code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase=None ) -> List[Any]: _a = data _a = None def __repr__( self ) -> Union[str, Any]: _a = [] _a = self while temp: string_rep.append(F'{temp.data}' ) _a = temp.next return "->".join(__UpperCAmelCase ) def A_ ( _lowerCAmelCase : list ): """simple docstring""" if not elements_list: raise Exception('''The Elements List is empty''' ) _a = _a = Node(elements_list[0] ) for i in range(1, len(_lowerCAmelCase ) ): _a = Node(elements_list[i] ) _a = current.next return head def A_ ( _lowerCAmelCase : Node ): """simple docstring""" if head_node is not None and isinstance(_lowerCAmelCase, _lowerCAmelCase ): print_reverse(head_node.next ) print(head_node.data ) def A_ ( ): """simple docstring""" from doctest import testmod testmod() _a = make_linked_list([14, 52, 14, 12, 43] ) print('''Linked List:''' ) print(_lowerCAmelCase ) print('''Elements in Reverse:''' ) print_reverse(_lowerCAmelCase ) if __name__ == "__main__": main()
320
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
1
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def A_ ( _lowerCAmelCase : Dict="ro", _lowerCAmelCase : List[Any]="en", _lowerCAmelCase : str="wmt16", _lowerCAmelCase : Dict=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) _a = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) _a = datasets.load_dataset(_lowerCAmelCase, _lowerCAmelCase ) if save_dir is None: _a = f'{dataset}-{pair}' _a = Path(_lowerCAmelCase ) save_dir.mkdir(exist_ok=_lowerCAmelCase ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets _a = '''val''' if split == '''validation''' else split _a = save_dir.joinpath(f'{fn}.source' ) _a = save_dir.joinpath(f'{fn}.target' ) _a = src_path.open('''w+''' ) _a = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _a = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
320
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
1
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = True , __UpperCAmelCase = False ) -> List[str]: _a = scheduler _a = optimizers if isinstance(__UpperCAmelCase , (list, tuple) ) else [optimizers] _a = split_batches _a = step_with_optimizer _a = GradientState() def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _a = AcceleratorState().num_processes for _ in range(__UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) else: self.scheduler.step(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[int]: return self.scheduler.get_last_lr() def _UpperCAmelCase ( self ) -> Union[str, Any]: return self.scheduler.state_dict() def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: self.scheduler.load_state_dict(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: return self.scheduler.get_lr() def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: return self.scheduler.print_lr(*__UpperCAmelCase , **__UpperCAmelCase )
320
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : List[str] ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str, _lowerCAmelCase : Any ): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a = JsonDatasetReader(_lowerCAmelCase, cache_dir=_lowerCAmelCase, keep_in_memory=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase, _lowerCAmelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Any, _lowerCAmelCase : int ): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _a = features.copy() if features else default_expected_features _a = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _a = JsonDatasetReader(_lowerCAmelCase, features=_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase, _lowerCAmelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ], ) def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int ): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} _a = features.copy() if features else default_expected_features _a = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _a = JsonDatasetReader(_lowerCAmelCase, features=_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : Any ): """simple docstring""" _a = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} _a = features.copy() _a = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _a = tmp_path / '''cache''' _a = JsonDatasetReader(_lowerCAmelCase, features=_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read() assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[int], _lowerCAmelCase : Optional[Any] ): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _a = JsonDatasetReader(_lowerCAmelCase, cache_dir=_lowerCAmelCase, split=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase, _lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''', [str, list] ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[int], _lowerCAmelCase : List[str] ): """simple docstring""" if issubclass(_lowerCAmelCase, _lowerCAmelCase ): _a = jsonl_path elif issubclass(_lowerCAmelCase, _lowerCAmelCase ): _a = [jsonl_path] _a = tmp_path / '''cache''' _a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _a = JsonDatasetReader(_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read() _check_json_dataset(_lowerCAmelCase, _lowerCAmelCase ) def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int, _lowerCAmelCase : List[str]=("train",) ): """simple docstring""" assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) for split in splits: _a = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''', [False, True] ) def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _a = JsonDatasetReader({'''train''': jsonl_path}, cache_dir=_lowerCAmelCase, keep_in_memory=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase, _lowerCAmelCase ) @pytest.mark.parametrize( '''features''', [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ], ) def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : str, _lowerCAmelCase : List[str] ): """simple docstring""" _a = tmp_path / '''cache''' _a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _a = features.copy() if features else default_expected_features _a = ( Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) _a = JsonDatasetReader({'''train''': jsonl_path}, features=_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase, _lowerCAmelCase ) @pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" if split: _a = {split: jsonl_path} else: _a = '''train''' _a = {'''train''': jsonl_path, '''test''': jsonl_path} _a = tmp_path / '''cache''' _a = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _a = JsonDatasetReader(_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read() _check_json_datasetdict(_lowerCAmelCase, _lowerCAmelCase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A_ ( _lowerCAmelCase : Optional[int] ): """simple docstring""" return json.load(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" return [json.loads(_lowerCAmelCase ) for line in buffer] class __lowerCamelCase : '''simple docstring''' @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , lines=__UpperCAmelCase ).write() buffer.seek(0 ) _a = load_json_function(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert isinstance(exported_content[0] , __UpperCAmelCase ) assert len(__UpperCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , lines=__UpperCAmelCase , orient=__UpperCAmelCase ).write() buffer.seek(0 ) _a = load_json(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__UpperCAmelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , lines=__UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) _a = load_json_function(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert isinstance(exported_content[0] , __UpperCAmelCase ) assert len(__UpperCAmelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , lines=__UpperCAmelCase , orient=__UpperCAmelCase , num_proc=2 ).write() buffer.seek(0 ) _a = load_json(__UpperCAmelCase ) assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCAmelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__UpperCAmelCase ) == 10 def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: with pytest.raises(__UpperCAmelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _a = tmp_path_factory.mktemp('''data''' ) / F'test.json.{extension}' _a = str(shared_datadir / F'test_file.json.{extension}' ) JsonDatasetWriter(__UpperCAmelCase , __UpperCAmelCase , compression=__UpperCAmelCase ).write() with fsspec.open(__UpperCAmelCase , '''rb''' , compression='''infer''' ) as f: _a = f.read() with fsspec.open(__UpperCAmelCase , '''rb''' , compression='''infer''' ) as f: _a = f.read() assert exported_content == original_content
320
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
1
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative in a semiconductor''' ) elif hole_conc < 0: raise ValueError('''Hole concentration cannot be negative in a semiconductor''' ) elif intrinsic_conc < 0: raise ValueError( '''Intrinsic concentration cannot be negative in a semiconductor''' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
320
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
1
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _a = Vector() def _UpperCAmelCase ( self ) -> None: _a = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(__UpperCAmelCase ) , '''(0,0,0,0,0,1)''' ) def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 2, 3, 4] ) self.assertEqual(len(__UpperCAmelCase ) , 4 ) def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 2] ) _a = Vector([1, 2, 3, 4, 5] ) _a = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _a = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 2, 3] ) _a = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 2, 3] ) _a = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 2, 3] ) _a = Vector([2, -1, 4] ) # for test of dot product _a = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '''(3.0,6.0,9.0)''' ) self.assertEqual((a * b) , 0 ) def _UpperCAmelCase ( self ) -> None: self.assertEqual(str(zero_vector(10 ) ).count('''0''' ) , 10 ) def _UpperCAmelCase ( self ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '''(0,1,0)''' ) def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 2, 3] ) _a = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , __UpperCAmelCase , __UpperCAmelCase ) ) , '''(3,4,7)''' ) def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 0, 0, 0, 0, 0] ) _a = x.copy() self.assertEqual(str(__UpperCAmelCase ) , str(__UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> None: _a = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(__UpperCAmelCase ) , '''(0,1,0)''' ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('''|1,2,3|\n|2,4,5|\n|6,7,8|\n''' , str(__UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(__UpperCAmelCase , __UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(__UpperCAmelCase , __UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _a = Vector([1, 2, 3] ) self.assertEqual('''(14,32,50)''' , str(a * x ) ) self.assertEqual('''|2,4,6|\n|8,10,12|\n|14,16,18|\n''' , str(a * 2 ) ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('''|1,2,5|\n|2,4,5|\n|6,7,8|\n''' , str(__UpperCAmelCase ) ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|2,4,10|\n|4,8,10|\n|12,14,18|\n''' , str(a + b ) ) def _UpperCAmelCase ( self ) -> None: _a = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _a = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('''|0,0,-4|\n|0,0,0|\n|0,0,-2|\n''' , str(a - b ) ) def _UpperCAmelCase ( self ) -> None: self.assertEqual( '''|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n''' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
320
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __snake_case = logging.get_logger(__name__) __snake_case = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class __lowerCamelCase ( a__ , a__ ): '''simple docstring''' A_ : List[str] = 'dinat' A_ : Union[str, Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=64 , __UpperCAmelCase=[3, 4, 6, 5] , __UpperCAmelCase=[2, 4, 8, 16] , __UpperCAmelCase=7 , __UpperCAmelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __UpperCAmelCase=3.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> List[Any]: super().__init__(**__UpperCAmelCase ) _a = patch_size _a = num_channels _a = embed_dim _a = depths _a = len(__UpperCAmelCase ) _a = num_heads _a = kernel_size _a = dilations _a = mlp_ratio _a = qkv_bias _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = drop_path_rate _a = hidden_act _a = layer_norm_eps _a = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _a = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) ) _a = layer_scale_init_value _a = ['''stem'''] + [F'stage{idx}' for idx in range(1 , len(__UpperCAmelCase ) + 1 )] _a , _a = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase , out_indices=__UpperCAmelCase , stage_names=self.stage_names )
320
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_opt''': ['''OPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OPTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''OPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OPTForCausalLM''', '''OPTModel''', '''OPTPreTrainedModel''', '''OPTForSequenceClassification''', '''OPTForQuestionAnswering''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''TFOPTForCausalLM''', '''TFOPTModel''', '''TFOPTPreTrainedModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''FlaxOPTForCausalLM''', '''FlaxOPTModel''', '''FlaxOPTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
1
"""simple docstring""" class __lowerCamelCase : # Public class to implement a graph '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: _a = row _a = col _a = graph def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> None: # Checking all 8 elements surrounding nth element _a = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _a = [-1, 0, 1, -1, 1, -1, 0, 1] _a = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , __UpperCAmelCase ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: # And finally, count all islands. _a = [[False for j in range(self.COL )] for i in range(self.ROW )] _a = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) count += 1 return count
320
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position __snake_case = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip __snake_case = concatenate_datasets __snake_case = DownloadConfig __snake_case = DownloadManager __snake_case = DownloadMode __snake_case = DownloadConfig __snake_case = DownloadMode __snake_case = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
320
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Any = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 256, '''width''': 256} _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_rescale _a = rescale_factor _a = do_center_crop _a = crop_size _a = do_flip_channel_order def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PIL.Image.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> int: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> np.ndarray: return flip_channel_order(__UpperCAmelCase , data_format=__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = resample if resample is not None else self.resample _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' ) _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: _a = [self.flip_channel_order(image=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Any: _a = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__UpperCAmelCase ): _a = target_sizes.numpy() _a = [] for idx in range(len(__UpperCAmelCase ) ): _a = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__UpperCAmelCase ) _a = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCAmelCase ) else: _a = logits.argmax(dim=1 ) _a = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
320
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} ) A_ : ClassVar[Features] = Features({'audio': Audio()} ) A_ : ClassVar[Features] = Features({'transcription': Value('string' )} ) A_ : str = "audio" A_ : str = "transcription" def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Any: if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , __UpperCAmelCase ): raise ValueError(F'Column {self.audio_column} is not an Audio type.' ) _a = copy.deepcopy(self ) _a = self.input_schema.copy() _a = features[self.audio_column] _a = input_schema return task_template @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
320
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
1
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : List[Any] = AlbertTokenizer A_ : Any = AlbertTokenizerFast A_ : Optional[int] = True A_ : List[str] = True A_ : Any = True def _UpperCAmelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing _a = AlbertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int: _a = '''this is a test''' _a = '''this is a test''' return input_text, output_text def _UpperCAmelCase ( self ) -> str: _a = '''<pad>''' _a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> List[Any]: _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''▁eloquent''' ) self.assertEqual(len(__UpperCAmelCase ) , 30000 ) def _UpperCAmelCase ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def _UpperCAmelCase ( self ) -> Optional[Any]: if not self.test_rust_tokenizer: return _a = self.get_tokenizer() _a = self.get_rust_tokenizer() _a = '''I was born in 92000, and this is falsé.''' _a = tokenizer.tokenize(__UpperCAmelCase ) _a = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) _a = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) _a = self.get_rust_tokenizer() _a = tokenizer.encode(__UpperCAmelCase ) _a = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Dict: _a = AlbertTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase ) _a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__UpperCAmelCase , ['''▁this''', '''▁is''', '''▁a''', '''▁test'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [48, 25, 21, 1289] ) _a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __UpperCAmelCase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''é''', '''.'''] ) _a = tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) _a = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) self.assertListEqual( __UpperCAmelCase , ['''▁i''', '''▁was''', '''▁born''', '''▁in''', '''▁9''', '''2000''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁fal''', '''s''', '''<unk>''', '''.'''] , ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = AlbertTokenizer(__UpperCAmelCase ) _a = tokenizer.encode('''sequence builders''' ) _a = tokenizer.encode('''multi-sequence build''' ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) _a = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _UpperCAmelCase ( self ) -> List[Any]: # fmt: off _a = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 21970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 12051, 18, 17, 7103, 2153, 673, 8, 3515, 18684, 8, 4461, 6, 1927, 297, 8, 12060, 2607, 18, 13, 5, 4461, 15, 10538, 38, 8, 135, 15, 822, 58, 15, 993, 10363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 10641, 6, 29, 84, 2512, 2430, 782, 18684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 11712, 15, 7103, 2153, 673, 17, 24883, 9990, 9, 3], [2, 11502, 25, 1006, 20, 782, 8, 11809, 855, 1732, 19393, 18667, 37, 367, 21018, 69, 1854, 34, 11860, 19124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 17659, 84, 14, 16792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='''albert-base-v2''' , revision='''6b6560eaf5ff2e250b00c50f380c5389a9c2d82e''' , )
320
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
1
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger __snake_case = get_logger(__name__) __snake_case = r''' Args: input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam search or log softmax for each vocabulary token when using beam search kwargs (`Dict[str, Any]`, *optional*): Additional logits processor specific kwargs. Return: `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores. ''' class __lowerCamelCase : '''simple docstring''' @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class __lowerCamelCase : '''simple docstring''' @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @add_start_docstrings(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> jnp.ndarray: for processor in self: _a = inspect.signature(processor.__call__ ).parameters if len(__UpperCAmelCase ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F'Make sure that all the required parameters: {list(function_args.keys() )} for ' F'{processor.__class__} are passed to the logits processor.' ) _a = processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) else: _a = processor(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not (temperature > 0): raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' ) _a = temperature def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: _a = scores / self.temperature return scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = -float('''Inf''' ) , __UpperCAmelCase = 1 ) -> Union[str, Any]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (top_p < 0 or top_p > 1.0): raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (min_tokens_to_keep < 1): raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) _a = top_p _a = filter_value _a = min_tokens_to_keep def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: _a , _a = lax.top_k(__UpperCAmelCase , scores.shape[-1] ) _a = jnp.full_like(__UpperCAmelCase , self.filter_value ) _a = jax.nn.softmax(__UpperCAmelCase , axis=-1 ).cumsum(axis=-1 ) _a = cumulative_probs < self.top_p # include the token that is higher than top_p as well _a = jnp.roll(__UpperCAmelCase , 1 ) score_mask |= score_mask.at[:, 0].set(__UpperCAmelCase ) # min tokens to keep _a = score_mask.at[:, : self.min_tokens_to_keep].set(__UpperCAmelCase ) _a = jnp.where(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = jax.lax.sort_key_val(__UpperCAmelCase , __UpperCAmelCase )[-1] return next_scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = -float('''Inf''' ) , __UpperCAmelCase = 1 ) -> int: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or top_k <= 0: raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) _a = filter_value def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: _a , _a = scores.shape _a = jnp.full(batch_size * vocab_size , self.filter_value ) _a = min(self.top_k , scores.shape[-1] ) # Safety check _a , _a = lax.top_k(__UpperCAmelCase , __UpperCAmelCase ) _a = jnp.broadcast_to((jnp.arange(__UpperCAmelCase ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() _a = topk_scores.flatten() _a = topk_indices.flatten() + shift _a = next_scores_flat.at[topk_indices_flat].set(__UpperCAmelCase ) _a = next_scores_flat.reshape(__UpperCAmelCase , __UpperCAmelCase ) return next_scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> str: _a = bos_token_id def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: _a = jnp.full(scores.shape , -float('''inf''' ) ) _a = 1 - jnp.bool_(cur_len - 1 ) _a = jnp.where(__UpperCAmelCase , new_scores.at[:, self.bos_token_id].set(0 ) , __UpperCAmelCase ) return scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = max_length _a = eos_token_id def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: _a = jnp.full(scores.shape , -float('''inf''' ) ) _a = 1 - jnp.bool_(cur_len - self.max_length + 1 ) _a = jnp.where(__UpperCAmelCase , new_scores.at[:, self.eos_token_id].set(0 ) , __UpperCAmelCase ) return scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or min_length < 0: raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or eos_token_id < 0: raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) _a = min_length _a = eos_token_id def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied _a = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) _a = jnp.where(__UpperCAmelCase , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , __UpperCAmelCase ) return scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = list(__UpperCAmelCase ) _a = begin_index def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: _a = 1 - jnp.bool_(cur_len - self.begin_index ) _a = jnp.where(__UpperCAmelCase , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , __UpperCAmelCase ) return scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Tuple: _a = list(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: _a = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> List[str]: _a = dict(__UpperCAmelCase ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. _a = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: _a = force_token_array.at[index].set(__UpperCAmelCase ) _a = jnp.intaa(__UpperCAmelCase ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> jnp.ndarray: def _force_token(__UpperCAmelCase ): _a = scores.shape[0] _a = self.force_token_array[generation_idx] _a = jnp.ones_like(__UpperCAmelCase , dtype=scores.dtype ) * -float('''inf''' ) _a = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) _a = lax.dynamic_update_slice(__UpperCAmelCase , __UpperCAmelCase , (0, current_token) ) return new_scores _a = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(__UpperCAmelCase ) , lambda: scores , ) , ) return scores class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: _a = generate_config.eos_token_id _a = generate_config.no_timestamps_token_id _a = generate_config.no_timestamps_token_id + 1 _a = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(__UpperCAmelCase , '''max_initial_timestamp_index''' ): _a = generate_config.max_initial_timestamp_index else: _a = model_config.vocab_size if self.max_initial_timestamp_index is None: _a = model_config.vocab_size def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: # suppress <|notimestamps|> which is handled by without_timestamps _a = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(__UpperCAmelCase , __UpperCAmelCase ): _a = jnp.where((cur_len - self.begin_index) >= 1 , __UpperCAmelCase , __UpperCAmelCase ) _a = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , __UpperCAmelCase , ) _a = jnp.where((cur_len - self.begin_index) < 2 , __UpperCAmelCase , __UpperCAmelCase ) _a = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , __UpperCAmelCase , __UpperCAmelCase , ) return jnp.where( __UpperCAmelCase , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , __UpperCAmelCase , ) _a = jax.vmap(__UpperCAmelCase )(__UpperCAmelCase , __UpperCAmelCase ) _a = jnp.where(cur_len == self.begin_index , __UpperCAmelCase , __UpperCAmelCase ) _a = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , __UpperCAmelCase , ) _a = self.timestamp_begin + self.max_initial_timestamp_index _a = jnp.where( __UpperCAmelCase , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , __UpperCAmelCase , ) # if sum of probability over timestamps is above any other token, sample timestamp _a = jax.nn.log_softmax(__UpperCAmelCase , axis=-1 ) def handle_cumulative_probs(__UpperCAmelCase , __UpperCAmelCase ): _a = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) _a = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , __UpperCAmelCase , ) _a = jax.vmap(__UpperCAmelCase )(__UpperCAmelCase , __UpperCAmelCase ) return scores
320
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BartphoTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
1
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __snake_case = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __snake_case = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __snake_case = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> MetricInfo: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = 4 , ) -> Dict[str, float]: return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCAmelCase , hypotheses=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase ) }
320
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
1
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: pass @is_pipeline_test @require_torch @require_vision class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: _a = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) _a = [ { '''image''': Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''question''': '''How many cats are there?''', }, { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''question''': '''How many cats are there?''', }, ] return vqa_pipeline, examples def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: _a = vqa_pipeline(__UpperCAmelCase , top_k=1 ) self.assertEqual( __UpperCAmelCase , [ [{'''score''': ANY(__UpperCAmelCase ), '''answer''': ANY(__UpperCAmelCase )}], [{'''score''': ANY(__UpperCAmelCase ), '''answer''': ANY(__UpperCAmelCase )}], ] , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = pipeline('''visual-question-answering''' , model='''hf-internal-testing/tiny-vilt-random-vqa''' ) _a = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _a = '''How many cats are there?''' _a = vqa_pipeline(image=__UpperCAmelCase , question='''How many cats are there?''' , top_k=2 ) self.assertEqual( __UpperCAmelCase , [{'''score''': ANY(__UpperCAmelCase ), '''answer''': ANY(__UpperCAmelCase )}, {'''score''': ANY(__UpperCAmelCase ), '''answer''': ANY(__UpperCAmelCase )}] ) _a = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( __UpperCAmelCase , [{'''score''': ANY(__UpperCAmelCase ), '''answer''': ANY(__UpperCAmelCase )}, {'''score''': ANY(__UpperCAmelCase ), '''answer''': ANY(__UpperCAmelCase )}] ) @slow @require_torch def _UpperCAmelCase ( self ) -> Any: _a = pipeline('''visual-question-answering''' , model='''dandelin/vilt-b32-finetuned-vqa''' ) _a = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' _a = '''How many cats are there?''' _a = vqa_pipeline(image=__UpperCAmelCase , question=__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) _a = vqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}] ) _a = vqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [[{'''score''': 0.8799, '''answer''': '''2'''}, {'''score''': 0.296, '''answer''': '''1'''}]] * 2 , ) @require_tf @unittest.skip('''Visual question answering not implemented in TF''' ) def _UpperCAmelCase ( self ) -> int: pass
320
