code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings
from diffusers.utils import load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
__snake_case = False
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _UpperCAmelCase ( self ) -> Any:
return 12
@property
def _UpperCAmelCase ( self ) -> int:
return 12
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return 32
@property
def _UpperCAmelCase ( self ) -> str:
torch.manual_seed(0 )
_a = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , )
return model
@property
def _UpperCAmelCase ( self ) -> List[Any]:
_a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
return tokenizer
@property
def _UpperCAmelCase ( self ) -> str:
torch.manual_seed(0 )
_a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__UpperCAmelCase )
@property
def _UpperCAmelCase ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
_a = 12
_a = 12
_a = {
'''attention_bias''': True,
'''cross_attention_dim''': 32,
'''attention_head_dim''': height * width,
'''num_attention_heads''': 1,
'''num_vector_embeds''': self.num_embed,
'''num_embeds_ada_norm''': self.num_embeds_ada_norm,
'''norm_num_groups''': 32,
'''sample_size''': width,
'''activation_fn''': '''geglu-approximate''',
}
_a = TransformeraDModel(**__UpperCAmelCase )
return model
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = '''cpu'''
_a = self.dummy_vqvae
_a = self.dummy_text_encoder
_a = self.dummy_tokenizer
_a = self.dummy_transformer
_a = VQDiffusionScheduler(self.num_embed )
_a = LearnedClassifierFreeSamplingEmbeddings(learnable=__UpperCAmelCase )
_a = VQDiffusionPipeline(
vqvae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , transformer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , )
_a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_a = '''teddy bear playing in the pool'''
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_a = pipe([prompt] , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='''np''' )
_a = output.images
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_a = pipe(
[prompt] , generator=__UpperCAmelCase , output_type='''np''' , return_dict=__UpperCAmelCase , num_inference_steps=2 )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
_a = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''cpu'''
_a = self.dummy_vqvae
_a = self.dummy_text_encoder
_a = self.dummy_tokenizer
_a = self.dummy_transformer
_a = VQDiffusionScheduler(self.num_embed )
_a = LearnedClassifierFreeSamplingEmbeddings(
learnable=__UpperCAmelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length )
_a = VQDiffusionPipeline(
vqvae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , transformer=__UpperCAmelCase , scheduler=__UpperCAmelCase , learned_classifier_free_sampling_embeddings=__UpperCAmelCase , )
_a = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_a = '''teddy bear playing in the pool'''
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_a = pipe([prompt] , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='''np''' )
_a = output.images
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_a = pipe(
[prompt] , generator=__UpperCAmelCase , output_type='''np''' , return_dict=__UpperCAmelCase , num_inference_steps=2 )[0]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 24, 24, 3)
_a = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Optional[int]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self ) -> List[str]:
_a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' )
_a = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' )
_a = pipeline.to(__UpperCAmelCase )
pipeline.set_progress_bar_config(disable=__UpperCAmelCase )
# requires GPU generator for gumbel softmax
# don't use GPU generator in tests though
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(0 )
_a = pipeline(
'''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=__UpperCAmelCase , output_type='''np''' , )
_a = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image ).max() < 2.0
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
from typing import Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
__snake_case = logging.get_logger(__name__)
@add_end_docstrings(a__ )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
self.check_model_type(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> int:
_a , _a = {}, {}
if padding is not None:
_a = padding
if truncation is not None:
_a = truncation
if top_k is not None:
_a = top_k
return preprocess_params, {}, postprocess_params
def __call__( self , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ) -> Dict:
if isinstance(__UpperCAmelCase , (Image.Image, str) ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = {'''image''': image, '''question''': question}
else:
_a = image
_a = super().__call__(__UpperCAmelCase , **__UpperCAmelCase )
return results
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Tuple:
_a = load_image(inputs['''image'''] )
_a = self.tokenizer(
inputs['''question'''] , return_tensors=self.framework , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )
_a = self.image_processor(images=__UpperCAmelCase , return_tensors=self.framework )
model_inputs.update(__UpperCAmelCase )
return model_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
_a = self.model(**__UpperCAmelCase )
return model_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=5 ) -> Optional[Any]:
if top_k > self.model.config.num_labels:
_a = self.model.config.num_labels
