must be True for timm backbones''' )
_a = kwargs.pop('''num_channels''' , config.num_channels )
_a = kwargs.pop('''features_only''' , config.features_only )
_a = kwargs.pop('''use_pretrained_backbone''' , config.use_pretrained_backbone )
_a = kwargs.pop('''out_indices''' , config.out_indices )
_a = TimmBackboneConfig(
backbone=__UpperCAmelCase , num_channels=__UpperCAmelCase , features_only=__UpperCAmelCase , use_pretrained_backbone=__UpperCAmelCase , out_indices=__UpperCAmelCase , )
return super()._from_config(__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str:
pass
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[BackboneOutput, Tuple[Tensor, ...]]:
_a = return_dict if return_dict is not None else self.config.use_return_dict
_a = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_a = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError('''Cannot output attentions for timm backbones at the moment''' )
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
_a = self._all_layers
_a = self._backbone(__UpperCAmelCase , **__UpperCAmelCase )
_a = self._return_layers
_a = tuple(hidden_states[i] for i in self.out_indices )
else:
_a = self._backbone(__UpperCAmelCase , **__UpperCAmelCase )
_a = None
_a = tuple(__UpperCAmelCase )
_a = tuple(__UpperCAmelCase ) if hidden_states is not None else None
if not return_dict:
_a = (feature_maps,)
if output_hidden_states:
_a = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=__UpperCAmelCase , hidden_states=__UpperCAmelCase , attentions=__UpperCAmelCase )
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase = 0 ) -> Optional[Any]:
_a = key
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> list[str]:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
_a = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(__UpperCAmelCase ) ^ key ) for ch in content]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> list[str]:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
_a = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(__UpperCAmelCase ) ^ key ) for ch in content]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> str:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
_a = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_a = ''''''
for ch in content:
ans += chr(ord(__UpperCAmelCase ) ^ key )
return ans
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> str:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
_a = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_a = ''''''
for ch in content:
ans += chr(ord(__UpperCAmelCase ) ^ key )
return ans
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> bool:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
try:
with open(__UpperCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(__UpperCAmelCase , __UpperCAmelCase ) )
except OSError:
return False
return True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> bool:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase )
try:
with open(__UpperCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(__UpperCAmelCase , __UpperCAmelCase ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/config.json''',
'''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json''',
'''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/config.json''',
'''funnel-transformer/medium-base''': '''https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json''',
'''funnel-transformer/intermediate''': (
'''https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json'''
),
'''funnel-transformer/intermediate-base''': (
'''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json'''
),
'''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/config.json''',
'''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json''',
'''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json''',
'''funnel-transformer/xlarge-base''': '''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json''',
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Tuple = 'funnel'
A_ : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
}
def __init__( self , __UpperCAmelCase=30522 , __UpperCAmelCase=[4, 4, 4] , __UpperCAmelCase=None , __UpperCAmelCase=2 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=64 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=None , __UpperCAmelCase=1e-9 , __UpperCAmelCase="mean" , __UpperCAmelCase="relative_shift" , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> int:
_a = vocab_size
_a = block_sizes
_a = [1] * len(__UpperCAmelCase ) if block_repeats is None else block_repeats
assert len(__UpperCAmelCase ) == len(
self.block_repeats ), "`block_sizes` and `block_repeats` should have the same length."
_a = num_decoder_layers
_a = d_model
_a = n_head
_a = d_head
_a = d_inner
_a = hidden_act
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = initializer_range
_a = initializer_std
_a = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F'Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'
_a = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F'Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'
_a = attention_type
_a = separate_cls
_a = truncate_seq
_a = pool_q_only
super().__init__(**__UpperCAmelCase )
@property
def _UpperCAmelCase ( self ) -> List[Any]:
return sum(self.block_sizes )
@num_hidden_layers.setter
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
raise NotImplementedError(
'''This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.''' )
@property
def _UpperCAmelCase ( self ) -> Tuple:
return len(self.block_sizes )
@num_blocks.setter
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int:
raise NotImplementedError('''This model does not support the setting of `num_blocks`. Please set `block_sizes`.''' )
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__snake_case = {
'''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''],
'''tokenization_xlm''': ['''XLMTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMForMultipleChoice''',
'''XLMForQuestionAnswering''',
'''XLMForQuestionAnsweringSimple''',
'''XLMForSequenceClassification''',
'''XLMForTokenClassification''',
'''XLMModel''',
'''XLMPreTrainedModel''',
'''XLMWithLMHeadModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMForMultipleChoice''',
'''TFXLMForQuestionAnsweringSimple''',
'''TFXLMForSequenceClassification''',
'''TFXLMForTokenClassification''',
'''TFXLMMainLayer''',
'''TFXLMModel''',
'''TFXLMPreTrainedModel''',
'''TFXLMWithLMHeadModel''',
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
__snake_case = '''scheduler_config.json'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 1
A_ : Optional[Any] = 2
A_ : List[str] = 3
A_ : List[str] = 4
A_ : str = 5
A_ : List[Any] = 6
A_ : Optional[int] = 7
A_ : int = 8
A_ : Tuple = 9
A_ : Dict = 10