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _a ( ) -> Any: a = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=a , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=a , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=a ) return parser.parse_args() def _a ( ) -> Tuple: a = parse_args() # Import training_script as a module. a = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) a = script_fpath.stem a = importlib.import_module(a ) # Patch sys.argv a = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[Any] ={'vocab_file': 'vocab.json'} SCREAMING_SNAKE_CASE_: int ={ 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } SCREAMING_SNAKE_CASE_: Union[str, Any] ={'mgp-str': 27} class __A ( UpperCamelCase__ ): a__ : str = VOCAB_FILES_NAMES a__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP a__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : str , __a : Tuple , __a : str="[GO]" , __a : int="[GO]" , __a : Tuple="[s]" , __a : List[Any]="[GO]" , **__a : Any ): super().__init__( unk_token=__a , bos_token=__a , eos_token=__a , pad_token=__a , **__a , ) with open(__a , encoding="utf-8" ) as vocab_handle: UpperCAmelCase_ = json.load(__a ) UpperCAmelCase_ = {v: k for k, v in self.vocab.items()} @property def _lowercase (self : List[Any] ): return len(self.vocab ) def _lowercase (self : Dict ): return dict(self.vocab , **self.added_tokens_encoder ) def _lowercase (self : Optional[int] , __a : Optional[Any] ): UpperCAmelCase_ = [] for s in text: char_tokens.extend(__a ) return char_tokens def _lowercase (self : str , __a : str ): return self.vocab.get(__a , self.vocab.get(self.unk_token ) ) def _lowercase (self : int , __a : str ): return self.decoder.get(__a ) def _lowercase (self : Tuple , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error("Vocabulary path ({}) should be a directory".format(__a ) ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__a , ensure_ascii=__a ) + "\n" ) return (vocab_file,)
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
0
'''simple docstring''' import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) lowerCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : str lowerCAmelCase__ : str lowerCAmelCase__ : Optional[str] = None lowerCAmelCase__ : Optional[str] = None lowerCAmelCase__ : Optional[str] = None @dataclass(frozen=lowercase_ ) class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : List[int] lowerCAmelCase__ : Optional[List[int]] = None lowerCAmelCase__ : Optional[List[int]] = None lowerCAmelCase__ : Optional[Union[int, float]] = None lowerCAmelCase__ : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class __lowerCAmelCase (lowercase_ ): '''simple docstring''' lowerCAmelCase__ : List[InputFeatures] def __init__(self : Optional[int] , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : str , UpperCamelCase : Optional[int] = None , UpperCamelCase : List[Any]=False , UpperCamelCase : bool = False , ): '''simple docstring''' lowercase__ = hans_processors[task]() lowercase__ = os.path.join( UpperCamelCase , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(UpperCamelCase ) , UpperCamelCase , ) , ) lowercase__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ ,lowercase__ = label_list[2], label_list[1] lowercase__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowercase__ = cached_features_file + '''.lock''' with FileLock(UpperCamelCase ): if os.path.exists(UpperCamelCase ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowercase__ = torch.load(UpperCamelCase ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowercase__ = ( processor.get_dev_examples(UpperCamelCase ) if evaluate else processor.get_train_examples(UpperCamelCase ) ) logger.info('''Training examples: %s''' , len(UpperCamelCase ) ) lowercase__ = hans_convert_examples_to_features(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) logger.info('''Saving features into cached file %s''' , UpperCamelCase ) torch.save(self.features , UpperCamelCase ) def __len__(self : Optional[int] ): '''simple docstring''' return len(self.features ) def __getitem__(self : Tuple , UpperCamelCase : str ): '''simple docstring''' return self.features[i] def UpperCamelCase__ (self : str ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class __lowerCAmelCase : '''simple docstring''' lowerCAmelCase__ : List[InputFeatures] def __init__(self : List[Any] , UpperCamelCase : str , UpperCamelCase : PreTrainedTokenizer , UpperCamelCase : str , UpperCamelCase : Optional[int] = 128 , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : bool = False , ): '''simple docstring''' lowercase__ = hans_processors[task]() lowercase__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) lowercase__ ,lowercase__ = label_list[2], label_list[1] lowercase__ = label_list lowercase__ = processor.get_dev_examples(UpperCamelCase ) if evaluate else processor.get_train_examples(UpperCamelCase ) lowercase__ = hans_convert_examples_to_features(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 10000 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(UpperCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) lowercase__ = tf.data.Dataset.from_generator( UpperCamelCase , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' return self.dataset def __len__(self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__(self : Union[str, Any] , UpperCamelCase : Tuple ): '''simple docstring''' return self.features[i] def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return self.label_list class __lowerCAmelCase (lowercase_ ): '''simple docstring''' def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Any ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase , '''heuristics_train_set.txt''' ) ) , '''train''' ) def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[Any] ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(UpperCamelCase , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : int , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = [] for i, line in enumerate(UpperCamelCase ): if i == 0: continue lowercase__ = '''%s-%s''' % (set_type, line[0]) lowercase__ = line[5] lowercase__ = line[6] lowercase__ = line[7][2:] if line[7].startswith('''ex''' ) else line[7] lowercase__ = line[0] examples.append(InputExample(guid=UpperCamelCase , text_a=UpperCamelCase , text_b=UpperCamelCase , label=UpperCamelCase , pairID=UpperCamelCase ) ) return examples def _SCREAMING_SNAKE_CASE (A , A , A , A , ) -> int: """simple docstring""" lowercase__ = {label: i for i, label in enumerate(A )} lowercase__ = [] for ex_index, example in tqdm.tqdm(enumerate(A ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) lowercase__ = tokenizer( example.text_a , example.text_b , add_special_tokens=A , max_length=A , padding='''max_length''' , truncation=A , return_overflowing_tokens=A , ) lowercase__ = label_map[example.label] if example.label in label_map else 0 lowercase__ = int(example.pairID ) features.append(InputFeatures(**A , label=A , pairID=A ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"guid: {example}" ) logger.info(f"features: {features[i]}" ) return features lowerCamelCase : Tuple = { 'hans': 3, } lowerCamelCase : str = { 'hans': HansProcessor, }
2
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : int = 1.5 A : Dict = int(factor * num_class_images ) A : Tuple = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=snake_case__ , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=snake_case__ ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: A : Tuple = client.query(text=snake_case__ ) if len(snake_case__ ) >= factor * num_class_images or num_images > 1E4: break else: A : Dict = int(factor * num_images ) A : Optional[int] = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=snake_case__ , aesthetic_weight=0.1 , ) A : Dict = 0 A : Optional[int] = 0 A : Tuple = tqdm(desc='''downloading real regularization images''' , total=snake_case__ ) with open(F'{class_data_dir}/caption.txt' , '''w''' ) as fa, open(F'{class_data_dir}/urls.txt' , '''w''' ) as fa, open( F'{class_data_dir}/images.txt' , '''w''' ) as fa: while total < num_class_images: A : Optional[Any] = class_images[count] count += 1 try: A : Dict = requests.get(images['''url'''] ) if img.status_code == 200: A : Tuple = Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(F'{class_data_dir}/images/{total}.jpg' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCAmelCase_ ( ): '''simple docstring''' A : int = argparse.ArgumentParser('''''' , add_help=snake_case__ ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=snake_case__ , type=snake_case__ ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=snake_case__ , type=snake_case__ ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=200 , type=snake_case__ ) return parser.parse_args() if __name__ == "__main__": lowercase : Optional[int] = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
3
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase ) -> int: _lowercase =data def __iter__(self ) -> Optional[Any]: for element in self.data: yield element def UpperCAmelCase_ ( __snake_case=True ) -> Tuple: """simple docstring""" _lowercase =Accelerator(even_batches=__snake_case ) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case = False ) -> List[Any]: """simple docstring""" if iterable: _lowercase =DummyIterableDataset(torch.as_tensor(range(__snake_case ) ) ) else: _lowercase =TensorDataset(torch.as_tensor(range(__snake_case ) ) ) _lowercase =DataLoader(__snake_case , batch_size=__snake_case ) _lowercase =accelerator.prepare(__snake_case ) return dl def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> str: """simple docstring""" _lowercase =create_dataloader(accelerator=__snake_case , dataset_size=__snake_case , batch_size=__snake_case ) _lowercase =[len(batch[0] ) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" _lowercase =create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( __snake_case , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( __snake_case , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def UpperCAmelCase_ ( ) -> Optional[int]: """simple docstring""" _lowercase =create_accelerator(even_batches=__snake_case ) verify_dataloader_batch_sizes( __snake_case , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( __snake_case , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def UpperCAmelCase_ ( ) -> Dict: """simple docstring""" _lowercase =create_accelerator(even_batches=__snake_case ) _lowercase =torch.nn.Linear(1 , 1 ) _lowercase =accelerator.prepare(__snake_case ) _lowercase =create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) _lowercase =[] with accelerator.join_uneven_inputs([ddp_model] ): for batch_idx, batch in enumerate(__snake_case ): _lowercase =ddp_model(batch[0].float() ) _lowercase =output.sum() loss.backward() batch_idxs.append(__snake_case ) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def UpperCAmelCase_ ( __snake_case ) -> Union[str, Any]: """simple docstring""" with warnings.catch_warnings(record=__snake_case ) as w: with accelerator.join_uneven_inputs([Mock()] ): pass assert issubclass(w[-1].category , __snake_case ) assert "only supported for multi-GPU" in str(w[-1].message ) def UpperCAmelCase_ ( ) -> Any: """simple docstring""" _lowercase =True _lowercase =False _lowercase =create_accelerator(even_batches=__snake_case ) _lowercase =torch.nn.Linear(1 , 1 ) _lowercase =accelerator.prepare(__snake_case ) _lowercase =create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) _lowercase =create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): _lowercase =train_dl.batch_sampler.even_batches _lowercase =valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_ ( ) -> int: """simple docstring""" _lowercase =True _lowercase =False _lowercase =create_accelerator(even_batches=__snake_case ) _lowercase =torch.nn.Linear(1 , 1 ) _lowercase =accelerator.prepare(__snake_case ) create_dataloader(__snake_case , dataset_size=3 , batch_size=1 , iterable=__snake_case ) _lowercase =create_dataloader(__snake_case , dataset_size=3 , batch_size=1 ) with warnings.catch_warnings(): warnings.filterwarnings('''ignore''' ) try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): _lowercase =batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def UpperCAmelCase_ ( ) -> int: """simple docstring""" _lowercase =create_accelerator() _lowercase =torch.nn.Linear(1 , 1 ) _lowercase =accelerator.prepare(__snake_case ) create_dataloader(__snake_case , dataset_size=3 , batch_size=1 , iterable=__snake_case ) with warnings.catch_warnings(record=__snake_case ) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=__snake_case ): pass assert issubclass(w[-1].category , __snake_case ) assert "only supported for map-style datasets" in str(w[-1].message ) def UpperCAmelCase_ ( ) -> List[Any]: """simple docstring""" _lowercase =create_accelerator() accelerator.print('''Test that even_batches variable ensures uniform batches across processes''' ) test_default_ensures_even_batch_sizes() accelerator.print('''Run tests with even_batches disabled''' ) test_can_disable_even_batches() accelerator.print('''Test joining uneven inputs''' ) test_can_join_uneven_inputs() accelerator.print('''Test overriding even_batches when joining uneven inputs''' ) test_join_can_override_even_batches() accelerator.print('''Test overriding even_batches for mixed dataloader types''' ) test_join_can_override_for_mixed_type_dataloaders() accelerator.print('''Test overriding even_batches raises a warning for iterable dataloaders''' ) test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('''Test join with non DDP distributed raises warning''' ) _lowercase =accelerator.state.distributed_type _lowercase =DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(__snake_case ) _lowercase =original_state if __name__ == "__main__": main()
5
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
0
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __A( a ): snake_case_ = (PNDMScheduler,) snake_case_ = (('''num_inference_steps''', 5_0),) def SCREAMING_SNAKE_CASE_ ( self , **_snake_case ) -> str: '''simple docstring''' __a = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**_snake_case ) return config def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , **_snake_case ) -> Any: '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop('''num_inference_steps''' , _snake_case ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config(**_snake_case ) __a = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals __a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) __a = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals __a = dummy_past_residuals[:] __a = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample __a = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample __a = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self , _snake_case=0 , **_snake_case ) -> Union[str, Any]: '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop('''num_inference_steps''' , _snake_case ) __a = self.dummy_sample __a = 0.1 * sample __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) __a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) __a = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) __a = dummy_past_residuals[:] __a = scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample __a = new_scheduler.step_prk(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" __a = scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample __a = new_scheduler.step_plms(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE_ ( self , **_snake_case ) -> Tuple: '''simple docstring''' __a = self.scheduler_classes[0] __a = self.get_scheduler_config(**_snake_case ) __a = scheduler_class(**_snake_case ) __a = 10 __a = self.dummy_model() __a = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.prk_timesteps ): __a = model(_snake_case , _snake_case ) __a = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __a = model(_snake_case , _snake_case ) __a = scheduler.step_plms(_snake_case , _snake_case , _snake_case ).prev_sample return sample def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = dict(self.forward_default_kwargs ) __a = kwargs.pop('''num_inference_steps''' , _snake_case ) for scheduler_class in self.scheduler_classes: __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) __a = self.dummy_sample __a = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , '''set_timesteps''' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , '''set_timesteps''' ): __a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] __a = dummy_past_residuals[:] __a = scheduler.step_prk(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample __a = scheduler.step_prk(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) __a = scheduler.step_plms(_snake_case , 0 , _snake_case , **_snake_case ).prev_sample __a = scheduler.step_plms(_snake_case , 1 , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE_ ( self ) -> List[Any]: '''simple docstring''' for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_snake_case ) __a = self.scheduler_classes[0] __a = self.get_scheduler_config(steps_offset=1 ) __a = scheduler_class(**_snake_case ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_snake_case , beta_end=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Tuple: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[int]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = 27 for scheduler_class in self.scheduler_classes: __a = self.dummy_sample __a = 0.1 * sample __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __a = scheduler.step_prk(_snake_case , _snake_case , _snake_case ).prev_sample def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' with self.assertRaises(_snake_case ): __a = self.scheduler_classes[0] __a = self.get_scheduler_config() __a = scheduler_class(**_snake_case ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = self.full_loop() __a = torch.sum(torch.abs(_snake_case ) ) __a = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.full_loop(prediction_type='''v_prediction''' ) __a = torch.sum(torch.abs(_snake_case ) ) __a = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' __a = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) __a = torch.sum(torch.abs(_snake_case ) ) __a = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def SCREAMING_SNAKE_CASE_ ( self ) -> Dict: '''simple docstring''' __a = self.full_loop(set_alpha_to_one=_snake_case , beta_start=0.01 ) __a = torch.sum(torch.abs(_snake_case ) ) __a = torch.mean(torch.abs(_snake_case ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
6
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase_ = { "configuration_transfo_xl": ["TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP", "TransfoXLConfig"], "tokenization_transfo_xl": ["TransfoXLCorpus", "TransfoXLTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "AdaptiveEmbedding", "TransfoXLForSequenceClassification", "TransfoXLLMHeadModel", "TransfoXLModel", "TransfoXLPreTrainedModel", "load_tf_weights_in_transfo_xl", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAdaptiveEmbedding", "TFTransfoXLForSequenceClassification", "TFTransfoXLLMHeadModel", "TFTransfoXLMainLayer", "TFTransfoXLModel", "TFTransfoXLPreTrainedModel", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
7
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } lowerCAmelCase_ = { '''google/bigbird-roberta-base''': 40_96, '''google/bigbird-roberta-large''': 40_96, '''google/bigbird-base-trivia-itc''': 40_96, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : Dict="<unk>" , _UpperCamelCase : List[str]="<s>" , _UpperCamelCase : Tuple="</s>" , _UpperCamelCase : Any="<pad>" , _UpperCamelCase : Any="[SEP]" , _UpperCamelCase : Optional[Any]="[MASK]" , _UpperCamelCase : Any="[CLS]" , _UpperCamelCase : Optional[Dict[str, Any]] = None , **_UpperCamelCase : Dict , ) ->None: snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else bos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else eos_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else unk_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else pad_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else cls_token snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(_UpperCamelCase , lstrip=_UpperCamelCase , rstrip=_UpperCamelCase ) if isinstance(_UpperCamelCase , _UpperCamelCase ) else mask_token snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , unk_token=_UpperCamelCase , pad_token=_UpperCamelCase , sep_token=_UpperCamelCase , mask_token=_UpperCamelCase , cls_token=_UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCamelCase , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCamelCase ) @property def snake_case__( self : str ) ->List[Any]: return self.sp_model.get_piece_size() def snake_case__( self : int ) ->Union[str, Any]: snake_case_ = {self.convert_ids_to_tokens(_UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ) ->Any: snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : str , _UpperCamelCase : List[Any] ) ->List[str]: snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__( self : Optional[int] , _UpperCamelCase : str ) ->List[str]: return self.sp_model.encode(_UpperCamelCase , out_type=_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : List[str] ) ->Tuple: return self.sp_model.piece_to_id(_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str ) ->List[Any]: snake_case_ = self.sp_model.IdToPiece(_UpperCamelCase ) return token def snake_case__( self : Dict , _UpperCamelCase : Optional[int] ) ->List[str]: snake_case_ = [] snake_case_ = '''''' snake_case_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCamelCase ) + token snake_case_ = True snake_case_ = [] else: current_sub_tokens.append(_UpperCamelCase ) snake_case_ = False out_string += self.sp_model.decode(_UpperCamelCase ) return out_string.strip() def snake_case__( self : int , _UpperCamelCase : List[int] , _UpperCamelCase : bool = False , _UpperCamelCase : bool = None , _UpperCamelCase : bool = True , **_UpperCamelCase : List[str] , ) ->str: snake_case_ = kwargs.pop('''use_source_tokenizer''' , _UpperCamelCase ) snake_case_ = self.convert_ids_to_tokens(_UpperCamelCase , skip_special_tokens=_UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 snake_case_ = [] snake_case_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) snake_case_ = [] sub_texts.append(_UpperCamelCase ) else: current_sub_text.append(_UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(_UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: snake_case_ = re.sub(R''' (\[(MASK|SEP)\])''' , R'''\1''' , ''' '''.join(_UpperCamelCase ) ) else: snake_case_ = ''''''.join(_UpperCamelCase ) snake_case_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: snake_case_ = self.clean_up_tokenization(_UpperCamelCase ) return clean_text else: return text def snake_case__( self : List[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: if not os.path.isdir(_UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCamelCase , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(_UpperCamelCase ) return (out_vocab_file,) def snake_case__( self : Tuple , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__( self : List[str] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None , _UpperCamelCase : bool = False ) ->List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCamelCase )) + [1] return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) + [1] def snake_case__( self : List[Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) ->List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
8
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
0
def _UpperCamelCase ( lowercase__ ): if not isinstance(lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase__ ) if number < 0: return False __SCREAMING_SNAKE_CASE : Any = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
9
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
10
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
import heapq import sys import numpy as np lowerCAmelCase__ = tuple[int, int] class lowerCAmelCase__ : '''simple docstring''' def __init__( self) -> Optional[int]: _A : List[str] = [] _A : Optional[int] = set() def _lowerCamelCase ( self) -> Any: if not self.empty(): return self.elements[0][0] else: return float("inf") def _lowerCamelCase ( self) -> List[str]: return len(self.elements) == 0 def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase) -> List[Any]: if item not in self.set: heapq.heappush(self.elements , (priority, item)) self.set.add(__lowerCamelCase) else: # update # print("update", item) _A : Optional[Any] = [] ((_A) , (_A)) : Dict = heapq.heappop(self.elements) while x != item: temp.append((pri, x)) ((_A) , (_A)) : Optional[Any] = heapq.heappop(self.elements) temp.append((priority, item)) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx)) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: if item in self.set: self.set.remove(__lowerCamelCase) _A : Any = [] ((_A) , (_A)) : List[Any] = heapq.heappop(self.elements) while x != item: temp.append((pro, x)) ((_A) , (_A)) : Union[str, Any] = heapq.heappop(self.elements) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy)) def _lowerCamelCase ( self) -> Any: return self.elements[0][1] def _lowerCamelCase ( self) -> Optional[Any]: ((_A) , (_A)) : Any = heapq.heappop(self.elements) self.set.remove(__lowerCamelCase) return (priority, item) def _UpperCAmelCase (UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): # euclidean distance _A : Optional[Any] = np.array(UpperCamelCase__ ) _A : str = np.array(UpperCamelCase__ ) return np.linalg.norm(a - b ) def _UpperCAmelCase (UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): # integer division by time variable return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t def _UpperCAmelCase (UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def _UpperCAmelCase (UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ): _A : str = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ ) return ans def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): _A : List[Any] = np.chararray((n, n) ) for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): _A : Optional[int] = "*" for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (j, (n - 1) - i) in blocks: _A : Dict = "#" _A : Optional[int] = "-" _A : Union[str, Any] = back_pointer[goal] while x != start: ((_A) , (_A)) : Optional[Any] = x # print(x) _A : Union[str, Any] = "-" _A : List[Any] = back_pointer[x] _A : int = "-" for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) _A : Optional[Any] = back_pointer[goal] while x != start: print(UpperCamelCase__ , end=" " ) _A : List[Any] = back_pointer[x] print(UpperCamelCase__ ) sys.exit() def _UpperCAmelCase (UpperCamelCase__ : TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : Any , ): for itera in range(UpperCamelCase__ ): open_list[itera].remove_element(UpperCamelCase__ ) # print("s", s) # print("j", j) ((_A) , (_A)) : int = s _A : Dict = (x - 1, y) _A : Any = (x + 1, y) _A : Dict = (x, y + 1) _A : Union[str, Any] = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(UpperCamelCase__ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(UpperCamelCase__ ) _A : Dict = -1 _A : List[str] = float("inf" ) if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1: _A : Union[str, Any] = g_function[s] + 1 _A : int = s if neighbours not in close_list_anchor: open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) ) if neighbours not in close_list_inad: for var in range(1 , UpperCamelCase__ ): if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ): open_list[j].put( UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) def _UpperCAmelCase (): _A : Union[str, Any] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowerCAmelCase__ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowerCAmelCase__ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowerCAmelCase__ = make_common_ground() lowerCAmelCase__ = blocks_blk # hyper parameters lowerCAmelCase__ = 1 lowerCAmelCase__ = 1 lowerCAmelCase__ = 20 lowerCAmelCase__ = 3 # one consistent and two other inconsistent # start and end destination lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (n - 1, n - 1) lowerCAmelCase__ = 1 def _UpperCAmelCase (UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ): _A : Optional[int] = {start: 0, goal: float("inf" )} _A : int = {start: -1, goal: -1} _A : Dict = [] _A : Dict = set() for i in range(UpperCamelCase__ ): open_list.append(PriorityQueue() ) open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) ) _A : list[int] = [] _A : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , UpperCamelCase__ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: _A , _A : Tuple = open_list[i].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_inad.append(UpperCamelCase__ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: _A : Dict = open_list[0].top_show() visited.add(UpperCamelCase__ ) expand_state( UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) close_list_anchor.append(UpperCamelCase__ ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(UpperCamelCase__ ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
11
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness UpperCAmelCase_ = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' UpperCAmelCase_ = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' UpperCAmelCase_ = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' UpperCAmelCase_ = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' UpperCAmelCase_ = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class lowerCamelCase__( datasets.Metric): def lowerCAmelCase__ ( self: Dict ): return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any]=[1, 10, 1_00] , UpperCamelCase_: str=4 , UpperCamelCase_: Optional[Any]=3.0 ): if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=UpperCamelCase_ ) as executor: __lowerCamelCase = [] __lowerCamelCase = Counter() __lowerCamelCase = 0 __lowerCamelCase = defaultdict(UpperCamelCase_ ) for task_id, (candidates, test_case) in enumerate(zip(UpperCamelCase_ , UpperCamelCase_ ) ): for candidate in candidates: __lowerCamelCase = candidate + """\n""" + test_case __lowerCamelCase = (test_program, timeout, task_id, completion_id[task_id]) __lowerCamelCase = executor.submit(UpperCamelCase_ , *UpperCamelCase_ ) futures.append(UpperCamelCase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCamelCase_ ): __lowerCamelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) __lowerCamelCase, __lowerCamelCase = [], [] for result in results.values(): result.sort() __lowerCamelCase = [r[1]["""passed"""] for r in result] total.append(len(UpperCamelCase_ ) ) correct.append(sum(UpperCamelCase_ ) ) __lowerCamelCase = np.array(UpperCamelCase_ ) __lowerCamelCase = np.array(UpperCamelCase_ ) __lowerCamelCase = k __lowerCamelCase = {F'pass@{k}': estimate_pass_at_k(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def lowerCamelCase__ ( A__ : int , A__ : List[Any] , A__ : List[Any] ): '''simple docstring''' def estimator(A__ : int , A__ : int , A__ : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A__ , A__ ): __lowerCamelCase = itertools.repeat(A__ , len(A__ ) ) else: assert len(A__ ) == len(A__ ) __lowerCamelCase = iter(A__ ) return np.array([estimator(int(A__ ) , int(A__ ) , A__ ) for n, c in zip(A__ , A__ )] )
12
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCAmelCase : List[Any] = None lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Optional[Any] = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase : str = { """t5-small""": 512, """t5-base""": 512, """t5-large""": 512, """t5-3b""": 512, """t5-11b""": 512, } class __lowercase ( UpperCAmelCase_ ): """simple docstring""" _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : str = ['''input_ids''', '''attention_mask'''] _UpperCAmelCase : Optional[int] = TaTokenizer _UpperCAmelCase : List[int] = [] def __init__( self : Any , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : str="<pad>" , lowerCAmelCase__ : List[Any]=100 , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Tuple , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE_: Optional[int] = [F"<extra_id_{i}>" for i in range(lowerCAmelCase__)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens SCREAMING_SNAKE_CASE_: List[str] = len(set(filter(lambda lowerCAmelCase__: bool("extra_id_" in str(lowerCAmelCase__)) , lowerCAmelCase__))) if extra_tokens != extra_ids: raise ValueError( F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens") super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , extra_ids=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE_: Dict = vocab_file SCREAMING_SNAKE_CASE_: Dict = False if not self.vocab_file else True SCREAMING_SNAKE_CASE_: List[str] = extra_ids @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any): if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: SCREAMING_SNAKE_CASE_: List[str] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F" {pretrained_model_name_or_path} automatically truncating your input to" F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences" F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , lowerCAmelCase__ , ) return max_model_length def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer.") if not os.path.isdir(lowerCAmelCase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return SCREAMING_SNAKE_CASE_: Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file , lowerCAmelCase__) logger.info(F"Copy vocab file to {out_vocab_file}") return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: Optional[int] = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: SCREAMING_SNAKE_CASE_: Optional[int] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None): SCREAMING_SNAKE_CASE_: List[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def _SCREAMING_SNAKE_CASE ( self : List[str]): return list( set(filter(lambda lowerCAmelCase__: bool(re.search(R"<extra_id_\d+>" , lowerCAmelCase__)) is not None , self.additional_special_tokens))) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): return [self.convert_tokens_to_ids(lowerCAmelCase__) for token in self.get_sentinel_tokens()]
13
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
from __future__ import annotations _lowerCamelCase : Optional[Any] = 1.60_21E-19 # units = C def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , ) -> tuple[str, float]: """simple docstring""" if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
14
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def UpperCAmelCase ( a_ , a_ , a_ ) -> List[Any]: """simple docstring""" __A = AutoConfig.from_pretrained(a_ ) __A = FlaxAutoModelForSeqaSeqLM.from_config(config=a_ ) __A = checkpoints.load_tax_checkpoint(a_ ) __A = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": __A = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": __A = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __A = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): __A = F'''layers_{str(a_ )}''' # Self-Attention __A = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] __A = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] __A = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] __A = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __A = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization __A = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: __A = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] __A = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: __A = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] __A = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization __A = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning __A = flax_model.params["encoder"]["block"][str(a_ )]["layer"] __A = tax_attention_key __A = tax_attention_out __A = tax_attention_query __A = tax_attention_value __A = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __A = tax_global_layer_norm if split_mlp_wi: __A = tax_mlp_wi_a __A = tax_mlp_wi_a else: __A = tax_mlp_wi __A = tax_mlp_wo __A = tax_mlp_layer_norm __A = flax_model_encoder_layer_block # Only for layer 0: __A = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T __A = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __A = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T __A = tax_encoder_global_rel_embedding # Assigning __A = tax_model["target"]["encoder"]["encoder_norm"]["scale"] __A = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __A = F'''layers_{str(a_ )}''' # Self-Attention __A = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] __A = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] __A = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] __A = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization __A = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention __A = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] __A = tax_enc_dec_attention_module["key"]["kernel"] __A = tax_enc_dec_attention_module["out"]["kernel"] __A = tax_enc_dec_attention_module["query"]["kernel"] __A = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization __A = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: __A = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] __A = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: __A = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] __A = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization __A = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning __A = flax_model.params["decoder"]["block"][str(a_ )]["layer"] __A = tax_attention_key __A = tax_attention_out __A = tax_attention_query __A = tax_attention_value __A = tax_pre_attention_layer_norm __A = tax_enc_dec_attention_key __A = tax_enc_dec_attention_out __A = tax_enc_dec_attention_query __A = tax_enc_dec_attention_value __A = tax_cross_layer_norm if split_mlp_wi: __A = tax_mlp_wi_a __A = tax_mlp_wi_a else: __A = tax_mlp_wi __A = tax_mlp_wo __A = txa_mlp_layer_norm __A = flax_model_decoder_layer_block # Decoder Normalization __A = tax_model["target"]["decoder"]["decoder_norm"]["scale"] __A = txa_decoder_norm # Only for layer 0: __A = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T __A = tax_decoder_rel_embedding # Token Embeddings __A = tax_model["target"]["token_embedder"]["embedding"] __A = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __A = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(a_ ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) SCREAMING_SNAKE_CASE :Tuple = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
15
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
0
"""simple docstring""" from __future__ import annotations import math def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , minimax(depth + 1 , node_index * 2 + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , ) ) def __UpperCAmelCase ( ) -> None: lowercase__ : Any = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ : Optional[Any] = math.log(len(__lowerCamelCase ) , 2 ) print(f"""Optimal value : {minimax(0 , 0 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
16
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
0
"""simple docstring""" import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _A ( UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[str]) -> Optional[int]: '''simple docstring''' if isinstance(UpperCamelCase_, torch.Tensor): return image elif isinstance(UpperCamelCase_, PIL.Image.Image): __lowercase = [image] if isinstance(image[0], PIL.Image.Image): __lowercase = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image] __lowercase = np.concatenate(UpperCamelCase_, axis=0) __lowercase = np.array(UpperCamelCase_).astype(np.floataa) / 255.0 __lowercase = image.transpose(0, 3, 1, 2) __lowercase = 2.0 * image - 1.0 __lowercase = torch.from_numpy(UpperCamelCase_) elif isinstance(image[0], torch.Tensor): __lowercase = torch.cat(UpperCamelCase_, dim=0) return image def _A ( UpperCamelCase_ : Dict, UpperCamelCase_ : str, UpperCamelCase_ : Union[str, Any], UpperCamelCase_ : List[Any]=0.9_995) -> int: '''simple docstring''' if not isinstance(UpperCamelCase_, np.ndarray): __lowercase = True __lowercase = va.device __lowercase = va.cpu().numpy() __lowercase = va.cpu().numpy() __lowercase = np.sum(va * va / (np.linalg.norm(UpperCamelCase_) * np.linalg.norm(UpperCamelCase_))) if np.abs(UpperCamelCase_) > DOT_THRESHOLD: __lowercase = (1 - t) * va + t * va else: __lowercase = np.arccos(UpperCamelCase_) __lowercase = np.sin(UpperCamelCase_) __lowercase = theta_a * t __lowercase = np.sin(UpperCamelCase_) __lowercase = np.sin(theta_a - theta_t) / sin_theta_a __lowercase = sin_theta_t / sin_theta_a __lowercase = sa * va + sa * va if inputs_are_torch: __lowercase = torch.from_numpy(UpperCamelCase_).to(UpperCamelCase_) return va def _A ( UpperCamelCase_ : List[str], UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' __lowercase = F.normalize(UpperCamelCase_, dim=-1) __lowercase = F.normalize(UpperCamelCase_, dim=-1) return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) def _A ( UpperCamelCase_ : Optional[int], UpperCamelCase_ : str) -> Optional[int]: '''simple docstring''' for param in model.parameters(): __lowercase = value class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Dict, UpperCAmelCase__ : AutoencoderKL, UpperCAmelCase__ : CLIPTextModel, UpperCAmelCase__ : CLIPModel, UpperCAmelCase__ : CLIPTokenizer, UpperCAmelCase__ : UNetaDConditionModel, UpperCAmelCase__ : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler], UpperCAmelCase__ : CLIPFeatureExtractor, UpperCAmelCase__ : Union[str, Any]=None, UpperCAmelCase__ : List[str]=None, UpperCAmelCase__ : Any=None, ): super().__init__() self.register_modules( vae=UpperCAmelCase__, text_encoder=UpperCAmelCase__, clip_model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, unet=UpperCAmelCase__, scheduler=UpperCAmelCase__, feature_extractor=UpperCAmelCase__, coca_model=UpperCAmelCase__, coca_tokenizer=UpperCAmelCase__, coca_transform=UpperCAmelCase__, ) __lowercase = ( feature_extractor.size if isinstance(feature_extractor.size, UpperCAmelCase__ ) else feature_extractor.size["shortest_edge"] ) __lowercase = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std ) set_requires_grad(self.text_encoder, UpperCAmelCase__ ) set_requires_grad(self.clip_model, UpperCAmelCase__ ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __lowercase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def _lowercase ( self : int ): self.enable_attention_slicing(UpperCAmelCase__ ) def _lowercase ( self : str ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.vae, UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any] ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : Any ): set_requires_grad(self.unet, UpperCAmelCase__ ) def _lowercase ( self : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any] ): # get the original timestep using init_timestep __lowercase = min(int(num_inference_steps * strength ), UpperCAmelCase__ ) __lowercase = max(num_inference_steps - init_timestep, 0 ) __lowercase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : int=None ): if not isinstance(UpperCAmelCase__, torch.Tensor ): raise ValueError(F"""`image` has to be of type `torch.Tensor` but is {type(UpperCAmelCase__ )}""" ) __lowercase = image.to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(UpperCAmelCase__ ) ] __lowercase = torch.cat(UpperCAmelCase__, dim=0 ) else: __lowercase = self.vae.encode(UpperCAmelCase__ ).latent_dist.sample(UpperCAmelCase__ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 0.18_215 * init_latents __lowercase = init_latents.repeat_interleave(UpperCAmelCase__, dim=0 ) __lowercase = randn_tensor(init_latents.shape, generator=UpperCAmelCase__, device=UpperCAmelCase__, dtype=UpperCAmelCase__ ) # get latents __lowercase = self.scheduler.add_noise(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = init_latents return latents def _lowercase ( self : Optional[int], UpperCAmelCase__ : Dict ): __lowercase = self.coca_transform(UpperCAmelCase__ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): __lowercase = self.coca_model.generate(transformed_image.to(device=self.device, dtype=self.coca_model.dtype ) ) __lowercase = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("<end_of_text>" )[0].replace("<start_of_text>", "" ).rstrip(" .," ) def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple ): __lowercase = self.feature_extractor.preprocess(UpperCAmelCase__ ) __lowercase = torch.from_numpy(clip_image_input["pixel_values"][0] ).unsqueeze(0 ).to(self.device ).half() __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = image_embeddings_clip.repeat_interleave(UpperCAmelCase__, dim=0 ) return image_embeddings_clip @torch.enable_grad() def _lowercase ( self : str, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], ): __lowercase = latents.detach().requires_grad_() __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): __lowercase = self.scheduler.alphas_cumprod[timestep] __lowercase = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __lowercase = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 __lowercase = torch.sqrt(UpperCAmelCase__ ) __lowercase = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = self.scheduler.sigmas[index] __lowercase = latents - sigma * noise_pred else: raise ValueError(F"""scheduler type {type(self.scheduler )} not supported""" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * sample __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = transforms.Resize(self.feature_extractor_size )(UpperCAmelCase__ ) __lowercase = self.normalize(UpperCAmelCase__ ).to(latents.dtype ) __lowercase = self.clip_model.get_image_features(UpperCAmelCase__ ) __lowercase = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=UpperCAmelCase__ ) __lowercase = spherical_dist_loss(UpperCAmelCase__, UpperCAmelCase__ ).mean() * clip_guidance_scale __lowercase = -torch.autograd.grad(UpperCAmelCase__, UpperCAmelCase__ )[0] if isinstance(self.scheduler, UpperCAmelCase__ ): __lowercase = latents.detach() + grads * (sigma**2) __lowercase = noise_pred_original else: __lowercase = noise_pred_original - torch.sqrt(UpperCAmelCase__ ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : str, UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : Optional[int] = 5_1_2, UpperCAmelCase__ : float = 0.6, UpperCAmelCase__ : Optional[int] = 5_0, UpperCAmelCase__ : Optional[float] = 7.5, UpperCAmelCase__ : Optional[int] = 1, UpperCAmelCase__ : float = 0.0, UpperCAmelCase__ : Optional[float] = 1_0_0, UpperCAmelCase__ : Optional[torch.Generator] = None, UpperCAmelCase__ : Optional[str] = "pil", UpperCAmelCase__ : bool = True, UpperCAmelCase__ : float = 0.8, UpperCAmelCase__ : float = 0.1, UpperCAmelCase__ : float = 0.1, ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ) and len(UpperCAmelCase__ ) != batch_size: raise ValueError(F"""You have passed {batch_size} batch_size, but only {len(UpperCAmelCase__ )} generators.""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if isinstance(UpperCAmelCase__, torch.Generator ) and batch_size > 1: __lowercase = [generator] + [None] * (batch_size - 1) __lowercase = [ ("model", self.coca_model is None), ("tokenizer", self.coca_tokenizer is None), ("transform", self.coca_transform is None), ] __lowercase = [x[0] for x in coca_is_none if x[1]] __lowercase = ", ".join(UpperCAmelCase__ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Content prompt is None and CoCa [{coca_is_none_str}] is None.""" F"""Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) if style_prompt is None: if len(UpperCAmelCase__ ): raise ValueError( F"""Style prompt is None and CoCa [{coca_is_none_str}] is None.""" F""" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline.""" ) __lowercase = self.get_image_description(UpperCAmelCase__ ) # get prompt text embeddings for content and style __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] __lowercase = self.tokenizer( UpperCAmelCase__, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=UpperCAmelCase__, return_tensors="pt", ) __lowercase = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # duplicate text embeddings for each generation per prompt __lowercase = text_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # set timesteps __lowercase = "offset" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) __lowercase = {} if accepts_offset: __lowercase = 1 self.scheduler.set_timesteps(UpperCAmelCase__, **UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) __lowercase ,__lowercase = self.get_timesteps(UpperCAmelCase__, UpperCAmelCase__, self.device ) __lowercase = timesteps[:1].repeat(UpperCAmelCase__ ) # Preprocess image __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = preprocess(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.prepare_latents( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, text_embeddings.dtype, self.device, UpperCAmelCase__ ) __lowercase = slerp(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if clip_guidance_scale > 0: __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = self.get_clip_image_embeddings(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = slerp( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __lowercase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __lowercase = content_text_input.input_ids.shape[-1] __lowercase = self.tokenizer([""], padding="max_length", max_length=UpperCAmelCase__, return_tensors="pt" ) __lowercase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt __lowercase = uncond_embeddings.repeat_interleave(UpperCAmelCase__, dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __lowercase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __lowercase = (batch_size, self.unet.config.in_channels, height // 8, width // 8) __lowercase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device="cpu", dtype=UpperCAmelCase__ ).to( self.device ) else: __lowercase = torch.randn(UpperCAmelCase__, generator=UpperCAmelCase__, device=self.device, dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __lowercase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta # check if the scheduler accepts generator __lowercase = "generator" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: __lowercase = generator with self.progress_bar(total=UpperCAmelCase__ ): for i, t in enumerate(UpperCAmelCase__ ): # expand the latents if we are doing classifier free guidance __lowercase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowercase = self.scheduler.scale_model_input(UpperCAmelCase__, UpperCAmelCase__ ) # predict the noise residual __lowercase = self.unet(UpperCAmelCase__, UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__ ).sample # perform classifier free guidance if do_classifier_free_guidance: __lowercase ,__lowercase = noise_pred.chunk(2 ) __lowercase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: __lowercase = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) __lowercase ,__lowercase = self.cond_fn( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, ) # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, **UpperCAmelCase__ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor __lowercase = 1 / 0.18_215 * latents __lowercase = self.vae.decode(UpperCAmelCase__ ).sample __lowercase = (image / 2 + 0.5).clamp(0, 1 ) __lowercase = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=UpperCAmelCase__, nsfw_content_detected=UpperCAmelCase__ )
17
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
0
import os def _snake_case ( ): """simple docstring""" with open(os.path.dirname(lowerCAmelCase ) + "/p022_names.txt" ) as file: SCREAMING_SNAKE_CASE_ : List[str] = str(file.readlines()[0] ) SCREAMING_SNAKE_CASE_ : Any = names.replace("\"" , "" ).split("," ) names.sort() SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for i, name in enumerate(lowerCAmelCase ): for letter in name: name_score += ord(lowerCAmelCase ) - 6_4 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE_ : Tuple = 0 return total_score if __name__ == "__main__": print(solution())
18
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = 10 def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = [1, 2, 3, 4] lowerCamelCase_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] lowerCamelCase_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowercase , self.block_size , 0 ) , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." lowerCamelCase_ , lowerCamelCase_ = process_story(lowercase ) self.assertEqual(lowercase , [] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = "" lowerCamelCase_ , lowerCamelCase_ = process_story(lowercase ) self.assertEqual(lowercase , [] ) self.assertEqual(lowercase , [] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) lowerCamelCase_ , lowerCamelCase_ = process_story(lowercase ) lowerCamelCase_ = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(lowercase , lowercase ) lowerCamelCase_ = ["It was the best of times."] self.assertEqual(lowercase , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = torch.tensor([1, 2, 3, 4] ) lowerCamelCase_ = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowercase , 0 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) lowerCamelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase , 23 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) lowerCamelCase_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowercase , 1 ).numpy() , expected.numpy() ) def SCREAMING_SNAKE_CASE_( self ) -> Any: lowerCamelCase_ = 101 lowerCamelCase_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) lowerCamelCase_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) lowerCamelCase_ = compute_token_type_ids(lowercase , lowercase ) np.testing.assert_array_equal(lowercase , lowercase )
19
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Union[str, Any]= IFInpaintingSuperResolutionPipeline _a : Tuple= TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} _a : str= TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) _a : Tuple= PipelineTesterMixin.required_optional_params - {"latents"} def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=0 ): '''simple docstring''' if str(snake_case ).startswith("""mps""" ): lowercase : int = torch.manual_seed(snake_case ) else: lowercase : List[str] = torch.Generator(device=snake_case ).manual_seed(snake_case ) lowercase : str = floats_tensor((1, 3, 16, 16) ,rng=random.Random(snake_case ) ).to(snake_case ) lowercase : Union[str, Any] = floats_tensor((1, 3, 32, 32) ,rng=random.Random(snake_case ) ).to(snake_case ) lowercase : str = floats_tensor((1, 3, 32, 32) ,rng=random.Random(snake_case ) ).to(snake_case ) lowercase : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" ,reason="""float16 requires CUDA""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 ,)
20
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler SCREAMING_SNAKE_CASE : Optional[Any] = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 32 def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ = 16 , lowerCamelCase_ = "bert-base-cased" ) -> Optional[Any]: _lowercase : str = AutoTokenizer.from_pretrained(lowerCamelCase_ ) _lowercase : Dict = load_dataset('glue' , 'mrpc' ) def tokenize_function(lowerCamelCase_ ): # max_length=None => use the model max length (it's actually the default) _lowercase : List[Any] = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase : List[str] = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=['idx', 'sentence1', 'sentence2'] , load_from_cache_file=lowerCamelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : int = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(lowerCamelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase_ , padding='max_length' , max_length=128 , return_tensors='pt' ) return tokenizer.pad(lowerCamelCase_ , padding='longest' , return_tensors='pt' ) # Instantiate dataloaders. _lowercase : Tuple = DataLoader( tokenized_datasets['train'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) _lowercase : str = DataLoader( tokenized_datasets['validation'] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: # Initialize accelerator _lowercase : str = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : Optional[int] = config['lr'] _lowercase : Tuple = int(config['num_epochs'] ) _lowercase : int = int(config['seed'] ) _lowercase : Tuple = int(config['batch_size'] ) _lowercase : Any = args.model_name_or_path set_seed(lowerCamelCase_ ) _lowercase , _lowercase : str = get_dataloaders(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase_ , return_dict=lowerCamelCase_ ) # Instantiate optimizer _lowercase : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase : int = optimizer_cls(params=model.parameters() , lr=lowerCamelCase_ ) if accelerator.state.deepspeed_plugin is not None: _lowercase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowercase : Tuple = 1 _lowercase : Union[str, Any] = (len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase : List[str] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=0 , num_training_steps=lowerCamelCase_ , ) else: _lowercase : Dict = DummyScheduler(lowerCamelCase_ , total_num_steps=lowerCamelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # We need to keep track of how many total steps we have iterated over _lowercase : Any = 0 # We also need to keep track of the stating epoch so files are named properly _lowercase : Union[str, Any] = 0 # Now we train the model _lowercase : Tuple = evaluate.load('glue' , 'mrpc' ) _lowercase : Any = 0 _lowercase : Optional[Any] = {} for epoch in range(lowerCamelCase_ , lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): _lowercase : List[str] = model(**lowerCamelCase_ ) _lowercase : Tuple = outputs.loss _lowercase : Tuple = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _lowercase : int = 0 for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : Dict = model(**lowerCamelCase_ ) _lowercase : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _lowercase , _lowercase : Dict = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCamelCase_ ) - 1: _lowercase : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] _lowercase : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) _lowercase : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCamelCase_ ) _lowercase : List[str] = eval_metric['accuracy'] if best_performance < eval_metric["accuracy"]: _lowercase : Union[str, Any] = eval_metric['accuracy'] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , 'all_results.json' ) , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_( ) -> Any: _lowercase : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' , type=lowerCamelCase_ , default='bert-base-cased' , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=lowerCamelCase_ , ) parser.add_argument( '--output_dir' , type=lowerCamelCase_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--performance_lower_bound' , type=lowerCamelCase_ , default=lowerCamelCase_ , help='Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.' , ) parser.add_argument( '--num_epochs' , type=lowerCamelCase_ , default=3 , help='Number of train epochs.' , ) _lowercase : List[str] = parser.parse_args() _lowercase : List[str] = {'lr': 2e-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
21
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE :Union[str, Any] = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Union[str, Any] = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
22
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def __init__( self : int , __snake_case : int , __snake_case : Dict=7 , __snake_case : List[str]=3 , __snake_case : Any=18 , __snake_case : Optional[int]=30 , __snake_case : List[Any]=400 , __snake_case : Any=True , __snake_case : Union[str, Any]=None , __snake_case : List[str]=True , __snake_case : Dict=None , __snake_case : Dict=True , __snake_case : Any=[0.5, 0.5, 0.5] , __snake_case : Tuple=[0.5, 0.5, 0.5] , ) -> Optional[int]: UpperCAmelCase : List[str] = size if size is not None else {'''shortest_edge''': 18} UpperCAmelCase : Dict = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase : Optional[int] = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : int = num_channels UpperCAmelCase : Union[str, Any] = image_size UpperCAmelCase : Optional[Any] = min_resolution UpperCAmelCase : List[str] = max_resolution UpperCAmelCase : List[Any] = do_resize UpperCAmelCase : List[Any] = size UpperCAmelCase : Dict = do_center_crop UpperCAmelCase : Dict = crop_size UpperCAmelCase : Union[str, Any] = do_normalize UpperCAmelCase : int = image_mean UpperCAmelCase : Union[str, Any] = image_std def A ( self : List[str] ) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = LevitImageProcessor if is_vision_available() else None def A ( self : Tuple ) -> Any: UpperCAmelCase : List[Any] = LevitImageProcessingTester(self ) @property def A ( self : int ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Optional[Any] ) -> Tuple: UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) def A ( self : int ) -> Any: UpperCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def A ( self : Tuple ) -> Dict: pass def A ( self : Optional[int] ) -> Dict: # Initialize image_processing UpperCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input UpperCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase : Any = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[Any] ) -> Optional[int]: # Initialize image_processing UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase : Tuple = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def A ( self : Optional[int] ) -> Dict: # Initialize image_processing UpperCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input UpperCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCAmelCase : Dict = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