A_ : List[str] = 11
A_ : Any = 12
A_ : List[str] = 13
A_ : List[str] = 14
@dataclass
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : torch.FloatTensor
class __lowerCamelCase :
'''simple docstring'''
A_ : Union[str, Any] = SCHEDULER_CONFIG_NAME
A_ : Union[str, Any] = []
A_ : Dict = True
@classmethod
def _UpperCAmelCase ( cls , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Dict:
_a , _a , _a = cls.load_config(
pretrained_model_name_or_path=__UpperCAmelCase , subfolder=__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , return_commit_hash=__UpperCAmelCase , **__UpperCAmelCase , )
return cls.from_config(__UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , **__UpperCAmelCase ) -> List[str]:
self.save_config(save_directory=__UpperCAmelCase , push_to_hub=__UpperCAmelCase , **__UpperCAmelCase )
@property
def _UpperCAmelCase ( self ) -> str:
return self._get_compatibles()
@classmethod
def _UpperCAmelCase ( cls ) -> Optional[int]:
_a = list(set([cls.__name__] + cls._compatibles ) )
_a = importlib.import_module(__name__.split('''.''' )[0] )
_a = [
getattr(__UpperCAmelCase , __UpperCAmelCase ) for c in compatible_classes_str if hasattr(__UpperCAmelCase , __UpperCAmelCase )
]
return compatible_classes
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all LED models at https://huggingface.co/models?filter=LED
__snake_case = {
'''vocab_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''',
},
'''merges_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''allenai/led-base-16384''': 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def A_ ( ):
"""simple docstring"""
_a = (
list(range(ord('''!''' ), ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ), ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ), ord('''ÿ''' ) + 1 ) )
)
_a = bs[:]
_a = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_lowerCAmelCase )
cs.append(2**8 + n )
n += 1
_a = [chr(_lowerCAmelCase ) for n in cs]
return dict(zip(_lowerCAmelCase, _lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
_a = set()
_a = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_a = char
return pairs
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : str = VOCAB_FILES_NAMES
A_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP
A_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[str] = ['input_ids', 'attention_mask']
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="replace" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> int:
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else bos_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else eos_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else sep_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else cls_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else unk_token
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , )
with open(__UpperCAmelCase , encoding='''utf-8''' ) as vocab_handle:
_a = json.load(__UpperCAmelCase )
_a = {v: k for k, v in self.encoder.items()}
_a = errors # how to handle errors in decoding
_a = bytes_to_unicode()
_a = {v: k for k, v in self.byte_encoder.items()}
with open(__UpperCAmelCase , encoding='''utf-8''' ) as merges_handle:
_a = merges_handle.read().split('''\n''' )[1:-1]
_a = [tuple(merge.split() ) for merge in bpe_merges]
_a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
_a = {}
_a = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
_a = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def _UpperCAmelCase ( self ) -> List[str]:
return len(self.encoder )
def _UpperCAmelCase ( self ) -> Any:
return dict(self.encoder , **self.added_tokens_encoder )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if token in self.cache:
return self.cache[token]
_a = tuple(__UpperCAmelCase )
_a = get_pairs(__UpperCAmelCase )
if not pairs:
return token
while True:
_a = min(__UpperCAmelCase , key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
_a , _a = bigram
_a = []
_a = 0
while i < len(__UpperCAmelCase ):
try:
_a = word.index(__UpperCAmelCase , __UpperCAmelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
_a = j
if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
_a = tuple(__UpperCAmelCase )
_a = new_word
if len(__UpperCAmelCase ) == 1:
break
else:
_a = get_pairs(__UpperCAmelCase )
_a = ''' '''.join(__UpperCAmelCase )
_a = word
return word
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_a = []
for token in re.findall(self.pat , __UpperCAmelCase ):
_a = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__UpperCAmelCase ).split(''' ''' ) )
return bpe_tokens
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
return self.encoder.get(__UpperCAmelCase , self.encoder.get(self.unk_token ) )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
return self.decoder.get(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]:
_a = ''''''.join(__UpperCAmelCase )
_a = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__UpperCAmelCase , ensure_ascii=__UpperCAmelCase ) + '''\n''' )
_a = 0
with open(__UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCAmelCase : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
''' Please check that the tokenizer is not corrupted!''' )
_a = token_index
writer.write(''' '''.join(__UpperCAmelCase ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a = [self.cls_token_id]
_a = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , **__UpperCAmelCase ) -> List[Any]:
_a = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__UpperCAmelCase ) > 0 and not text[0].isspace()):
_a = ''' ''' + text
return (text, kwargs)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> dict:
_a = super()._pad(
encoded_inputs=__UpperCAmelCase , max_length=__UpperCAmelCase , padding_strategy=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , )
# Load from model defaults
if return_attention_mask is None:
_a = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
_a = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
_a = len(encoded_inputs['''global_attention_mask'''] ) != len(__UpperCAmelCase )
if needs_to_be_padded:
_a = len(__UpperCAmelCase ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
_a = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
_a = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
from collections.abc import Sequence
def A_ ( _lowerCAmelCase : Sequence[float], _lowerCAmelCase : float ):
"""simple docstring"""
return sum(c * (x**i) for i, c in enumerate(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Sequence[float], _lowerCAmelCase : float ):
"""simple docstring"""
_a = 0.0
for coeff in reversed(_lowerCAmelCase ):
_a = result * x + coeff
return result
if __name__ == "__main__":
__snake_case = (0.0, 0.0, 5.0, 9.3, 7.0)
__snake_case = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.