23
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCamelCase__ ( ) -> Any: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCamelCase__ ( ) -> Any: assert _test_patching.open is open __snake_case = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , snake_case_ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCamelCase__ ( ) -> List[str]: # pandas.read_csv is not present in _test_patching __snake_case = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , snake_case_ ): pass def lowerCamelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , snake_case_ ) is None with patch_submodule(_test_patching , '''len''' , snake_case_ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCamelCase__ ( ) -> Union[str, Any]: __snake_case = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case = patch_submodule(_test_patching , '''open''' , snake_case_ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCamelCase__ ( ) -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case = '''__test_patch_submodule_successive_join__''' __snake_case = '''__test_patch_submodule_successive_dirname__''' __snake_case = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.join''' , snake_case_ ): with patch_submodule(_test_patching , '''os.path.dirname''' , snake_case_ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCamelCase__ ( ) -> Tuple: __snake_case = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , snake_case_ ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , snake_case_ ): pass
24
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : int = 0 __UpperCamelCase : bool = False __UpperCamelCase : float = 3.0 class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> List[str]: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=SCREAMING_SNAKE_CASE__ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() SCREAMING_SNAKE_CASE__ : Tuple = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) SCREAMING_SNAKE_CASE__ : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , SCREAMING_SNAKE_CASE__ ) @require_multi_gpu def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) UpperCAmelCase__ : Union[str, Any] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase__ : Any = torch.nn.Linear(1_0_0, 2_0_0) UpperCAmelCase__ : Optional[Any] = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase__ : Tuple = '' UpperCAmelCase__ : List[str] = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
0
def lowerCAmelCase_ ( ): return [ a * b * (1000 - a - b) for a in range(1,999 ) for b in range(snake_case_,999 ) if (a * a + b * b == (1000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
26
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __lowercase : Optional[int] = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase_ ): def __init__( self , *__a , **__a ): '''simple docstring''' warnings.warn( 'The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DeiTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
27
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
0
'''simple docstring''' def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" if not isinstance(A__ , A__ ): UpperCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(A__ ) if number < 0: return False UpperCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
28
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : "DiagonalGaussianDistribution" class lowerCamelCase (_snake_case , _snake_case ): '''simple docstring''' _snake_case : Optional[int] = True @register_to_config def __init__( self , _UpperCamelCase = 3 , _UpperCamelCase = 3 , _UpperCamelCase = ("DownEncoderBlock2D",) , _UpperCamelCase = ("UpDecoderBlock2D",) , _UpperCamelCase = (6_4,) , _UpperCamelCase = 1 , _UpperCamelCase = "silu" , _UpperCamelCase = 4 , _UpperCamelCase = 3_2 , _UpperCamelCase = 3_2 , _UpperCamelCase = 0.1_82_15 , ) -> List[Any]: super().__init__() # pass init params to Encoder UpperCAmelCase_ : List[str] = Encoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , down_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , act_fn=_UpperCamelCase , norm_num_groups=_UpperCamelCase , double_z=_UpperCamelCase , ) # pass init params to Decoder UpperCAmelCase_ : Dict = Decoder( in_channels=_UpperCamelCase , out_channels=_UpperCamelCase , up_block_types=_UpperCamelCase , block_out_channels=_UpperCamelCase , layers_per_block=_UpperCamelCase , norm_num_groups=_UpperCamelCase , act_fn=_UpperCamelCase , ) UpperCAmelCase_ : Any = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) UpperCAmelCase_ : List[Any] = nn.Convad(_UpperCamelCase , _UpperCamelCase , 1 ) UpperCAmelCase_ : Any = False UpperCAmelCase_ : int = False # only relevant if vae tiling is enabled UpperCAmelCase_ : Optional[int] = self.config.sample_size UpperCAmelCase_ : int = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) UpperCAmelCase_ : Union[str, Any] = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) UpperCAmelCase_ : Optional[Any] = 0.25 def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False ) -> List[str]: if isinstance(_UpperCamelCase , (Encoder, Decoder) ): UpperCAmelCase_ : Union[str, Any] = value def __UpperCAmelCase ( self , _UpperCamelCase = True ) -> int: UpperCAmelCase_ : Tuple = use_tiling def __UpperCAmelCase ( self ) -> Dict: self.enable_tiling(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : str = True def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : Optional[int] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __UpperCAmelCase ( self ) -> Dict[str, AttentionProcessor]: UpperCAmelCase_ : Optional[int] = {} def fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): UpperCAmelCase_ : Optional[int] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return processors def __UpperCAmelCase ( self , _UpperCamelCase ) -> List[Any]: UpperCAmelCase_ : Union[str, Any] = len(self.attn_processors.keys() ) if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if hasattr(_UpperCamelCase , 'set_processor' ): if not isinstance(_UpperCamelCase , _UpperCamelCase ): module.set_processor(_UpperCamelCase ) else: module.set_processor(processor.pop(f"{name}.processor" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Union[str, Any]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(_UpperCamelCase , return_dict=_UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: UpperCAmelCase_ : Union[str, Any] = [self.encoder(_UpperCamelCase ) for x_slice in x.split(1 )] UpperCAmelCase_ : Tuple = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : List[Any] = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = self.quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(_UpperCamelCase , return_dict=_UpperCamelCase ) UpperCAmelCase_ : str = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.decoder(_UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) @apply_forward_hook def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: UpperCAmelCase_ : List[str] = [self._decode(_UpperCamelCase ).sample for z_slice in z.split(1 )] UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase ) else: UpperCAmelCase_ : Any = self._decode(_UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: UpperCAmelCase_ : Tuple = min(a.shape[2] , b.shape[2] , _UpperCamelCase ) for y in range(_UpperCamelCase ): UpperCAmelCase_ : str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = min(a.shape[3] , b.shape[3] , _UpperCamelCase ) for x in range(_UpperCamelCase ): UpperCAmelCase_ : int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> AutoencoderKLOutput: UpperCAmelCase_ : Any = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. UpperCAmelCase_ : List[str] = [] for i in range(0 , x.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : Any = [] for j in range(0 , x.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : Any = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] UpperCAmelCase_ : Dict = self.encoder(_UpperCamelCase ) UpperCAmelCase_ : List[str] = self.quant_conv(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : str = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Dict = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : List[str] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Union[str, Any] = torch.cat(_UpperCamelCase , dim=2 ) UpperCAmelCase_ : List[Any] = DiagonalGaussianDistribution(_UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) UpperCAmelCase_ : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor ) UpperCAmelCase_ : Dict = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. UpperCAmelCase_ : Union[str, Any] = [] for i in range(0 , z.shape[2] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = [] for j in range(0 , z.shape[3] , _UpperCamelCase ): UpperCAmelCase_ : List[str] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] UpperCAmelCase_ : Optional[Any] = self.post_quant_conv(_UpperCamelCase ) UpperCAmelCase_ : Tuple = self.decoder(_UpperCamelCase ) row.append(_UpperCamelCase ) rows.append(_UpperCamelCase ) UpperCAmelCase_ : Optional[Any] = [] for i, row in enumerate(_UpperCamelCase ): UpperCAmelCase_ : List[Any] = [] for j, tile in enumerate(_UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: UpperCAmelCase_ : Union[str, Any] = self.blend_v(rows[i - 1][j] , _UpperCamelCase , _UpperCamelCase ) if j > 0: UpperCAmelCase_ : Optional[Any] = self.blend_h(row[j - 1] , _UpperCamelCase , _UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(_UpperCamelCase , dim=3 ) ) UpperCAmelCase_ : Dict = torch.cat(_UpperCamelCase , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: UpperCAmelCase_ : Optional[Any] = sample UpperCAmelCase_ : Union[str, Any] = self.encode(_UpperCamelCase ).latent_dist if sample_posterior: UpperCAmelCase_ : str = posterior.sample(generator=_UpperCamelCase ) else: UpperCAmelCase_ : int = posterior.mode() UpperCAmelCase_ : Dict = self.decode(_UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCamelCase )
29
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
0
def a ( snake_case__: int ): '''simple docstring''' if upper_limit < 0: raise ValueError('''Limit for the Catalan sequence must be ≥ 0''' ) lowercase_ = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 lowercase_ = 1 if upper_limit > 0: lowercase_ = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(snake_case__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('\n********* Catalan Numbers Using Dynamic Programming ************\n') print('\n*** Enter -1 at any time to quit ***') print('\nEnter the upper limit (≥ 0) for the Catalan number sequence: ', end='') try: while True: __a = int(input().strip()) if N < 0: print('\n********* Goodbye!! ************') break else: print(f"The Catalan numbers from 0 through {N} are:") print(catalan_numbers(N)) print('Try another upper limit for the sequence: ', end='') except (NameError, ValueError): print('\n********* Invalid input, goodbye! ************\n') import doctest doctest.testmod()
30
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable __SCREAMING_SNAKE_CASE : Optional[int] = {"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = ["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Dict = [ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
31
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) UpperCAmelCase_ : List[Any] = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def SCREAMING_SNAKE_CASE_ ( __A : List[str] ) -> Any: """simple docstring""" a_ : Optional[int] = {} state_dict.pop('pixel_mean' , __A ) state_dict.pop('pixel_std' , __A ) a_ : Dict = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: a_ : Tuple = key.replace(__A , __A ) if re.match(__A , __A ): a_ : int = int(re.match(__A , __A ).group(2 ) ) if layer_nb == 0: a_ : Dict = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: a_ : List[str] = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: a_ : int = key.replace('layers.2' , 'proj_out' ) a_ : List[Any] = value a_ : Optional[int] = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : int , __A : List[Any] , __A : Tuple="ybelkada/segment-anything" ) -> str: """simple docstring""" a_ : Tuple = hf_hub_download(__A , F"""checkpoints/{model_name}.pth""" ) if "sam_vit_b" in model_name: a_ : Optional[int] = SamConfig() elif "sam_vit_l" in model_name: a_ : Union[str, Any] = SamVisionConfig( hidden_size=10_24 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) a_ : Optional[int] = SamConfig( vision_config=__A , ) elif "sam_vit_h" in model_name: a_ : List[str] = SamVisionConfig( hidden_size=12_80 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) a_ : int = SamConfig( vision_config=__A , ) a_ : str = torch.load(__A , map_location='cpu' ) a_ : Tuple = replace_keys(__A ) a_ : Optional[Any] = SamImageProcessor() a_ : Any = SamProcessor(image_processor=__A ) a_ : List[Any] = SamModel(__A ) hf_model.load_state_dict(__A ) a_ : Dict = hf_model.to('cuda' ) a_ : Optional[Any] = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' a_ : List[Any] = Image.open(requests.get(__A , stream=__A ).raw ).convert('RGB' ) a_ : Dict = [[[4_00, 6_50]]] a_ : str = [[1]] a_ : Optional[Any] = processor(images=np.array(__A ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): a_ : str = hf_model(**__A ) a_ : List[str] = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579890251159668 a_ : List[str] = processor( images=np.array(__A ) , input_points=__A , input_labels=__A , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): a_ : Optional[Any] = hf_model(**__A ) a_ : str = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712603092193604 a_ : Any = ((75, 2_75, 17_25, 8_50),) a_ : Optional[int] = processor(images=np.array(__A ) , input_boxes=__A , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): a_ : str = hf_model(**__A ) a_ : Dict = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686015605926514 # Test with 2 points and 1 image. a_ : Union[str, Any] = [[[4_00, 6_50], [8_00, 6_50]]] a_ : Optional[int] = [[1, 1]] a_ : Any = processor( images=np.array(__A ) , input_points=__A , input_labels=__A , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): a_ : Optional[int] = hf_model(**__A ) a_ : List[str] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936047792434692 if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() UpperCAmelCase_ : Optional[int] = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
32
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : List[str] = '''▁''' __A : Any = {'''vocab_file''': '''sentencepiece.bpe.model'''} __A : Union[str, Any] = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } __A : Optional[Any] = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class _UpperCAmelCase ( _A ): SCREAMING_SNAKE_CASE_ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , A : List[Any] , A : List[str]="<s>" , A : Optional[int]="</s>" , A : Optional[int]="</s>" , A : Tuple="<s>" , A : List[str]="<unk>" , A : Tuple="<pad>" , A : Tuple="<mask>" , A : Optional[Dict[str, Any]] = None , **A : List[Any] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Any = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token lowercase_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) lowercase_ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : List[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : List[Any] = 1 lowercase_ : Tuple = len(self.sp_model ) + self.fairseq_offset lowercase_ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Dict ) -> Dict: lowercase_ : Tuple = self.__dict__.copy() lowercase_ : str = None lowercase_ : str = self.sp_model.serialized_model_proto() return state def __setstate__( self : Tuple , A : Tuple ) -> int: lowercase_ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Dict = {} lowercase_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A ( self : Tuple , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : Optional[int] = [self.cls_token_id] lowercase_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self : str , A : List[int] , A : Optional[List[int]] = None , A : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def A ( self : int , A : List[int] , A : Optional[List[int]] = None ) -> List[int]: lowercase_ : str = [self.sep_token_id] lowercase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self : Optional[int] ) -> Optional[int]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def A ( self : List[str] ) -> Optional[Any]: lowercase_ : List[str] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : Dict , A : str ) -> List[str]: return self.sp_model.encode(A , out_type=A ) def A ( self : Any , A : int ) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : Dict = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A ( self : Dict , A : str ) -> Union[str, Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self : List[str] , A : Tuple ) -> List[Any]: lowercase_ : Tuple = ''''''.join(A ).replace(A , ''' ''' ).strip() return out_string def A ( self : Any , A : str , A : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : int = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowercase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
33
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer A =['bert-base-uncased', 'bert-base-cased'] A ='hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class _a ( tf.keras.Model ): def __init__( self : Optional[int] , lowercase : List[Any] ): '''simple docstring''' super().__init__() UpperCAmelCase = tokenizer UpperCAmelCase = AutoConfig.from_pretrained(lowercase ) UpperCAmelCase = TFAutoModel.from_config(lowercase ) def A ( self : List[str] , lowercase : Dict ): '''simple docstring''' UpperCAmelCase = self.tokenizer(lowercase ) UpperCAmelCase = self.bert(**lowercase ) return out["pooler_output"] @require_tf @require_tensorflow_text class _a ( unittest.TestCase ): def A ( self : Tuple ): '''simple docstring''' super().setUp() UpperCAmelCase = [ BertTokenizer.from_pretrained(lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false UpperCAmelCase = [TFBertTokenizer.from_pretrained(lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowercase , use_fast_bert_tokenizer=lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) UpperCAmelCase = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def A ( self : Optional[int] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase = tokenizer(lowercase , return_tensors='''tf''' , padding='''longest''' ) UpperCAmelCase = tf_tokenizer(lowercase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def A ( self : Union[str, Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf_tokenizer(self.paired_sentences ) UpperCAmelCase = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def A ( self : List[str] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = tf.function(lowercase ) for test_inputs in (self.test_sentences, self.paired_sentences): UpperCAmelCase = tf.constant(lowercase ) UpperCAmelCase = compiled_tokenizer(lowercase ) UpperCAmelCase = tf_tokenizer(lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def A ( self : List[Any] ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: UpperCAmelCase = ModelToSave(tokenizer=lowercase ) UpperCAmelCase = tf.convert_to_tensor(self.test_sentences ) UpperCAmelCase = model(lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: UpperCAmelCase = Path(lowercase ) / '''saved.model''' model.save(lowercase ) UpperCAmelCase = tf.keras.models.load_model(lowercase ) UpperCAmelCase = loaded_model(lowercase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase_ ( metaclass=_a ): """simple docstring""" lowercase = ["keras_nlp"] def __init__( self : List[Any] , *snake_case_ : Dict , **snake_case_ : int ): requires_backends(self , ["""keras_nlp"""] )
35
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=24, __a=2, __a=6, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=None, __a=1000, ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : int = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Dict = use_input_mask _lowerCAmelCase : List[str] = use_token_type_ids _lowerCAmelCase : str = use_labels _lowerCAmelCase : Optional[Any] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Optional[Any] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : int = max_position_embeddings _lowerCAmelCase : Optional[int] = type_vocab_size _lowerCAmelCase : Optional[Any] = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[Any] = num_labels _lowerCAmelCase : Tuple = scope _lowerCAmelCase : str = range_bbox def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length, 4], self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Dict = bbox[i, j, 3] _lowerCAmelCase : int = bbox[i, j, 1] _lowerCAmelCase : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : str = bbox[i, j, 2] _lowerCAmelCase : List[Any] = bbox[i, j, 0] _lowerCAmelCase : str = t _lowerCAmelCase : Optional[Any] = None if self.use_input_mask: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : Optional[int] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case__ ( self): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, ) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = LiltModel(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model(__a, bbox=__a, attention_mask=__a, token_type_ids=__a) _lowerCAmelCase : str = model(__a, bbox=__a, token_type_ids=__a) _lowerCAmelCase : List[Any] = model(__a, bbox=__a) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[Any] = LiltForTokenClassification(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Dict = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, labels=__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a, ): '''simple docstring''' _lowerCAmelCase : Optional[int] = LiltForQuestionAnswering(config=__a) model.to(__a) model.eval() _lowerCAmelCase : Tuple = model( __a, bbox=__a, attention_mask=__a, token_type_ids=__a, start_positions=__a, end_positions=__a, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( a , a , a , unittest.TestCase): lowerCamelCase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a, __a, __a): '''simple docstring''' return True def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = LiltModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : Any = type self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = LiltModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase): def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__a) _lowerCAmelCase : Any = torch.tensor([[1, 2]], device=__a) _lowerCAmelCase : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]], device=__a) # forward pass with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(input_ids=__a, bbox=__a) _lowerCAmelCase : Optional[int] = torch.Size([1, 2, 768]) _lowerCAmelCase : List[str] = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]], device=__a, ) self.assertTrue(outputs.last_hidden_state.shape, __a) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3], __a, atol=1E-3))
36
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
0
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _lowerCAmelCase = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _lowerCAmelCase = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = set() lowerCAmelCase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ : Dict = char lowerCAmelCase__ : Any = set(UpperCamelCase ) return pairs class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<mask>" ,**__UpperCAmelCase ,) -> List[str]: super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,**__UpperCAmelCase ,) lowerCAmelCase__ : List[Any] = vocab_file lowerCAmelCase__ : Dict = merges_file lowerCAmelCase__ : int = {} lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Optional[Any] = 1 lowerCAmelCase__ : Union[str, Any] = 2 lowerCAmelCase__ : Optional[int] = 3 self.add_from_file(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase ,encoding="""utf-8""" ) as merges_handle: lowerCAmelCase__ : int = merges_handle.read().split("""\n""" )[:-1] lowerCAmelCase__ : Optional[int] = [tuple(merge.split()[:-1] ) for merge in merges] lowerCAmelCase__ : Dict = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : Dict = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] lowerCAmelCase__ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : Optional[Any] = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self ) -> Tuple: return len(self.encoder ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: if token in self.cache: return self.cache[token] lowerCAmelCase__ : List[Any] = tuple(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) lowerCAmelCase__ : Optional[int] = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: lowerCAmelCase__ : Tuple = min(__UpperCAmelCase ,key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = bigram lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : List[str] = 0 while i < len(__UpperCAmelCase ): try: lowerCAmelCase__ : Any = word.index(__UpperCAmelCase ,__UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : Dict = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : str = tuple(__UpperCAmelCase ) lowerCAmelCase__ : int = new_word if len(__UpperCAmelCase ) == 1: break else: lowerCAmelCase__ : Any = get_pairs(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = """@@ """.join(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = word[:-4] lowerCAmelCase__ : Optional[Any] = word return word def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : str = re.findall(R"""\S+\n?""" ,__UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: return self.encoder.get(__UpperCAmelCase ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: return self.decoder.get(__UpperCAmelCase ,self.unk_token ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = """ """.join(__UpperCAmelCase ).replace("""@@ """ ,"""""" ).strip() return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : List[str] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : List[str] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file ,__UpperCAmelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.merges_file ,__UpperCAmelCase ) return out_vocab_file, out_merge_file def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): try: with open(__UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ) as fd: self.add_from_file(__UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return lowerCAmelCase__ : Tuple = f.readlines() for lineTmp in lines: lowerCAmelCase__ : Optional[int] = lineTmp.strip() lowerCAmelCase__ : List[str] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) lowerCAmelCase__ : Optional[Any] = line[:idx] lowerCAmelCase__ : int = len(self.encoder )
37
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
0
from collections.abc import Generator from math import sin def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" if len(__magic_name__ ) != 32: raise ValueError("""Input must be of length 32""" ) UpperCamelCase :int = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> bytes: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase :Any = format(__magic_name__ , """08x""" )[-8:] UpperCamelCase :Union[str, Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" UpperCamelCase :str = B"""""" for char in message: bit_string += format(__magic_name__ , """08b""" ).encode("""utf-8""" ) UpperCamelCase :Any = format(len(__magic_name__ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(__magic_name__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> Generator[list[int], None, None]: """simple docstring""" if len(__magic_name__ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(__magic_name__ ) , 512 ): UpperCamelCase :Tuple = bit_string[pos : pos + 512] UpperCamelCase :Optional[int] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase :List[str] = format(__magic_name__ , """032b""" ) UpperCamelCase :Any = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(__magic_name__ , 2 ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" return (a + b) % 2**32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes: """simple docstring""" UpperCamelCase :Tuple = preprocess(__magic_name__ ) UpperCamelCase :List[str] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCamelCase :Union[str, Any] = 0X67_45_23_01 UpperCamelCase :Union[str, Any] = 0XEF_CD_AB_89 UpperCamelCase :List[str] = 0X98_BA_DC_FE UpperCamelCase :int = 0X10_32_54_76 UpperCamelCase :int = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(__magic_name__ ): UpperCamelCase :Optional[Any] = aa UpperCamelCase :Any = ba UpperCamelCase :Tuple = ca UpperCamelCase :List[str] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCamelCase :int = d ^ (b & (c ^ d)) UpperCamelCase :Optional[int] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCamelCase :str = c ^ (d & (b ^ c)) UpperCamelCase :Union[str, Any] = (5 * i + 1) % 16 elif i <= 47: UpperCamelCase :str = b ^ c ^ d UpperCamelCase :Optional[int] = (3 * i + 5) % 16 else: UpperCamelCase :List[str] = c ^ (b | not_aa(__magic_name__ )) UpperCamelCase :int = (7 * i) % 16 UpperCamelCase :Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCamelCase :Tuple = d UpperCamelCase :str = c UpperCamelCase :Tuple = b UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCamelCase :List[str] = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :str = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :int = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , __magic_name__ ) UpperCamelCase :Optional[Any] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
38
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
0
def __A ( __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = abs(__lowerCAmelCase ) _UpperCAmelCase = 0 while n > 0: res += n % 10 n //= 10 return res def __A ( __lowerCAmelCase )-> int: """simple docstring""" _UpperCAmelCase = abs(__lowerCAmelCase ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def __A ( __lowerCAmelCase )-> int: """simple docstring""" return sum(int(__lowerCAmelCase ) for c in str(abs(__lowerCAmelCase ) ) ) def __A ( )-> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) -> None: _UpperCAmelCase = F"""{func.__name__}({value})""" _UpperCAmelCase = timeit(F"""__main__.{call}""" , setup='import __main__' ) print(F"""{call:56} = {func(__lowerCAmelCase )} -- {timing:.4f} seconds""" ) for value in (262_144, 1_125_899_906_842_624, 1_267_650_600_228_229_401_496_703_205_376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(__lowerCAmelCase , __lowerCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
39
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
0
"""simple docstring""" import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = LayoutLMTokenizer UpperCAmelCase : int = LayoutLMTokenizerFast UpperCAmelCase : Union[str, Any] = True UpperCAmelCase : Optional[Any] = True def __snake_case ( self : Optional[int]): super().setUp() a : Tuple = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def __snake_case ( self : Optional[int] , **__UpperCAmelCase : Tuple): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str): a : Tuple = "UNwant\u00E9d,running" a : Dict = "unwanted, running" return input_text, output_text def __snake_case ( self : Any): a : List[Any] = self.tokenizer_class(self.vocab_file) a : str = tokenizer.tokenize("UNwant\u00E9d,running") self.assertListEqual(__UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase) , [7, 4, 5, 10, 8, 9]) def __snake_case ( self : Dict): pass
40
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
0
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration _A : str ='''facebook/wmt19-en-de''' _A : List[Any] =FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model _A : Any =FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) _A : List[Any] =FSMTForConditionalGeneration(config) print(F'num of params {tiny_model.num_parameters()}') # Test _A : Tuple =tokenizer(['''Making tiny model'''], return_tensors='''pt''') _A : Optional[int] =tiny_model(**batch) print('''test output:''', len(outputs.logits[0])) # Save _A : Any ='''tiny-wmt19-en-de''' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
41
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowercase : Optional[Any] = 8 def SCREAMING_SNAKE_CASE__ ( __A , __A=BITS ) -> Tuple: _snake_case = x.device _snake_case = (x * 255).int().clamp(0 , 255 ) _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__A ) _snake_case = rearrange(__A , 'd -> d 1 1' ) _snake_case = rearrange(__A , 'b c h w -> b c 1 h w' ) _snake_case = ((x & mask) != 0).float() _snake_case = rearrange(__A , 'b c d h w -> b (c d) h w' ) _snake_case = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE__ ( __A , __A=BITS ) -> Optional[int]: _snake_case = x.device _snake_case = (x > 0).int() _snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__A , dtype=torch.intaa ) _snake_case = rearrange(__A , 'd -> d 1 1' ) _snake_case = rearrange(__A , 'b (c d) h w -> b c d h w' , d=8 ) _snake_case = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 255).clamp(0.0 , 1.0 ) def SCREAMING_SNAKE_CASE__ ( self , __A , __A , __A , __A = 0.0 , __A = True , __A=None , __A = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _snake_case = self.alphas_cumprod[timestep] _snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(__A , -scale , __A ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _snake_case = self._get_variance(__A , __A ) _snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _snake_case = model_output.device if torch.is_tensor(__A ) else 'cpu' _snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__A ).to(__A ) _snake_case = self._get_variance(__A , __A ) ** 0.5 * eta * noise _snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=__A , pred_original_sample=__A ) def SCREAMING_SNAKE_CASE__ ( self , __A , __A , __A , __A="epsilon" , __A=None , __A = True , ) -> Union[DDPMSchedulerOutput, Tuple]: _snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _snake_case , _snake_case = torch.split(__A , sample.shape[1] , dim=1 ) else: _snake_case = None # 1. compute alphas, betas _snake_case = self.alphas_cumprod[t] _snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one _snake_case = 1 - alpha_prod_t _snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _snake_case = model_output else: raise ValueError(F'Unsupported prediction_type {prediction_type}.' ) # 3. Clip "predicted x_0" _snake_case = self.bit_scale if self.config.clip_sample: _snake_case = torch.clamp(__A , -scale , __A ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _snake_case = 0 if t > 0: _snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__A ).to(model_output.device ) _snake_case = (self._get_variance(__A , predicted_variance=__A ) ** 0.5) * noise _snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=__A , pred_original_sample=__A ) class __UpperCAmelCase ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1.0 , ): """simple docstring""" super().__init__() _snake_case = bit_scale _snake_case = ( ddim_bit_scheduler_step if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) @torch.no_grad() def __call__( self , lowerCAmelCase_ = 2_56 , lowerCAmelCase_ = 2_56 , lowerCAmelCase_ = 50 , lowerCAmelCase_ = None , lowerCAmelCase_ = 1 , lowerCAmelCase_ = "pil" , lowerCAmelCase_ = True , **lowerCAmelCase_ , ): """simple docstring""" _snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCAmelCase_ , ) _snake_case = decimal_to_bits(lowerCAmelCase_ ) * self.bit_scale _snake_case = latents.to(self.device ) self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _snake_case = self.unet(lowerCAmelCase_ , lowerCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample _snake_case = bits_to_decimal(lowerCAmelCase_ ) if output_type == "pil": _snake_case = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase_ )
42
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[str] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) a__ : List[str] = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) a__ : List[Any] = False a__ : int = False def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase=False) -> Union[str, Any]: __UpperCamelCase :List[str] = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase) if return_labels: if model_class in get_values(__lowercase): __UpperCamelCase :Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase=None , ) -> Any: __UpperCamelCase :List[Any] = parent __UpperCamelCase :Any = batch_size __UpperCamelCase :Dict = seq_length __UpperCamelCase :List[str] = is_training __UpperCamelCase :List[Any] = use_input_mask __UpperCamelCase :Optional[int] = use_token_type_ids __UpperCamelCase :Any = use_labels __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :Any = hidden_size __UpperCamelCase :Optional[int] = num_hidden_layers __UpperCamelCase :Union[str, Any] = num_attention_heads __UpperCamelCase :Dict = intermediate_size __UpperCamelCase :str = hidden_act __UpperCamelCase :List[Any] = hidden_dropout_prob __UpperCamelCase :Union[str, Any] = attention_probs_dropout_prob __UpperCamelCase :List[str] = max_position_embeddings __UpperCamelCase :List[str] = type_vocab_size __UpperCamelCase :Dict = type_sequence_label_size __UpperCamelCase :str = initializer_range __UpperCamelCase :int = num_labels __UpperCamelCase :int = num_choices __UpperCamelCase :List[str] = scope __UpperCamelCase :Any = embedding_size def UpperCamelCase__ ( self) -> str: __UpperCamelCase :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :str = None if self.use_input_mask: __UpperCamelCase :List[str] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :Union[str, Any] = None if self.use_token_type_ids: __UpperCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCamelCase :int = None __UpperCamelCase :str = None __UpperCamelCase :Any = None if self.use_labels: __UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :str = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> str: __UpperCamelCase :Dict = TFMobileBertModel(config=__lowercase) __UpperCamelCase :List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :Dict = model(__lowercase) __UpperCamelCase :Union[str, Any] = [input_ids, input_mask] __UpperCamelCase :Optional[Any] = model(__lowercase) __UpperCamelCase :str = model(__lowercase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Dict: __UpperCamelCase :int = TFMobileBertForMaskedLM(config=__lowercase) __UpperCamelCase :Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :Union[str, Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :int = TFMobileBertForNextSentencePrediction(config=__lowercase) __UpperCamelCase :Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :Optional[int] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :List[str] = TFMobileBertForPreTraining(config=__lowercase) __UpperCamelCase :int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :Optional[Any] = model(__lowercase) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Union[str, Any]: __UpperCamelCase :Any = self.num_labels __UpperCamelCase :Dict = TFMobileBertForSequenceClassification(config=__lowercase) __UpperCamelCase :Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :List[Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> int: __UpperCamelCase :Union[str, Any] = self.num_choices __UpperCamelCase :Optional[Any] = TFMobileBertForMultipleChoice(config=__lowercase) __UpperCamelCase :Dict = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Union[str, Any] = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Union[str, Any] = tf.tile(tf.expand_dims(__lowercase , 1) , (1, self.num_choices, 1)) __UpperCamelCase :Any = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __UpperCamelCase :Optional[int] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Tuple: __UpperCamelCase :Optional[int] = self.num_labels __UpperCamelCase :Optional[int] = TFMobileBertForTokenClassification(config=__lowercase) __UpperCamelCase :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :Optional[Any] = model(__lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> int: __UpperCamelCase :int = TFMobileBertForQuestionAnswering(config=__lowercase) __UpperCamelCase :List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __UpperCamelCase :Any = model(__lowercase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :List[str] = config_and_inputs __UpperCamelCase :str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :List[Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) __UpperCamelCase :str = ConfigTester(self , config_class=__lowercase , hidden_size=37) def UpperCamelCase__ ( self) -> List[Any]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowercase) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowercase) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowercase) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowercase) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowercase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowercase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowercase) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowercase) @slow def UpperCamelCase__ ( self) -> List[Any]: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __UpperCamelCase :List[str] = TFMobileBertModel.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Union[str, Any] = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''') __UpperCamelCase :Any = tf.constant([[0, 1, 2, 3, 4, 5]]) __UpperCamelCase :int = model(__lowercase)[0] __UpperCamelCase :Optional[Any] = [1, 6, 30_522] self.assertEqual(output.shape , __lowercase) __UpperCamelCase :Dict = tf.constant( [ [ [-4.5_91_95_47, -9.24_82_95, -9.64_52_56], [-6.7_30_61_75, -6.44_02_84, -6.6_05_28_37], [-7.2_74_35_06, -6.7_84_79_15, -6.02_46_73], ] ]) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1E-4)
43
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
0
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE ( _lowerCamelCase : float ,_lowerCamelCase : float ,_lowerCamelCase : float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance == 0: return {"resistance": sqrt(pow(_lowerCamelCase ,2 ) - pow(_lowerCamelCase ,2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_lowerCamelCase ,2 ) - pow(_lowerCamelCase ,2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_lowerCamelCase ,2 ) + pow(_lowerCamelCase ,2 ) )} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
44
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
0
"""simple docstring""" import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger() @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : nn.Module __UpperCAmelCase : List[nn.Module] = field(default_factory=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : list = field(default_factory=__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self , _a , _a , _a ): __a = len(list(m.modules() ) ) == 1 or isinstance(_a , nn.Convad ) or isinstance(_a , nn.BatchNormad ) if has_not_submodules: self.traced.append(_a ) def __call__( self , _a ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_a ) [x.remove() for x in self.handles] return self @property def __UpperCAmelCase ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _a : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : nn.Module __UpperCAmelCase : nn.Module __UpperCAmelCase : int = 0 __UpperCAmelCase : List = field(default_factory=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase : List = field(default_factory=__SCREAMING_SNAKE_CASE ) def __call__( self , _a ): __a = Tracker(self.dest )(_a ).parametrized __a = Tracker(self.src )(_a ).parametrized __a = list(filter(lambda _a : type(_a ) not in self.src_skip , _a ) ) __a = list(filter(lambda _a : type(_a ) not in self.dest_skip , _a ) ) if len(_a ) != len(_a ): raise Exception( f'''Numbers of operations are different. Source module has {len(_a )} operations while''' f''' destination module has {len(_a )}.''' ) for dest_m, src_m in zip(_a , _a ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : Path , lowerCAmelCase__ : bool = True ) -> Tuple: print(f'''Converting {name}...''' ) with torch.no_grad(): __a = timm.create_model(lowerCAmelCase__ , pretrained=lowerCAmelCase__ ).eval() __a = ResNetForImageClassification(lowerCAmelCase__ ).eval() __a = ModuleTransfer(src=lowerCAmelCase__ , dest=lowerCAmelCase__ ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(lowerCAmelCase__ ) assert torch.allclose(from_model(lowerCAmelCase__ ) , our_model(lowerCAmelCase__ ).logits ), "The model logits don't match the original one." __a = f'''resnet{'-'.join(name.split('resnet' ) )}''' print(lowerCAmelCase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=lowerCAmelCase__ , ) # we can use the convnext one __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=lowerCAmelCase__ , ) print(f'''Pushed {checkpoint_name}''' ) def lowercase ( lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = True ) -> Optional[Any]: __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = (1, num_labels) __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __a = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(lowerCAmelCase__ , num_labels=lowerCAmelCase__ , idalabel=lowerCAmelCase__ , labelaid=lowerCAmelCase__ ) __a = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(lowerCAmelCase__ , names_to_config[model_name] , lowerCAmelCase__ , lowerCAmelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return config, expected_shape if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) lowercase_ = parser.parse_args() lowercase_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
45
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Base model mapping ("albert", "FlaxAlbertModel"), ("bart", "FlaxBartModel"), ("beit", "FlaxBeitModel"), ("bert", "FlaxBertModel"), ("big_bird", "FlaxBigBirdModel"), ("blenderbot", "FlaxBlenderbotModel"), ("blenderbot-small", "FlaxBlenderbotSmallModel"), ("clip", "FlaxCLIPModel"), ("distilbert", "FlaxDistilBertModel"), ("electra", "FlaxElectraModel"), ("gpt-sw3", "FlaxGPT2Model"), ("gpt2", "FlaxGPT2Model"), ("gpt_neo", "FlaxGPTNeoModel"), ("gptj", "FlaxGPTJModel"), ("longt5", "FlaxLongT5Model"), ("marian", "FlaxMarianModel"), ("mbart", "FlaxMBartModel"), ("mt5", "FlaxMT5Model"), ("opt", "FlaxOPTModel"), ("pegasus", "FlaxPegasusModel"), ("regnet", "FlaxRegNetModel"), ("resnet", "FlaxResNetModel"), ("roberta", "FlaxRobertaModel"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormModel"), ("roformer", "FlaxRoFormerModel"), ("t5", "FlaxT5Model"), ("vision-text-dual-encoder", "FlaxVisionTextDualEncoderModel"), ("vit", "FlaxViTModel"), ("wav2vec2", "FlaxWav2Vec2Model"), ("whisper", "FlaxWhisperModel"), ("xglm", "FlaxXGLMModel"), ("xlm-roberta", "FlaxXLMRobertaModel"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for pre-training mapping ("albert", "FlaxAlbertForPreTraining"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForPreTraining"), ("big_bird", "FlaxBigBirdForPreTraining"), ("electra", "FlaxElectraForPreTraining"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("t5", "FlaxT5ForConditionalGeneration"), ("wav2vec2", "FlaxWav2Vec2ForPreTraining"), ("whisper", "FlaxWhisperForConditionalGeneration"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for Masked LM mapping ("albert", "FlaxAlbertForMaskedLM"), ("bart", "FlaxBartForConditionalGeneration"), ("bert", "FlaxBertForMaskedLM"), ("big_bird", "FlaxBigBirdForMaskedLM"), ("distilbert", "FlaxDistilBertForMaskedLM"), ("electra", "FlaxElectraForMaskedLM"), ("mbart", "FlaxMBartForConditionalGeneration"), ("roberta", "FlaxRobertaForMaskedLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMaskedLM"), ("roformer", "FlaxRoFormerForMaskedLM"), ("xlm-roberta", "FlaxXLMRobertaForMaskedLM"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("bart", "FlaxBartForConditionalGeneration"), ("blenderbot", "FlaxBlenderbotForConditionalGeneration"), ("blenderbot-small", "FlaxBlenderbotSmallForConditionalGeneration"), ("encoder-decoder", "FlaxEncoderDecoderModel"), ("longt5", "FlaxLongT5ForConditionalGeneration"), ("marian", "FlaxMarianMTModel"), ("mbart", "FlaxMBartForConditionalGeneration"), ("mt5", "FlaxMT5ForConditionalGeneration"), ("pegasus", "FlaxPegasusForConditionalGeneration"), ("t5", "FlaxT5ForConditionalGeneration"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for Image-classsification ("beit", "FlaxBeitForImageClassification"), ("regnet", "FlaxRegNetForImageClassification"), ("resnet", "FlaxResNetForImageClassification"), ("vit", "FlaxViTForImageClassification"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("vision-encoder-decoder", "FlaxVisionEncoderDecoderModel"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for Causal LM mapping ("bart", "FlaxBartForCausalLM"), ("bert", "FlaxBertForCausalLM"), ("big_bird", "FlaxBigBirdForCausalLM"), ("electra", "FlaxElectraForCausalLM"), ("gpt-sw3", "FlaxGPT2LMHeadModel"), ("gpt2", "FlaxGPT2LMHeadModel"), ("gpt_neo", "FlaxGPTNeoForCausalLM"), ("gptj", "FlaxGPTJForCausalLM"), ("opt", "FlaxOPTForCausalLM"), ("roberta", "FlaxRobertaForCausalLM"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForCausalLM"), ("xglm", "FlaxXGLMForCausalLM"), ("xlm-roberta", "FlaxXLMRobertaForCausalLM"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for Sequence Classification mapping ("albert", "FlaxAlbertForSequenceClassification"), ("bart", "FlaxBartForSequenceClassification"), ("bert", "FlaxBertForSequenceClassification"), ("big_bird", "FlaxBigBirdForSequenceClassification"), ("distilbert", "FlaxDistilBertForSequenceClassification"), ("electra", "FlaxElectraForSequenceClassification"), ("mbart", "FlaxMBartForSequenceClassification"), ("roberta", "FlaxRobertaForSequenceClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForSequenceClassification"), ("roformer", "FlaxRoFormerForSequenceClassification"), ("xlm-roberta", "FlaxXLMRobertaForSequenceClassification"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for Question Answering mapping ("albert", "FlaxAlbertForQuestionAnswering"), ("bart", "FlaxBartForQuestionAnswering"), ("bert", "FlaxBertForQuestionAnswering"), ("big_bird", "FlaxBigBirdForQuestionAnswering"), ("distilbert", "FlaxDistilBertForQuestionAnswering"), ("electra", "FlaxElectraForQuestionAnswering"), ("mbart", "FlaxMBartForQuestionAnswering"), ("roberta", "FlaxRobertaForQuestionAnswering"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForQuestionAnswering"), ("roformer", "FlaxRoFormerForQuestionAnswering"), ("xlm-roberta", "FlaxXLMRobertaForQuestionAnswering"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for Token Classification mapping ("albert", "FlaxAlbertForTokenClassification"), ("bert", "FlaxBertForTokenClassification"), ("big_bird", "FlaxBigBirdForTokenClassification"), ("distilbert", "FlaxDistilBertForTokenClassification"), ("electra", "FlaxElectraForTokenClassification"), ("roberta", "FlaxRobertaForTokenClassification"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForTokenClassification"), ("roformer", "FlaxRoFormerForTokenClassification"), ("xlm-roberta", "FlaxXLMRobertaForTokenClassification"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ # Model for Multiple Choice mapping ("albert", "FlaxAlbertForMultipleChoice"), ("bert", "FlaxBertForMultipleChoice"), ("big_bird", "FlaxBigBirdForMultipleChoice"), ("distilbert", "FlaxDistilBertForMultipleChoice"), ("electra", "FlaxElectraForMultipleChoice"), ("roberta", "FlaxRobertaForMultipleChoice"), ("roberta-prelayernorm", "FlaxRobertaPreLayerNormForMultipleChoice"), ("roformer", "FlaxRoFormerForMultipleChoice"), ("xlm-roberta", "FlaxXLMRobertaForMultipleChoice"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("bert", "FlaxBertForNextSentencePrediction"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("speech-encoder-decoder", "FlaxSpeechEncoderDecoderModel"), ("whisper", "FlaxWhisperForConditionalGeneration"), ] ) SCREAMING_SNAKE_CASE__ = OrderedDict( [ ("whisper", "FlaxWhisperForAudioClassification"), ] ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) SCREAMING_SNAKE_CASE__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update(FlaxAutoModel) class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_PRETRAINING_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc="pretraining") class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc="causal language modeling") class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="masked language modeling") class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="sequence-to-sequence language modeling", checkpoint_for_example="t5-base" ) class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="sequence classification" ) class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="question answering") class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="token classification" ) class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="multiple choice") class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="next sentence prediction" ) class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc="image classification" ) class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="vision-to-text modeling") class lowercase ( _BaseAutoModelClass ): _SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING SCREAMING_SNAKE_CASE__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="sequence-to-sequence speech-to-text modeling" )
46
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def _lowerCAmelCase ( _UpperCamelCase : Optional[int] ) -> List[str]: """simple docstring""" _SCREAMING_SNAKE_CASE =botoa.client('iam' ) _SCREAMING_SNAKE_CASE ={ 'Version': '2012-10-17', 'Statement': [ {'Effect': 'Allow', 'Principal': {'Service': 'sagemaker.amazonaws.com'}, 'Action': 'sts:AssumeRole'} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_UpperCamelCase , AssumeRolePolicyDocument=json.dumps(_UpperCamelCase , indent=2 ) ) _SCREAMING_SNAKE_CASE ={ 'Version': '2012-10-17', 'Statement': [ { 'Effect': 'Allow', 'Action': [ 'sagemaker:*', 'ecr:GetDownloadUrlForLayer', 'ecr:BatchGetImage', 'ecr:BatchCheckLayerAvailability', 'ecr:GetAuthorizationToken', 'cloudwatch:PutMetricData', 'cloudwatch:GetMetricData', 'cloudwatch:GetMetricStatistics', 'cloudwatch:ListMetrics', 'logs:CreateLogGroup', 'logs:CreateLogStream', 'logs:DescribeLogStreams', 'logs:PutLogEvents', 'logs:GetLogEvents', 's3:CreateBucket', 's3:ListBucket', 's3:GetBucketLocation', 's3:GetObject', 's3:PutObject', ], 'Resource': '*', } ], } # attach policy to role iam_client.put_role_policy( RoleName=_UpperCamelCase , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(_UpperCamelCase , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(f"role {role_name} already exists. Using existing one" ) def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =botoa.client('iam' ) return iam_client.get_role(RoleName=_UpperCamelCase )["Role"]["Arn"] def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE =_ask_options( 'How do you want to authorize?' , ['AWS Profile', 'Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) '] , _UpperCamelCase , ) _SCREAMING_SNAKE_CASE =None if credentials_configuration == 0: _SCREAMING_SNAKE_CASE =_ask_field('Enter your AWS Profile name: [default] ' , default='default' ) _SCREAMING_SNAKE_CASE =aws_profile else: print( 'Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,' '`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`' ) _SCREAMING_SNAKE_CASE =_ask_field('AWS Access Key ID: ' ) _SCREAMING_SNAKE_CASE =aws_access_key_id _SCREAMING_SNAKE_CASE =_ask_field('AWS Secret Access Key: ' ) _SCREAMING_SNAKE_CASE =aws_secret_access_key _SCREAMING_SNAKE_CASE =_ask_field('Enter your AWS Region: [us-east-1]' , default='us-east-1' ) _SCREAMING_SNAKE_CASE =aws_region _SCREAMING_SNAKE_CASE =_ask_options( 'Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?' , ['Provide IAM Role name', 'Create new IAM role using credentials'] , _UpperCamelCase , ) if role_management == 0: _SCREAMING_SNAKE_CASE =_ask_field('Enter your IAM role name: ' ) else: _SCREAMING_SNAKE_CASE ='accelerate_sagemaker_execution_role' print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(_UpperCamelCase ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to use custom Docker image? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE =None if is_custom_docker_image: _SCREAMING_SNAKE_CASE =_ask_field('Enter your Docker image: ' , lambda _UpperCamelCase : str(_UpperCamelCase ).lower() ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to provide SageMaker input channels with data locations? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE =None if is_sagemaker_inputs_enabled: _SCREAMING_SNAKE_CASE =_ask_field( 'Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ' , lambda _UpperCamelCase : str(_UpperCamelCase ).lower() , ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to enable SageMaker metrics? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE =None if is_sagemaker_metrics_enabled: _SCREAMING_SNAKE_CASE =_ask_field( 'Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ' , lambda _UpperCamelCase : str(_UpperCamelCase ).lower() , ) _SCREAMING_SNAKE_CASE =_ask_options( 'What is the distributed mode?' , ['No distributed training', 'Data parallelism'] , _convert_sagemaker_distributed_mode , ) _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =_ask_field( 'Do you wish to optimize your script with torch dynamo?[yes/NO]:' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) if use_dynamo: _SCREAMING_SNAKE_CASE ='dynamo_' _SCREAMING_SNAKE_CASE =_ask_options( 'Which dynamo backend would you like to use?' , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to customize the defaults sent to torch.compile? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) if use_custom_options: _SCREAMING_SNAKE_CASE =_ask_options( 'Which mode do you want to use?' , _UpperCamelCase , lambda _UpperCamelCase : TORCH_DYNAMO_MODES[int(_UpperCamelCase )] , default='default' , ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE =_ask_field( 'Do you want to enable dynamic shape tracing? [yes/NO]: ' , _convert_yes_no_to_bool , default=_UpperCamelCase , error_message='Please enter yes or no.' , ) _SCREAMING_SNAKE_CASE ='Which EC2 instance type you want to use for your training?' if distributed_type != SageMakerDistributedType.NO: _SCREAMING_SNAKE_CASE =_ask_options( _UpperCamelCase , _UpperCamelCase , lambda _UpperCamelCase : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_UpperCamelCase )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" _SCREAMING_SNAKE_CASE =_ask_field(_UpperCamelCase , lambda _UpperCamelCase : str(_UpperCamelCase ).lower() , default='ml.p3.2xlarge' ) _SCREAMING_SNAKE_CASE =1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): _SCREAMING_SNAKE_CASE =_ask_field( 'How many machines do you want use? [1]: ' , _UpperCamelCase , default=1 , ) _SCREAMING_SNAKE_CASE =_ask_options( 'Do you wish to use FP16 or BF16 (mixed precision)?' , ['no', 'fp16', 'bf16', 'fp8'] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( 'Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.' ) return SageMakerConfig( image_uri=_UpperCamelCase , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_UpperCamelCase , use_cpu=_UpperCamelCase , dynamo_config=_UpperCamelCase , eca_instance_type=_UpperCamelCase , profile=_UpperCamelCase , region=_UpperCamelCase , iam_role_name=_UpperCamelCase , mixed_precision=_UpperCamelCase , num_machines=_UpperCamelCase , sagemaker_inputs_file=_UpperCamelCase , sagemaker_metrics_file=_UpperCamelCase , )
47
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ 'python', 'tqdm', 'regex', 'requests', 'packaging', 'filelock', 'numpy', 'tokenizers', 'huggingface-hub', 'safetensors', 'accelerate', 'pyyaml', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> Optional[int]: require_version(deps[pkg] ,_SCREAMING_SNAKE_CASE )
48
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class _A : UpperCamelCase__ : Optional[Union[str, Path]] = None UpperCamelCase__ : bool = False UpperCamelCase__ : bool = False UpperCamelCase__ : bool = False UpperCamelCase__ : Optional[Dict] = None UpperCamelCase__ : Optional[str] = None UpperCamelCase__ : bool = False UpperCamelCase__ : bool = False UpperCamelCase__ : bool = False UpperCamelCase__ : bool = True UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : int = 1 UpperCamelCase__ : Optional[Union[str, bool]] = None UpperCamelCase__ : bool = False UpperCamelCase__ : Optional[Dict] = None UpperCamelCase__ : Optional[str] = None def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(__SCREAMING_SNAKE_CASE) for k, v in self.__dict__.items()})
49
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
0
from timeit import timeit _UpperCAmelCase : Union[str, Any] = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Dict = len(_UpperCAmelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: lowerCamelCase__ : Dict = len(_UpperCAmelCase ) // 2 lowerCamelCase__ : Tuple = len(_UpperCAmelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if len(_UpperCAmelCase ) <= 2: return True if s[0] == s[len(_UpperCAmelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: return s == s[::-1] def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: lowerCamelCase__ : Any = F"""all({name}(key) is value for key, value in test_data.items())""" lowerCamelCase__ : List[Any] = F"""from __main__ import test_data, {name}""" lowerCamelCase__ : int = 50_0000 lowerCamelCase__ : List[str] = timeit(stmt=_UpperCAmelCase , setup=_UpperCAmelCase , number=_UpperCAmelCase ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
50
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Tuple = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __snake_case ( a ): UpperCAmelCase__ : List[Any] = '''sew-d''' def __init__( self : List[str] , _snake_case : Tuple=32 , _snake_case : Dict=768 , _snake_case : str=12 , _snake_case : Optional[int]=12 , _snake_case : Optional[int]=3072 , _snake_case : str=2 , _snake_case : Tuple=512 , _snake_case : Optional[Any]=256 , _snake_case : Tuple=True , _snake_case : Dict=True , _snake_case : Optional[Any]=("p2c", "c2p") , _snake_case : int="layer_norm" , _snake_case : Any="gelu_python" , _snake_case : Any=0.1 , _snake_case : Any=0.1 , _snake_case : List[str]=0.1 , _snake_case : List[str]=0.0 , _snake_case : Optional[int]=0.1 , _snake_case : int=0.0_2 , _snake_case : Dict=1e-7 , _snake_case : str=1e-5 , _snake_case : Optional[Any]="group" , _snake_case : List[str]="gelu" , _snake_case : Union[str, Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _snake_case : int=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _snake_case : Dict=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _snake_case : int=False , _snake_case : List[str]=128 , _snake_case : Optional[int]=16 , _snake_case : int=True , _snake_case : List[Any]=0.0_5 , _snake_case : str=10 , _snake_case : Any=2 , _snake_case : Tuple=0.0 , _snake_case : Tuple=10 , _snake_case : str=0 , _snake_case : List[Any]="mean" , _snake_case : str=False , _snake_case : List[Any]=False , _snake_case : Dict=256 , _snake_case : Union[str, Any]=0 , _snake_case : Union[str, Any]=1 , _snake_case : Optional[Any]=2 , **_snake_case : Dict , ): """simple docstring""" super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case) UpperCAmelCase_ = hidden_size UpperCAmelCase_ = feat_extract_norm UpperCAmelCase_ = feat_extract_activation UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = conv_bias UpperCAmelCase_ = num_conv_pos_embeddings UpperCAmelCase_ = num_conv_pos_embedding_groups UpperCAmelCase_ = len(self.conv_dim) UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = squeeze_factor UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = position_buckets UpperCAmelCase_ = share_att_key UpperCAmelCase_ = relative_attention UpperCAmelCase_ = norm_rel_ebd UpperCAmelCase_ = list(_snake_case) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = activation_dropout UpperCAmelCase_ = feat_proj_dropout UpperCAmelCase_ = final_dropout UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = feature_layer_norm_eps UpperCAmelCase_ = initializer_range UpperCAmelCase_ = vocab_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F"""but is `len(config.conv_dim) = {len(self.conv_dim)}`, `len(config.conv_stride)""" F"""= {len(self.conv_stride)}`, `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ = apply_spec_augment UpperCAmelCase_ = mask_time_prob UpperCAmelCase_ = mask_time_length UpperCAmelCase_ = mask_time_min_masks UpperCAmelCase_ = mask_feature_prob UpperCAmelCase_ = mask_feature_length UpperCAmelCase_ = mask_feature_min_masks # ctc loss UpperCAmelCase_ = ctc_loss_reduction UpperCAmelCase_ = ctc_zero_infinity # sequence classification UpperCAmelCase_ = use_weighted_layer_sum UpperCAmelCase_ = classifier_proj_size @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1)
51
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
0
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: UpperCamelCase : Union[str, Any] = ksize + 1 UpperCamelCase : str = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCAmelCase ): for x in range(_lowerCAmelCase ): # distance from center UpperCamelCase : Any = x - ksize // 2 UpperCamelCase : Any = y - ksize // 2 # degree to radiant UpperCamelCase : int = theta / 180 * np.pi UpperCamelCase : List[Any] = np.cos(_theta ) UpperCamelCase : Optional[Any] = np.sin(_theta ) # get kernel x UpperCamelCase : Dict = cos_theta * px + sin_theta * py # get kernel y UpperCamelCase : Optional[Any] = -sin_theta * px + cos_theta * py # fill kernel UpperCamelCase : Optional[Any] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __lowerCamelCase : Union[str, Any] = imread("""../image_data/lena.jpg""") # turn image in gray scale value __lowerCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __lowerCamelCase : Optional[Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: __lowerCamelCase : Optional[Any] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __lowerCamelCase : Tuple = out / out.max() * 255 __lowerCamelCase : Optional[Any] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
52
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
0
'''simple docstring''' a__ : Optional[Any] =256 # Modulus to hash a string a__ : Dict =1_000_003 def lowercase__ ( __lowercase : str , __lowercase : str ) -> bool: """simple docstring""" __UpperCamelCase = len(__lowercase ) __UpperCamelCase = len(__lowercase ) if p_len > t_len: return False __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 1 # Calculating the hash of pattern and substring of text for i in range(__lowercase ): __UpperCamelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCamelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCamelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCamelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowercase__ ( ) -> None: """simple docstring""" __UpperCamelCase = 'abc1abc12' __UpperCamelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __UpperCamelCase = 'alskfjaldsk23adsfabcabc' assert rabin_karp(__lowercase , __lowercase ) and not rabin_karp(__lowercase , __lowercase ) # Test 2) __UpperCamelCase = 'ABABX' __UpperCamelCase = 'ABABZABABYABABX' assert rabin_karp(__lowercase , __lowercase ) # Test 3) __UpperCamelCase = 'AAAB' __UpperCamelCase = 'ABAAAAAB' assert rabin_karp(__lowercase , __lowercase ) # Test 4) __UpperCamelCase = 'abcdabcy' __UpperCamelCase = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(__lowercase , __lowercase ) # Test 5) __UpperCamelCase = 'Lü' __UpperCamelCase = 'Lüsai' assert rabin_karp(__lowercase , __lowercase ) __UpperCamelCase = 'Lue' assert not rabin_karp(__lowercase , __lowercase ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
53
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[int] = BartphoTokenizer snake_case__ : Union[str, Any] = False snake_case__ : Optional[int] = True def UpperCAmelCase_ ( self : List[str] ) -> int: super().setUp() __SCREAMING_SNAKE_CASE = ["▁This", "▁is", "▁a", "▁t", "est"] __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) __SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : str , **UpperCAmelCase__ : int ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = "This is a là test" __SCREAMING_SNAKE_CASE = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase_ ( self : List[str] ) -> str: __SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = "This is a là test" __SCREAMING_SNAKE_CASE = "▁This ▁is ▁a ▁l à ▁t est".split() __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
54
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class snake_case ( lowercase ): """simple docstring""" @slow @require_torch def snake_case ( self ): """simple docstring""" lowerCamelCase_ = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" ) lowerCamelCase_ = BertTokenizer.from_pretrained("bert-base-uncased" ) lowerCamelCase_ = bertabert.config.encoder.vocab_size lowerCamelCase_ = tokenizer.sep_token_id lowerCamelCase_ = tokenizer.cls_token_id lowerCamelCase_ = 128 lowerCamelCase_ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" ) lowerCamelCase_ = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" ) lowerCamelCase_ = train_dataset.select(range(32 ) ) lowerCamelCase_ = val_dataset.select(range(16 ) ) lowerCamelCase_ = 4 def _map_to_encoder_decoder_inputs(UpperCamelCase ): # Tokenizer will automatically set [BOS] <text> [EOS] lowerCamelCase_ = tokenizer(batch["article"] , padding="max_length" , truncation=UpperCamelCase , max_length=512 ) lowerCamelCase_ = tokenizer(batch["highlights"] , padding="max_length" , truncation=UpperCamelCase , max_length=128 ) lowerCamelCase_ = inputs.input_ids lowerCamelCase_ = inputs.attention_mask lowerCamelCase_ = outputs.input_ids lowerCamelCase_ = outputs.input_ids.copy() lowerCamelCase_ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"] ] lowerCamelCase_ = outputs.attention_mask assert all(len(UpperCamelCase ) == 512 for x in inputs.input_ids ) assert all(len(UpperCamelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(UpperCamelCase ): lowerCamelCase_ = pred.label_ids lowerCamelCase_ = pred.predictions # all unnecessary tokens are removed lowerCamelCase_ = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) lowerCamelCase_ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCamelCase ) )] ) / len(UpperCamelCase ) return {"accuracy": accuracy} # map train dataset lowerCamelCase_ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCamelCase , batch_size=UpperCamelCase , remove_columns=["article", "highlights"] , ) train_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) # same for validation dataset lowerCamelCase_ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=UpperCamelCase , batch_size=UpperCamelCase , remove_columns=["article", "highlights"] , ) val_dataset.set_format( type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , ) lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = SeqaSeqTrainingArguments( output_dir=UpperCamelCase , per_device_train_batch_size=UpperCamelCase , per_device_eval_batch_size=UpperCamelCase , predict_with_generate=UpperCamelCase , evaluation_strategy="steps" , do_train=UpperCamelCase , do_eval=UpperCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowerCamelCase_ = SeqaSeqTrainer( model=UpperCamelCase , args=UpperCamelCase , compute_metrics=_compute_metrics , train_dataset=UpperCamelCase , eval_dataset=UpperCamelCase , tokenizer=UpperCamelCase , ) # start training trainer.train()
55
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
0
'''simple docstring''' def __magic_name__ ( ) -> Tuple: '''simple docstring''' snake_case_ = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] snake_case_ = 6 snake_case_ = 1 snake_case_ = 1901 snake_case_ = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 snake_case_ = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 snake_case_ = day - 29 else: if day > days_per_month[month - 1]: month += 1 snake_case_ = day - days_per_month[month - 2] if month > 12: year += 1 snake_case_ = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
56
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A : Any = logging.get_logger(__name__) A : int = {"vocab_file": "sentencepiece.bpe.model"} A : str = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } A : int = { "moussaKam/mbarthez": 1_0_2_4, "moussaKam/barthez": 1_0_2_4, "moussaKam/barthez-orangesum-title": 1_0_2_4, } A : int = "▁" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =VOCAB_FILES_NAMES __UpperCAmelCase : int =PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict =["""input_ids""", """attention_mask"""] def __init__( self , __a , __a="<s>" , __a="</s>" , __a="</s>" , __a="<s>" , __a="<unk>" , __a="<pad>" , __a="<mask>" , __a = None , **__a , ): # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , cls_token=__a , pad_token=__a , mask_token=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , ) __lowerCAmelCase = vocab_file __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__a ) ) __lowerCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} __lowerCAmelCase = len(self.sp_model ) - 1 __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def snake_case ( self , __a , __a = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case ( self , __a , __a = None , __a = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) if token_ids_a is None: return [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1] def snake_case ( self , __a , __a = None ): __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case ( self ): return len(self.sp_model ) def snake_case ( self ): __lowerCAmelCase = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case ( self , __a ): return self.sp_model.encode(__a , out_type=__a ) def snake_case ( self , __a ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__a ) return spm_id if spm_id else self.unk_token_id def snake_case ( self , __a ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__a ) def snake_case ( self , __a ): __lowerCAmelCase = [] __lowerCAmelCase = "" __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__a ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(__a ) __lowerCAmelCase = False out_string += self.sp_model.decode(__a ) return out_string.strip() def __getstate__( self ): __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self , __a ): __lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case ( self , __a , __a = None ): if not os.path.isdir(__a ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __lowerCAmelCase = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __a ) elif not os.path.isfile(self.vocab_file ): with open(__a , "wb" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__a ) return (out_vocab_file,)
57
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
'''simple docstring''' from ....utils import logging lowercase_ = logging.get_logger(__name__) class a_ ( snake_case_ ): '''simple docstring''' def __init__( self , A , A=None , A=2048 ) -> Optional[int]: _SCREAMING_SNAKE_CASE = config.__dict__ _SCREAMING_SNAKE_CASE = modal_hidden_size if num_labels: _SCREAMING_SNAKE_CASE = num_labels
58
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
0
import pprint import requests __lowerCamelCase = """https://zenquotes.io/api""" def UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + "/today" ).json() def UpperCamelCase ( ): return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": __lowerCamelCase = random_quotes() pprint.pprint(response)
59
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class snake_case_( unittest.TestCase ): def lowerCamelCase__ ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : int ): lowerCAmelCase : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[Any] = 2_0 lowerCAmelCase : Any = self._get_uniform_logits(batch_size=2 , length=UpperCamelCase_ ) # tweak scores to not be uniform anymore lowerCAmelCase : Optional[int] = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCAmelCase : Optional[int] = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCAmelCase : Dict = jax.nn.softmax(UpperCamelCase_ , axis=-1 ) lowerCAmelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase : List[str] = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCAmelCase : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(UpperCamelCase_ , scores.copy() , cur_len=UpperCamelCase_ ) , axis=-1 ) lowerCAmelCase : Optional[Any] = jax.nn.softmax(temp_dist_warper_smoother(UpperCamelCase_ , scores.copy() , cur_len=UpperCamelCase_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def lowerCamelCase__ ( self : List[str] ): lowerCAmelCase : List[str] = None lowerCAmelCase : Optional[int] = 1_0 lowerCAmelCase : str = 2 # create ramp distribution lowerCAmelCase : Optional[Any] = np.broadcast_to(np.arange(UpperCamelCase_ )[None, :] , (batch_size, vocab_size) ).copy() lowerCAmelCase : Optional[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCAmelCase : Optional[int] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase : Dict = top_k_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCAmelCase : List[Any] = 5 lowerCAmelCase : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowerCAmelCase : Dict = np.broadcast_to(np.arange(UpperCamelCase_ )[None, :] , (batch_size, length) ).copy() lowerCAmelCase : Optional[int] = top_k_warp_safety_check(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : int = None lowerCAmelCase : Dict = 1_0 lowerCAmelCase : List[str] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCAmelCase : List[Any] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCAmelCase : List[str] = FlaxTopPLogitsWarper(0.8 ) lowerCAmelCase : Optional[Any] = np.exp(top_p_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCAmelCase : Dict = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCAmelCase : Optional[Any] = np.broadcast_to(np.arange(UpperCamelCase_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCAmelCase : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCAmelCase : Dict = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowerCAmelCase : str = top_p_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = 2_0 lowerCAmelCase : Optional[int] = 4 lowerCAmelCase : Dict = 0 lowerCAmelCase : Any = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCamelCase_ ) # check that min length is applied at length 5 lowerCAmelCase : List[Any] = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) lowerCAmelCase : int = 5 lowerCAmelCase : Any = self._get_uniform_logits(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = min_dist_processor(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowerCAmelCase : Any = self._get_uniform_logits(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = 1_5 lowerCAmelCase : str = min_dist_processor(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) self.assertFalse(jnp.isinf(UpperCamelCase_ ).any() ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : str = 2_0 lowerCAmelCase : Union[str, Any] = 4 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase_ ) # check that all scores are -inf except the bos_token_id score lowerCAmelCase : Optional[int] = ids_tensor((batch_size, 1) , vocab_size=2_0 ) lowerCAmelCase : Any = 1 lowerCAmelCase : List[str] = self._get_uniform_logits(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = logits_processor(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCAmelCase : str = 3 lowerCAmelCase : Optional[Any] = self._get_uniform_logits(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = logits_processor(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) self.assertFalse(jnp.isinf(UpperCamelCase_ ).any() ) def lowerCamelCase__ ( self : List[Any] ): lowerCAmelCase : Optional[Any] = 2_0 lowerCAmelCase : Dict = 4 lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = 5 lowerCAmelCase : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCAmelCase : str = ids_tensor((batch_size, 4) , vocab_size=2_0 ) lowerCAmelCase : int = 4 lowerCAmelCase : str = self._get_uniform_logits(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[Any] = logits_processor(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCAmelCase : Tuple = 3 lowerCAmelCase : Union[str, Any] = self._get_uniform_logits(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Dict = logits_processor(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) self.assertFalse(jnp.isinf(UpperCamelCase_ ).any() ) def lowerCamelCase__ ( self : str ): lowerCAmelCase : Union[str, Any] = 4 lowerCAmelCase : Tuple = 1_0 lowerCAmelCase : Union[str, Any] = 1_5 lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : int = 1 lowerCAmelCase : Tuple = 1_5 # dummy input_ids and scores lowerCAmelCase : Union[str, Any] = ids_tensor((batch_size, sequence_length) , UpperCamelCase_ ) lowerCAmelCase : Optional[int] = input_ids.copy() lowerCAmelCase : Tuple = self._get_uniform_logits(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : List[str] = scores.copy() # instantiate all dist processors lowerCAmelCase : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase : Optional[Any] = FlaxTopKLogitsWarper(3 ) lowerCAmelCase : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase : List[Any] = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCamelCase_ ) lowerCAmelCase : List[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) lowerCAmelCase : List[str] = 1_0 # no processor list lowerCAmelCase : Dict = temp_dist_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : Dict = top_k_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = top_p_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : Any = min_dist_proc(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : int = bos_dist_proc(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : List[Any] = eos_dist_proc(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) # with processor list lowerCAmelCase : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase : Optional[int] = processor(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Dict = 4 lowerCAmelCase : str = 1_0 lowerCAmelCase : str = 1_5 lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : List[Any] = 1 lowerCAmelCase : List[Any] = 1_5 # dummy input_ids and scores lowerCAmelCase : int = ids_tensor((batch_size, sequence_length) , UpperCamelCase_ ) lowerCAmelCase : Dict = input_ids.copy() lowerCAmelCase : str = self._get_uniform_logits(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = scores.copy() # instantiate all dist processors lowerCAmelCase : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCAmelCase : str = FlaxTopKLogitsWarper(3 ) lowerCAmelCase : Optional[int] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCAmelCase : str = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=UpperCamelCase_ ) lowerCAmelCase : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=UpperCamelCase_ ) lowerCAmelCase : List[str] = FlaxForcedEOSTokenLogitsProcessor(max_length=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = 1_0 # no processor list def run_no_processor_list(UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] ): lowerCAmelCase : Optional[Any] = temp_dist_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : List[Any] = top_k_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = top_p_warp(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : Dict = min_dist_proc(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : int = bos_dist_proc(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) lowerCAmelCase : str = eos_dist_proc(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) return scores # with processor list def run_processor_list(UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict ): lowerCAmelCase : List[Any] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCAmelCase : Optional[int] = processor(UpperCamelCase_ , UpperCamelCase_ , cur_len=UpperCamelCase_ ) return scores lowerCAmelCase : Any = jax.jit(UpperCamelCase_ ) lowerCAmelCase : int = jax.jit(UpperCamelCase_ ) lowerCAmelCase : str = jitted_run_no_processor_list(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : int = jitted_run_processor_list(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # scores should be equal self.assertTrue(jnp.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
60
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x2_0000 and cp <= 0x2_a6df) # or (cp >= 0x2_a700 and cp <= 0x2_b73f) # or (cp >= 0x2_b740 and cp <= 0x2_b81f) # or (cp >= 0x2_b820 and cp <= 0x2_ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2_f800 and cp <= 0x2_fa1f) # ): # return True return False def A_ ( _lowerCAmelCase : str ): """simple docstring""" for char in word: _a = ord(_lowerCAmelCase ) if not _is_chinese_char(_lowerCAmelCase ): return 0 return 1 def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _a = set() for token in tokens: _a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase ) if chinese_word: word_set.add(_lowerCAmelCase ) _a = list(_lowerCAmelCase ) return word_list def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens _a = max([len(_lowerCAmelCase ) for w in chinese_word_set] ) _a = bert_tokens _a , _a = 0, len(_lowerCAmelCase ) while start < end: _a = True if is_chinese(bert_word[start] ): _a = min(end - start, _lowerCAmelCase ) for i in range(_lowerCAmelCase, 1, -1 ): _a = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _a = '''##''' + bert_word[j] _a = start + i _a = False break if single_word: start += 1 return bert_word def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ): """simple docstring""" _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws _a = [get_chinese_word(_lowerCAmelCase ) for r in res] ltp_res.extend(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for i in range(0, len(_lowerCAmelCase ), 1_00 ): _a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 ) bert_res.extend(res['''input_ids'''] ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) _a = [] for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ): _a = [] for id in input_ids: _a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase ) input_tokens.append(_lowerCAmelCase ) _a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase ) _a = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowerCAmelCase ): if token[:2] == "##": _a = token[2:] # save chinese tokens' pos if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ): ref_id.append(_lowerCAmelCase ) ref_ids.append(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) return ref_ids def A_ ( _lowerCAmelCase : Any ): """simple docstring""" with open(args.file_name, '''r''', encoding='''utf-8''' ) as f: _a = f.readlines() _a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _a = LTP(args.ltp ) # faster in GPU device _a = BertTokenizer.from_pretrained(args.bert ) _a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) with open(args.save_path, '''w''', encoding='''utf-8''' ) as f: _a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids] f.writelines(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) __snake_case = parser.parse_args() main(args)
320
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
61
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'gptj' A_ : Optional[int] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]: _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = rotary_dim _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache _a = bos_token_id _a = eos_token_id super().__init__( bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase ) if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ): # TODO: how to do that better? _a = 0 @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: _a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) _a = {0: '''batch''', 1: '''past_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def _UpperCAmelCase ( self ) -> int: return self._config.n_layer @property def _UpperCAmelCase ( self ) -> int: return self._config.n_head def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = super(__UpperCAmelCase , self ).generate_dummy_inputs( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) # We need to order the input in the way they appears in the forward() _a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers ) ] _a = common_inputs['''attention_mask'''] if self.use_past: _a = ordered_inputs['''attention_mask'''].dtype _a = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def _UpperCAmelCase ( self ) -> int: return 13
320
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'huggingface/informer-tourism-monthly': ( 'https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json' ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = "informer" UpperCAmelCase__ : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = None , A_ = "mean" , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 32 , A_ = 32 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = True , A_ = "gelu" , A_ = 0.05 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_=True , A_ = "prob" , A_ = 5 , A_ = True , **A_ , ) -> str: # time series specific configuration __UpperCamelCase =prediction_length __UpperCamelCase =context_length or prediction_length __UpperCamelCase =distribution_output __UpperCamelCase =loss __UpperCamelCase =input_size __UpperCamelCase =num_time_features __UpperCamelCase =lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __UpperCamelCase =scaling __UpperCamelCase =num_dynamic_real_features __UpperCamelCase =num_static_real_features __UpperCamelCase =num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) __UpperCamelCase =cardinality else: __UpperCamelCase =[0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) __UpperCamelCase =embedding_dimension else: __UpperCamelCase =[min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __UpperCamelCase =num_parallel_samples # Transformer architecture configuration __UpperCamelCase =input_size * len(self.lags_sequence ) + self._number_of_features __UpperCamelCase =d_model __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_attention_heads __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =decoder_layers __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =encoder_layerdrop __UpperCamelCase =decoder_layerdrop __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =use_cache # Informer __UpperCamelCase =attention_type __UpperCamelCase =sampling_factor __UpperCamelCase =distil super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _a ( self ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
62
"""simple docstring""" import os import sys import unittest __snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> str: _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = get_test_to_tester_mapping(__UpperCAmelCase ) _a = {'''BertModelTest''': '''BertModelTester'''} _a = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = get_model_to_test_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = get_model_to_tester_mapping(__UpperCAmelCase ) _a = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } _a = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
320
0
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
63
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCamelCase : '''simple docstring''' @staticmethod def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: pass def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def A_ ( _lowerCAmelCase : Image ): """simple docstring""" _a = np.array(_lowerCAmelCase ) _a = npimg.shape return {"hash": hashimage(_lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : Any = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) A_ : str = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: _a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: pass @require_tf @unittest.skip('''Image segmentation not implemented in TF''' ) def _UpperCAmelCase ( self ) -> List[str]: pass @slow @require_torch def _UpperCAmelCase ( self ) -> int: _a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' ) _a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, {'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967}, {'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993}, {'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909}, {'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879}, {'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834}, {'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716}, {'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612}, {'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599}, {'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552}, {'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532}, {'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516}, {'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499}, {'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483}, {'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464}, {'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943}, {'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408}, {'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335}, {'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326}, {'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262}, {'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999}, {'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986}, {'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984}, {'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873}, {'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self ) -> Any: _a = '''facebook/sam-vit-huge''' _a = pipeline('''mask-generation''' , model=__UpperCAmelCase ) _a = image_segmenter( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _a = [] for i, o in enumerate(outputs['''masks'''] ): new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444}, {'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210}, {'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167}, {'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132}, {'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053}, ] , )
320
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : list[float] ): """simple docstring""" _snake_case : int = 0.00 _snake_case : int = 0 for resistor in resistors: if resistor <= 0: _snake_case : Dict = F"Resistor at index {index} has a negative or zero value!" raise ValueError(snake_case__ ) first_sum += 1 / float(snake_case__ ) index += 1 return 1 / first_sum def UpperCAmelCase__ (snake_case__ : list[float] ): """simple docstring""" _snake_case : Union[str, Any] = 0.00 _snake_case : Any = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _snake_case : Any = F"Resistor at index {index} has a negative value!" raise ValueError(snake_case__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
64
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: _a = parent _a = batch_size _a = encoder_seq_length _a = decoder_seq_length # For common tests _a = self.decoder_seq_length _a = is_training _a = use_attention_mask _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = d_ff _a = relative_attention_num_buckets _a = dropout_rate _a = initializer_factor _a = eos_token_id _a = pad_token_id _a = decoder_start_token_id _a = None _a = decoder_layers def _UpperCAmelCase ( self ) -> Dict: return TaConfig.from_pretrained('''google/umt5-base''' ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]: if attention_mask is None: _a = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _a = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: _a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: _a = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _UpperCAmelCase ( self ) -> Tuple: _a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _a = input_ids.clamp(self.pad_token_id + 1 ) _a = decoder_input_ids.clamp(self.pad_token_id + 1 ) _a = self.get_config() _a = config.num_attention_heads _a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, input_dict def _UpperCAmelCase ( self ) -> int: _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def _UpperCAmelCase ( self ) -> Tuple: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self ) -> List[str]: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: _a = UMTaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _a = model( input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , ) _a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase ) _a = result.last_hidden_state _a = result.past_key_values _a = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: _a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval() # first forward pass _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) _a = model(__UpperCAmelCase ) _a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) _a , _a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = model(__UpperCAmelCase )['''last_hidden_state'''] _a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state'''] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -1, random_slice_idx].detach() _a = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: _a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval() _a = model(**__UpperCAmelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() ) @require_torch class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () A_ : int = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) A_ : str = True A_ : List[str] = False A_ : List[Any] = False A_ : str = True A_ : List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests A_ : Optional[Any] = [0.8, 0.9] def _UpperCAmelCase ( self ) -> Tuple: _a = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def _UpperCAmelCase ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() _a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Union[str, Any]: _a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] _a = self.model_tester.prepare_config_and_inputs() _a = config_and_inputs[0] _a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval() model.to(__UpperCAmelCase ) _a = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ), } for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ): _a = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _a = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ) _a = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def _UpperCAmelCase ( self ) -> int: pass @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def _UpperCAmelCase ( self ) -> Optional[int]: _a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase ) _a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase ) _a = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] _a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids # fmt: off _a = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase ) _a = model.generate(input_ids.to(__UpperCAmelCase ) ) _a = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] _a = tokenizer.batch_decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
320
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast UpperCamelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class A ( datasets.BuilderConfig ): __UpperCAmelCase : int = 1_00_00 __UpperCAmelCase : Optional[List[str]] = None __UpperCAmelCase : Optional[datasets.Features] = None class A ( datasets.ArrowBasedBuilder ): __UpperCAmelCase : List[Any] = ParquetConfig def lowercase_ (self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase_ (self : Dict , __UpperCAmelCase : int ) -> Union[str, Any]: """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) UpperCAmelCase__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__UpperCAmelCase , (str, list, tuple) ): UpperCAmelCase__ = data_files if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase__ = [dl_manager.iter_files(__UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] UpperCAmelCase__ = [] for split_name, files in data_files.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): UpperCAmelCase__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive UpperCAmelCase__ = [dl_manager.iter_files(__UpperCAmelCase ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__UpperCAmelCase ): with open(__UpperCAmelCase , "rb" ) as f: UpperCAmelCase__ = datasets.Features.from_arrow_schema(pq.read_schema(__UpperCAmelCase ) ) break splits.append(datasets.SplitGenerator(name=__UpperCAmelCase , gen_kwargs={"files": files} ) ) return splits def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : pa.Table ) -> pa.Table: """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example UpperCAmelCase__ = table_cast(__UpperCAmelCase , self.info.features.arrow_schema ) return pa_table def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__UpperCAmelCase ) ): with open(__UpperCAmelCase , "rb" ) as f: UpperCAmelCase__ = pq.ParquetFile(__UpperCAmelCase ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): UpperCAmelCase__ = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(__UpperCAmelCase ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(__UpperCAmelCase )}: {e}""" ) raise
65
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Tuple: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int: if self.graph.get(__UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _a = [[w, v]] if not self.graph.get(__UpperCAmelCase ): _a = [] def _UpperCAmelCase ( self ) -> int: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s _a = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return sorted_nodes def _UpperCAmelCase ( self ) -> Optional[int]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Any: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin class __lowerCamelCase : '''simple docstring''' def __init__( self ) -> Optional[int]: _a = {} def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict: # check if the u exists if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _a = [[w, v]] # add the other way if self.graph.get(__UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _a = [[w, u]] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: if self.graph.get(__UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(__UpperCAmelCase ) # the other way round if self.graph.get(__UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict: if s == d: return [] _a = [] _a = [] if s == -2: _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(__UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return visited def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple: if c == -1: _a = floor(random() * 10000 ) + 10 for i in range(__UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _a = floor(random() * c ) + 1 if n != i: self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]: _a = deque() _a = [] if s == -2: _a = list(self.graph )[0] d.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) while d: _a = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: return len(self.graph[u] ) def _UpperCAmelCase ( self ) -> int: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return list(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> Optional[Any]: _a = [] _a = [] _a = list(self.graph )[0] stack.append(__UpperCAmelCase ) visited.append(__UpperCAmelCase ) _a = -2 _a = [] _a = s _a = False _a = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _a = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _a = len(__UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _a = node[1] break # check if all the children are visited if s == ss: stack.pop() _a = True if len(__UpperCAmelCase ) != 0: _a = stack[len(__UpperCAmelCase ) - 1] else: _a = False indirect_parents.append(__UpperCAmelCase ) _a = s _a = ss # check if se have reached the starting point if len(__UpperCAmelCase ) == 0: return False def _UpperCAmelCase ( self ) -> Union[str, Any]: return list(self.graph ) def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple: _a = time() self.dfs(__UpperCAmelCase , __UpperCAmelCase ) _a = time() return end - begin def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple: _a = time() self.bfs(__UpperCAmelCase ) _a = time() return end - begin
320
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1_6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: Any ) -> str: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case , ) assert hasattr(self , """env""" ) def lowerCAmelCase_ ( self: int , snake_case: Dict ) -> List[Any]: # configuration for running training on smdistributed Model Parallel snake_case_ :Tuple = { """enabled""": True, """processes_per_host""": 8, } snake_case_ :List[Any] = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } snake_case_ :Tuple = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} snake_case_ :Any = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case , instance_type=self.instance_type , debugger_hook_config=snake_case , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case , py_version="""py36""" , ) def lowerCAmelCase_ ( self: Any , snake_case: Tuple ) -> List[str]: TrainingJobAnalytics(snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowerCAmelCase_ ( self: Dict , snake_case: Dict ) -> List[Any]: # create estimator snake_case_ :List[Any] = self.create_estimator(snake_case ) # run training estimator.fit() # result dataframe snake_case_ :Any = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case_ :Tuple = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) snake_case_ :Dict = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case_ :int = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case )
66
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
0
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __lowerCamelCase = mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) else: __lowerCamelCase = max( mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , j - wt[i - 1] ) + val[i - 1] , ) __lowerCamelCase = val return f[i][j] def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]: __lowerCamelCase = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __lowerCamelCase = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __lowerCamelCase = dp[i - 1][w_] return dp[n][w_], dp def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: if not (isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) __lowerCamelCase = len(UpperCamelCase__ ) if num_items != len(UpperCamelCase__ ): __lowerCamelCase = ( '''The number of weights must be the same as the number of values.\n''' f"""But got {num_items} weights and {len(UpperCamelCase__ )} values""" ) raise ValueError(UpperCamelCase__ ) for i in range(UpperCamelCase__ ): if not isinstance(wt[i] , UpperCamelCase__ ): __lowerCamelCase = ( '''All weights must be integers but got weight of ''' f"""type {type(wt[i] )} at index {i}""" ) raise TypeError(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = set() _construct_solution(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return optimal_val, example_optional_set def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ ) else: optimal_set.add(UpperCamelCase__ ) _construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , j - wt[i - 1] , UpperCamelCase__ ) if __name__ == "__main__": __UpperCAmelCase =[3, 2, 4, 4] __UpperCAmelCase =[4, 3, 2, 3] __UpperCAmelCase =4 __UpperCAmelCase =6 __UpperCAmelCase =[[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] __UpperCAmelCase , __UpperCAmelCase =knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 __UpperCAmelCase , __UpperCAmelCase =knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
67
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } __snake_case = { '''google/rembert''': 256, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : List[Any] = RemBertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , ) _a = do_lower_case _a = remove_space _a = keep_accents _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
320
0
lowerCAmelCase__ = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase__ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
68
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import sys from collections import defaultdict class UpperCamelCase : def __init__( self) -> Optional[int]: snake_case_ = [] def a_ ( self, lowerCAmelCase__) -> Any: return self.node_position[vertex] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = pos def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case_ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case_ = 2 * start + 1 else: snake_case_ = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case_ , snake_case_ = heap[smallest_child], positions[smallest_child] snake_case_ , snake_case_ = ( heap[start], positions[start], ) snake_case_ , snake_case_ = temp, tempa snake_case_ = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child], self.get_position(positions[start])) self.set_position(positions[start], lowerCAmelCase__) self.top_to_bottom(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]: snake_case_ = position[index] while index != 0: snake_case_ = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: snake_case_ = heap[parent] snake_case_ = position[parent] self.set_position(position[parent], lowerCAmelCase__) else: snake_case_ = val snake_case_ = temp self.set_position(lowerCAmelCase__, lowerCAmelCase__) break snake_case_ = parent else: snake_case_ = val snake_case_ = temp self.set_position(lowerCAmelCase__, 0) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict: snake_case_ = len(lowerCAmelCase__) // 2 - 1 for i in range(lowerCAmelCase__, -1, -1): self.top_to_bottom(lowerCAmelCase__, lowerCAmelCase__, len(lowerCAmelCase__), lowerCAmelCase__) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]: snake_case_ = positions[0] snake_case_ = sys.maxsize self.top_to_bottom(lowerCAmelCase__, 0, len(lowerCAmelCase__), lowerCAmelCase__) return temp def UpperCAmelCase ( UpperCAmelCase ) -> Tuple: snake_case_ = Heap() snake_case_ = [0] * len(UpperCAmelCase ) snake_case_ = [-1] * len(UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case_ = [] # Heap of Distance of vertices from their neighboring vertex snake_case_ = [] for vertex in range(len(UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase ) heap.node_position.append(UpperCAmelCase ) snake_case_ = [] snake_case_ = 1 snake_case_ = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case_ = 0 snake_case_ = distance heap.heapify(UpperCAmelCase , UpperCAmelCase ) for _ in range(1 , len(UpperCAmelCase ) ): snake_case_ = heap.delete_minimum(UpperCAmelCase , UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case_ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase )] ): snake_case_ = distance heap.bottom_to_top( UpperCAmelCase , heap.get_position(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase ) snake_case_ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __UpperCamelCase = int(input('''Enter number of edges: ''').strip()) __UpperCamelCase = defaultdict(list) for _ in range(edges_number): __UpperCamelCase = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
69
"""simple docstring""" import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __lowerCamelCase ( a__ ): '''simple docstring''' @require_torch def _UpperCAmelCase ( self ) -> Union[str, Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(__UpperCAmelCase ) BertModel.from_pretrained(__UpperCAmelCase ) BertTokenizer.from_pretrained(__UpperCAmelCase ) pipeline(task='''fill-mask''' , model=__UpperCAmelCase ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Optional[Any]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def _UpperCAmelCase ( self ) -> List[Any]: _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
320
0
'''simple docstring''' import gc import threading import time import psutil import torch class UpperCAmelCase : def __init__( self : List[str] ) -> Any: _lowerCAmelCase = psutil.Process() _lowerCAmelCase = False def lowercase__ ( self : str ) -> Optional[Any]: _lowerCAmelCase = -1 while True: _lowerCAmelCase = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowercase__ ( self : List[str] ) -> Tuple: _lowerCAmelCase = True _lowerCAmelCase = threading.Thread(target=self.peak_monitor ) _lowerCAmelCase = True self.thread.start() def lowercase__ ( self : List[Any] ) -> Union[str, Any]: _lowerCAmelCase = False self.thread.join() return self.cpu_memory_peak A__ : int =PeakCPUMemory() def UpperCamelCase__ ( ): """simple docstring""" _lowerCAmelCase = {"""time""": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase = torch.cuda.memory_allocated(lowerCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = {"""time""": time.time() - start_measures["""time"""]} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase = (psutil.Process().memory_info().rss - start_measures["""cpu"""]) / 2**20 _lowerCAmelCase = (cpu_peak_tracker.stop() - start_measures["""cpu"""]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase = (torch.cuda.memory_allocated(lowerCAmelCase ) - start_measures[str(lowerCAmelCase )]) / 2**20 _lowerCAmelCase = (torch.cuda.max_memory_allocated(lowerCAmelCase ) - start_measures[str(lowerCAmelCase )]) / 2**20 return measures def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(lowerCAmelCase )]:.2f}MiB" ) _lowerCAmelCase = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
70
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : str = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Dict = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Union[str, Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Tuple = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Optional[Any] = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str: requires_backends(cls , ['''flax'''] ) class __lowerCamelCase ( metaclass=a__ ): '''simple docstring''' A_ : Any = ['flax'] def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]: requires_backends(self , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any: requires_backends(cls , ['''flax'''] ) @classmethod def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict: requires_backends(cls , ['''flax'''] )
320
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A_ :Any = { '''configuration_whisper''': ['''WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WhisperConfig''', '''WhisperOnnxConfig'''], '''feature_extraction_whisper''': ['''WhisperFeatureExtractor'''], '''processing_whisper''': ['''WhisperProcessor'''], '''tokenization_whisper''': ['''WhisperTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Tuple = ['''WhisperTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[str] = [ '''WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WhisperForConditionalGeneration''', '''WhisperModel''', '''WhisperPreTrainedModel''', '''WhisperForAudioClassification''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :Dict = [ '''TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWhisperForConditionalGeneration''', '''TFWhisperModel''', '''TFWhisperPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ :List[str] = [ '''FlaxWhisperForConditionalGeneration''', '''FlaxWhisperModel''', '''FlaxWhisperPreTrainedModel''', '''FlaxWhisperForAudioClassification''', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A_ :Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
71
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __snake_case = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __snake_case = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __snake_case = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" def remove_articles(_lowerCAmelCase : Optional[int] ): _a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE ) return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase ) def white_space_fix(_lowerCAmelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCAmelCase : Tuple ): _a = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCAmelCase : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) ) def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) ) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ): """simple docstring""" _a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )] return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00 def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ): """simple docstring""" _a = [rgram for rgrams in rgramslist for rgram in rgrams] _a = Counter(_lowerCAmelCase ) _a = Counter(_lowerCAmelCase ) _a = Counter() for sgram, scount in sgramcounter.items(): _a = scount * numref _a = Counter(_lowerCAmelCase ) _a = Counter() for cgram, ccount in cgramcounter.items(): _a = ccount * numref # KEEP _a = sgramcounter_rep & cgramcounter_rep _a = keepgramcounter_rep & rgramcounter _a = sgramcounter_rep & rgramcounter _a = 0 _a = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = keeptmpscorea / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) _a = keeptmpscorea / sum(keepgramcounterall_rep.values() ) _a = 0 if keepscore_precision > 0 or keepscore_recall > 0: _a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION _a = sgramcounter_rep - cgramcounter_rep _a = delgramcounter_rep - rgramcounter _a = sgramcounter_rep - rgramcounter _a = 0 _a = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 if len(_lowerCAmelCase ) > 0: _a = deltmpscorea / len(_lowerCAmelCase ) # ADDITION _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) & set(_lowerCAmelCase ) _a = set(_lowerCAmelCase ) - set(_lowerCAmelCase ) _a = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. _a = 1 _a = 1 if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = addtmpscore / len(_lowerCAmelCase ) _a = 0 if addscore_precision > 0 or addscore_recall > 0: _a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ): """simple docstring""" _a = len(_lowerCAmelCase ) _a = ssent.split(''' ''' ) _a = csent.split(''' ''' ) _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] _a = [] for rsent in rsents: _a = rsent.split(''' ''' ) _a = [] _a = [] _a = [] ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) ragramslist.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(_lowerCAmelCase ) for i in range(0, len(_lowerCAmelCase ) - 1 ): if i < len(_lowerCAmelCase ) - 1: _a = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 2: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(_lowerCAmelCase ) if i < len(_lowerCAmelCase ) - 3: _a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(_lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) ((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) _a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 _a = sum([delascore, delascore, delascore, delascore] ) / 4 _a = sum([addascore, addascore, addascore, addascore] ) / 4 _a = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ): """simple docstring""" if lowercase: _a = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: _a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase ) else: _a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase ) elif tokenizer == "moses": _a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase ) elif tokenizer == "penn": _a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase ) else: _a = sentence if not return_str: _a = normalized_sent.split() return normalized_sent def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ): """simple docstring""" if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) _a = 0 for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ): sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] ) _a = sari_score / len(_lowerCAmelCase ) return 1_00 * sari_score def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ): """simple docstring""" _a = len(references[0] ) if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) _a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )] _a = sacrebleu.corpus_bleu( _lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase ( datasets.Metric ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: _a = {} result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} ) return result
320
0
"""simple docstring""" from math import factorial def snake_case_ ( A_ : int, A_ : int ): '''simple docstring''' if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(A_ ) // (factorial(A_ ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', F"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
72
"""simple docstring""" def A_ ( _lowerCAmelCase : int = 50 ): """simple docstring""" _a = [1] * (length + 1) for row_length in range(3, length + 1 ): for block_length in range(3, row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
320
0
import os from collections.abc import Iterator def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(lowerCamelCase__ ): __lowerCamelCase : Optional[Any] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(lowerCamelCase__ )[1] in (".py", ".ipynb"): yield os.path.join(lowerCamelCase__ , lowerCamelCase__ ).lstrip('./' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: return F"{i * ' '}*" if i else "\n##" def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : Optional[int] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(lowerCamelCase__ ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(lowerCamelCase__ )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = "." ) -> None: __lowerCamelCase : Optional[int] = '' for filepath in sorted(good_file_paths(lowerCamelCase__ ) ): __lowerCamelCase , __lowerCamelCase : Optional[Any] = os.path.split(lowerCamelCase__ ) if filepath != old_path: __lowerCamelCase : Tuple = print_path(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase : Tuple = (filepath.count(os.sep ) + 1) if filepath else 0 __lowerCamelCase : Optional[int] = F"{filepath}/{filename}".replace(' ' , '%20' ) __lowerCamelCase : Tuple = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(F"{md_prefix(lowerCamelCase__ )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(""".""")
73
"""simple docstring""" import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() __snake_case = logging.get_logger('''transformers.models.speecht5''') __snake_case = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } __snake_case = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } __snake_case = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } __snake_case = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } __snake_case = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } __snake_case = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } __snake_case = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } __snake_case = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } __snake_case = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } __snake_case = [] __snake_case = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] __snake_case = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ): """simple docstring""" for attribute in key.split('''.''' ): _a = getattr(_lowerCAmelCase, _lowerCAmelCase ) if weight_type is not None: _a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape else: _a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value elif weight_type == "running_mean": _a = value elif weight_type == "running_var": _a = value elif weight_type == "num_batches_tracked": _a = value else: _a = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ): """simple docstring""" _a = [] if task == "s2t": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2T _a = IGNORE_KEYS_S2T elif task == "t2s": _a = None _a = MAPPING_T2S _a = IGNORE_KEYS_T2S elif task == "s2s": _a = hf_model.speechta.encoder.prenet.feature_encoder _a = MAPPING_S2S _a = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase, _lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue _a = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', ) _a = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _a , _a = key.split('''.*.''' ) if prefix in name and suffix in name: _a = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _a = True if "*" in mapped_key: _a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2] _a = mapped_key.replace('''*''', _lowerCAmelCase ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "bias" in name: _a = '''bias''' elif "weight" in name: _a = '''weight''' elif "running_mean" in name: _a = '''running_mean''' elif "running_var" in name: _a = '''running_var''' elif "num_batches_tracked" in name: _a = '''num_batches_tracked''' else: _a = None set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ): """simple docstring""" _a = full_name.split('''conv_layers.''' )[-1] _a = name.split('''.''' ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) _a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ): """simple docstring""" if config_path is not None: _a = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: _a = SpeechTaConfig() if task == "s2t": _a = config.max_text_positions _a = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": _a = 18_76 _a = 6_00 _a = config.max_speech_positions _a = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": _a = 18_76 _a = config.max_speech_positions _a = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: _a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase ) _a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _a = SpeechTaFeatureExtractor() _a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) _a = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) __snake_case = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
320
0
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: List[Any] = XLMProphetNetTokenizer _lowerCamelCase: Optional[Any] = False _lowerCamelCase: Union[str, Any] = True def _SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing A = XLMProphetNetTokenizer(A_ ,keep_accents=A_ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: A = '[PAD]' A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) ,A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) ,A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'[PAD]' ) self.assertEqual(vocab_keys[1] ,'[CLS]' ) self.assertEqual(vocab_keys[-1] ,'j' ) self.assertEqual(len(A_ ) ,1012 ) def _SCREAMING_SNAKE_CASE ( self : Dict ) -> int: self.assertEqual(self.get_tokenizer().vocab_size ,1012 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = XLMProphetNetTokenizer(A_ ,keep_accents=A_ ) A = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) A = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual( A_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) A = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] ,) @cached_property def _SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def _SCREAMING_SNAKE_CASE ( self : str ) -> Any: A = 'Hello World!' A = [3_5389, 6672, 49, 2] self.assertListEqual(A_ ,self.big_tokenizer.encode(A_ ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: # fmt: off A = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ ,model_name='microsoft/xprophetnet-large-wiki100-cased' ,revision='1acad1643ddd54a44df6a1b797ada8373685d90e' ,)
74
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[Any] = 'decision_transformer' A_ : Union[str, Any] = ['past_key_values'] A_ : str = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]: _a = state_dim _a = act_dim _a = hidden_size _a = max_ep_len _a = action_tanh _a = vocab_size _a = n_positions _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = scale_attn_by_inverse_layer_idx _a = reorder_and_upcast_attn _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
320
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ : int = logging.get_logger(__name__) a_ : List[str] = """▁""" a_ : int = {"""vocab_file""": """sentencepiece.bpe.model"""} a_ : Union[str, Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } a_ : int = { """xlm-roberta-base""": 5_12, """xlm-roberta-large""": 5_12, """xlm-roberta-large-finetuned-conll02-dutch""": 5_12, """xlm-roberta-large-finetuned-conll02-spanish""": 5_12, """xlm-roberta-large-finetuned-conll03-english""": 5_12, """xlm-roberta-large-finetuned-conll03-german""": 5_12, } class __UpperCamelCase ( lowerCamelCase__ ): lowercase : Optional[int] =VOCAB_FILES_NAMES lowercase : Tuple =PRETRAINED_VOCAB_FILES_MAP lowercase : int =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[str] =['input_ids', 'attention_mask'] def __init__( self, lowerCAmelCase, lowerCAmelCase="<s>", lowerCAmelCase="</s>", lowerCAmelCase="</s>", lowerCAmelCase="<s>", lowerCAmelCase="<unk>", lowerCAmelCase="<pad>", lowerCAmelCase="<mask>", lowerCAmelCase = None, **lowerCAmelCase, ): """simple docstring""" lowerCamelCase_ =AddedToken(lowerCAmelCase, lstrip=lowerCAmelCase, rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase, lowerCAmelCase ) else mask_token lowerCamelCase_ ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase, eos_token=lowerCAmelCase, unk_token=lowerCAmelCase, sep_token=lowerCAmelCase, cls_token=lowerCAmelCase, pad_token=lowerCAmelCase, mask_token=lowerCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **lowerCAmelCase, ) lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) lowerCamelCase_ =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ ={'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ =1 lowerCamelCase_ =len(self.sp_model ) + self.fairseq_offset lowerCamelCase_ ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowerCamelCase_ =self.__dict__.copy() lowerCamelCase_ =None lowerCamelCase_ =self.sp_model.serialized_model_proto() return state def __setstate__( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCamelCase_ ={} lowerCamelCase_ =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] lowerCamelCase_ =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None, lowerCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase, token_ids_a=lowerCAmelCase, already_has_special_tokens=lowerCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase )) + [1] return [1] + ([0] * len(lowerCAmelCase )) + [1, 1] + ([0] * len(lowerCAmelCase )) + [1] def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" lowerCamelCase_ =[self.sep_token_id] lowerCamelCase_ =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ ={self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(lowerCAmelCase, out_type=lowerCAmelCase ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ =self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =''''''.join(lowerCAmelCase ).replace(lowerCAmelCase, ''' ''' ).strip() return out_string def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ =os.path.join( lowerCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase, '''wb''' ) as fi: lowerCamelCase_ =self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,)
75
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __snake_case = logging.get_logger(__name__) if is_vision_available(): import PIL class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) _a = size if size is not None else {'''shortest_edge''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) _a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' ) _a = do_resize _a = size _a = resample _a = do_center_crop _a = crop_size _a = do_rescale _a = rescale_factor _a = do_normalize _a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _a = image_std if image_std is not None else OPENAI_CLIP_STD _a = do_convert_rgb def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: _a = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: _a = do_resize if do_resize is not None else self.do_resize _a = size if size is not None else self.size _a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase ) _a = resample if resample is not None else self.resample _a = do_center_crop if do_center_crop is not None else self.do_center_crop _a = crop_size if crop_size is not None else self.crop_size _a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase ) _a = do_rescale if do_rescale is not None else self.do_rescale _a = rescale_factor if rescale_factor is not None else self.rescale_factor _a = do_normalize if do_normalize is not None else self.do_normalize _a = image_mean if image_mean is not None else self.image_mean _a = image_std if image_std is not None else self.image_std _a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _a = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _a = [convert_to_rgb(__UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. _a = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: _a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: _a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: _a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: _a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] _a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] _a = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
320
0
from collections.abc import Sequence def lowerCamelCase__ ( _a = None): if nums is None or not nums: raise ValueError("Input sequence should not be empty") SCREAMING_SNAKE_CASE : Dict = nums[0] for i in range(1 , len(_a)): SCREAMING_SNAKE_CASE : Tuple = nums[i] SCREAMING_SNAKE_CASE : Dict = max(_a , ans + num , _a) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user a_ = int(input('Enter number of elements : ').strip()) a_ = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n] print(max_subsequence_sum(array))
76
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : str = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] _UpperCamelCase : Dict = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def a_ ( _lowerCAmelCase : Optional[Any] ): '''simple docstring''' lowercase__ : Dict = torch.load(_lowerCAmelCase , map_location='cpu' ) return sd def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : List[Any] , _lowerCAmelCase : str=rename_keys_prefix ): '''simple docstring''' lowercase__ : Union[str, Any] = OrderedDict() lowercase__ : List[str] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowercase__ : List[str] = key for name_pair in rename_keys_prefix: lowercase__ : List[Any] = new_key.replace(name_pair[0] , name_pair[1] ) lowercase__ : List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowercase__ : str = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : str ): '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: lowercase__ : List[Any] = 'pretraining' if "vcr" in checkpoint_path: lowercase__ : int = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: lowercase__ : Tuple = {'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: lowercase__ : Union[str, Any] = {'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: lowercase__ : List[str] = {'visual_embedding_dim': 1024} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: lowercase__ : Optional[Any] = {'visual_embedding_dim': 512} lowercase__ : int = 'multichoice' elif "vqa_advanced" in checkpoint_path: lowercase__ : int = {'visual_embedding_dim': 2048} lowercase__ : Tuple = 'vqa_advanced' elif "vqa" in checkpoint_path: lowercase__ : Union[str, Any] = {'visual_embedding_dim': 2048, 'num_labels': 3129} lowercase__ : int = 'vqa' elif "nlvr" in checkpoint_path: lowercase__ : Tuple = { 'visual_embedding_dim': 1024, 'num_labels': 2, } lowercase__ : List[str] = 'nlvr' lowercase__ : Optional[Any] = VisualBertConfig(**_lowerCAmelCase ) # Load State Dict lowercase__ : List[Any] = load_state_dict(_lowerCAmelCase ) lowercase__ : str = get_new_dict(_lowerCAmelCase , _lowerCAmelCase ) if model_type == "pretraining": lowercase__ : Optional[Any] = VisualBertForPreTraining(_lowerCAmelCase ) elif model_type == "vqa": lowercase__ : Optional[Any] = VisualBertForQuestionAnswering(_lowerCAmelCase ) elif model_type == "nlvr": lowercase__ : Dict = VisualBertForVisualReasoning(_lowerCAmelCase ) elif model_type == "multichoice": lowercase__ : List[Any] = VisualBertForMultipleChoice(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Save Checkpoints Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.") parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.") _UpperCamelCase : int = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
77
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def A_ ( ): """simple docstring""" _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def A_ ( ): """simple docstring""" _a = '''rougeLsum''' _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k] assert score > score_no_sep def A_ ( ): """simple docstring""" _a = ['''rouge1''', '''rouge2''', '''rougeL'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase ) assert score_sep == score_no_sep def A_ ( ): """simple docstring""" _a = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _a = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) def A_ ( ): """simple docstring""" _a = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _a = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum'''] _a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def A_ ( ): """simple docstring""" _a = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase ) _a = calculate_rouge_path( data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
320
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = """▁""" snake_case_ = {"""vocab_file""": """spiece.model"""} snake_case_ = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""} } snake_case_ = { """google/pegasus-xsum""": 512, } snake_case_ = logging.get_logger(__name__) class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Optional[Any] , lowercase_ :List[Any] , lowercase_ :List[Any]="<pad>" , lowercase_ :Optional[int]="</s>" , lowercase_ :Any="<unk>" , lowercase_ :Dict="<mask_2>" , lowercase_ :Dict="<mask_1>" , lowercase_ :Union[str, Any]=None , lowercase_ :Optional[Any]=1_03 , lowercase_ :Optional[Dict[str, Any]] = None , **lowercase_ :Optional[Any] , ) -> None: UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase = additional_special_tokens_extended else: UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , pad_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase = mask_token_sent UpperCAmelCase = vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # add special tokens to encoder dict UpperCAmelCase = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase__ ( self :List[str] ) -> int: return len(self.sp_model ) + self.offset def UpperCAmelCase__ ( self :int ) -> Dict[str, int]: UpperCAmelCase = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :str ) -> Any: UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self :Any , lowercase_ :List[Any] ) -> Optional[Any]: UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :str ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCAmelCase = self.sp_model.piece_to_id(lowercase_ ) return sp_id + self.offset def UpperCAmelCase__ ( self :Dict , lowercase_ :int ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCAmelCase = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase__ ( self :Dict , lowercase_ :Optional[Any] ) -> Tuple: UpperCAmelCase = [] UpperCAmelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase__ ( self :List[str] , lowercase_ :Union[str, Any]=False ) -> Any: return 1 def UpperCAmelCase__ ( self :List[Any] , lowercase_ :List[str] ) -> int: UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :List , lowercase_ :Optional[List] = None , lowercase_ :bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase__ ( self :Any , lowercase_ :Optional[Any] , lowercase_ :str=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self :Any , lowercase_ :str , lowercase_ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
78
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor __snake_case = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( '''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
320
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _UpperCAmelCase : """simple docstring""" def __init__( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple=13 , __UpperCAmelCase : int=30 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : str=3 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Optional[int]=True , __UpperCAmelCase : Any=32 , __UpperCAmelCase : int=5 , __UpperCAmelCase : int=4 , __UpperCAmelCase : List[Any]=37 , __UpperCAmelCase : Any="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Any=10 , __UpperCAmelCase : Dict=0.02 , __UpperCAmelCase : Union[str, Any]=3 , __UpperCAmelCase : Union[str, Any]=0.6 , __UpperCAmelCase : Any=None , ): '''simple docstring''' _A = parent _A = batch_size _A = image_size _A = patch_size _A = num_channels _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _A = (image_size // patch_size) ** 2 _A = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCAmelCase ( self : Any , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ): '''simple docstring''' _A = ViTMAEModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ): '''simple docstring''' _A = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = model(__UpperCAmelCase ) _A = (self.image_size // self.patch_size) ** 2 _A = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _A = 1 _A = ViTMAEForPreTraining(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() _A = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A = model(__UpperCAmelCase ) _A = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" snake_case = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () snake_case = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} snake_case = False snake_case = False snake_case = False snake_case = False def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = ViTMAEModelTester(self ) _A = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' pass def lowerCAmelCase ( self : int ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__UpperCAmelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] ): '''simple docstring''' np.random.seed(2 ) _A = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _A = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _A = torch.from_numpy(__UpperCAmelCase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _A = pt_noise super().check_pt_tf_models(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) _A = outputs[0].cpu().numpy() _A = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCAmelCase ) _A = model_class.from_pretrained(__UpperCAmelCase ) model.to(__UpperCAmelCase ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _A = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) # Make sure we don't have nans _A = after_outputs[0].cpu().numpy() _A = 0 _A = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__UpperCAmelCase , 1E-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase ( self : Any ): '''simple docstring''' pass @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ViTMAEModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def __lowercase ( ) -> Optional[int]: '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Any ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' np.random.seed(2 ) _A = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(__UpperCAmelCase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _A = ViTMAEConfig() _A = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _A = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _A = model(**__UpperCAmelCase , noise=torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase ) ) # verify the logits _A = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) _A = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(__UpperCAmelCase ) , atol=1E-4 ) )
79
"""simple docstring""" from __future__ import annotations def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ): """simple docstring""" if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
320
0
'''simple docstring''' def _UpperCamelCase ( __A ) -> None: '''simple docstring''' UpperCamelCase__ = generate_pascal_triangle(__A ) for row_idx in range(__A ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def _UpperCamelCase ( __A ) -> list[list[int]]: '''simple docstring''' if not isinstance(__A , __A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCamelCase__ = [] for current_row_idx in range(__A ): UpperCamelCase__ = populate_current_row(__A , __A ) triangle.append(__A ) return triangle def _UpperCamelCase ( __A , __A ) -> list[int]: '''simple docstring''' UpperCamelCase__ = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCamelCase__ , UpperCamelCase__ = 1, 1 for current_col_idx in range(1 , __A ): calculate_current_element( __A , __A , __A , __A ) return current_row def _UpperCamelCase ( __A , __A , __A , __A , ) -> None: '''simple docstring''' UpperCamelCase__ = triangle[current_row_idx - 1][current_col_idx - 1] UpperCamelCase__ = triangle[current_row_idx - 1][current_col_idx] UpperCamelCase__ = above_to_left_elt + above_to_right_elt def _UpperCamelCase ( __A ) -> list[list[int]]: '''simple docstring''' if not isinstance(__A , __A ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCamelCase__ = [[1]] for row_index in range(1 , __A ): UpperCamelCase__ = [0] + result[-1] + [0] UpperCamelCase__ = row_index + 1 # Calculate the number of distinct elements in a row UpperCamelCase__ = sum(divmod(__A , 2 ) ) UpperCamelCase__ = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCamelCase__ = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCamelCase__ = row_first_half + row_second_half result.append(__A ) return result def _UpperCamelCase ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(__A , __A ) -> None: UpperCamelCase__ = F'''{func.__name__}({value})''' UpperCamelCase__ = timeit(F'''__main__.{call}''' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(__A , __A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
80
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
0