if self.framework == "pt":
_a = model_outputs.logits.sigmoid()[0]
_a , _a = probs.topk(__UpperCAmelCase )
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
_a = scores.tolist()
_a = ids.tolist()
return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCAmelCase , __UpperCAmelCase )]
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[int], _lowerCAmelCase : Dict ):
"""simple docstring"""
_a = WavaVecaForSequenceClassification.from_pretrained(_lowerCAmelCase, config=_lowerCAmelCase )
_a = downstream_dict['''projector.weight''']
_a = downstream_dict['''projector.bias''']
_a = downstream_dict['''model.post_net.linear.weight''']
_a = downstream_dict['''model.post_net.linear.bias''']
return model
def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Any, _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = WavaVecaForAudioFrameClassification.from_pretrained(_lowerCAmelCase, config=_lowerCAmelCase )
_a = downstream_dict['''model.linear.weight''']
_a = downstream_dict['''model.linear.bias''']
return model
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_a = WavaVecaForXVector.from_pretrained(_lowerCAmelCase, config=_lowerCAmelCase )
_a = downstream_dict['''connector.weight''']
_a = downstream_dict['''connector.bias''']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
_a = downstream_dict[
f'model.framelevel_feature_extractor.module.{i}.kernel.weight'
]
_a = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias']
_a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight''']
_a = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias''']
_a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight''']
_a = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias''']
_a = downstream_dict['''objective.W''']
return model
@torch.no_grad()
def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : int, _lowerCAmelCase : Optional[int], _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
_a = torch.load(_lowerCAmelCase, map_location='''cpu''' )
_a = checkpoint['''Downstream''']
_a = WavaVecaConfig.from_pretrained(_lowerCAmelCase )
_a = WavaVecaFeatureExtractor.from_pretrained(
_lowerCAmelCase, return_attention_mask=_lowerCAmelCase, do_normalize=_lowerCAmelCase )
_a = hf_config.architectures[0]
if arch.endswith('''ForSequenceClassification''' ):
_a = convert_classification(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
elif arch.endswith('''ForAudioFrameClassification''' ):
_a = convert_diarization(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
elif arch.endswith('''ForXVector''' ):
_a = convert_xvector(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
else:
raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}' )
if hf_config.use_weighted_layer_sum:
_a = checkpoint['''Featurizer''']['''weights''']
hf_feature_extractor.save_pretrained(_lowerCAmelCase )
hf_model.save_pretrained(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.'''
)
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''')
parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''')
__snake_case = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import json
import os
from collections import Counter
import torch
import torchvision
import torchvision.transforms as transforms
from PIL import Image
from torch import nn
from torch.utils.data import Dataset
__snake_case = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)}
class __lowerCamelCase ( nn.Module ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> Optional[int]:
super().__init__()
_a = torchvision.models.resnetaaa(pretrained=__UpperCAmelCase )
_a = list(model.children() )[:-2]
_a = nn.Sequential(*__UpperCAmelCase )
_a = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int:
# Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048
_a = self.pool(self.model(__UpperCAmelCase ) )
_a = torch.flatten(__UpperCAmelCase , start_dim=2 )
_a = out.transpose(1 , 2 ).contiguous()
return out # BxNx2048
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = [json.loads(__UpperCAmelCase ) for l in open(__UpperCAmelCase )]
_a = os.path.dirname(__UpperCAmelCase )
_a = tokenizer
_a = labels
_a = len(__UpperCAmelCase )
_a = max_seq_length
_a = transforms
def __len__( self ) -> Tuple:
return len(self.data )
def __getitem__( self , __UpperCAmelCase ) -> Optional[int]:
_a = torch.LongTensor(self.tokenizer.encode(self.data[index]['''text'''] , add_special_tokens=__UpperCAmelCase ) )
_a , _a , _a = sentence[0], sentence[1:-1], sentence[-1]
_a = sentence[: self.max_seq_length]
_a = torch.zeros(self.n_classes )
_a = 1
_a = Image.open(os.path.join(self.data_dir , self.data[index]['''img'''] ) ).convert('''RGB''' )
_a = self.transforms(__UpperCAmelCase )
return {
"image_start_token": start_token,
"image_end_token": end_token,
"sentence": sentence,
"image": image,
"label": label,
}
def _UpperCAmelCase ( self ) -> List[str]:
_a = Counter()
for row in self.data:
label_freqs.update(row['''label'''] )
return label_freqs
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
_a = [len(row['''sentence'''] ) for row in batch]
_a , _a = len(_lowerCAmelCase ), max(_lowerCAmelCase )
_a = torch.zeros(_lowerCAmelCase, _lowerCAmelCase, dtype=torch.long )
_a = torch.zeros(_lowerCAmelCase, _lowerCAmelCase, dtype=torch.long )
for i_batch, (input_row, length) in enumerate(zip(_lowerCAmelCase, _lowerCAmelCase ) ):
_a = input_row['''sentence''']
_a = 1
_a = torch.stack([row['''image'''] for row in batch] )
_a = torch.stack([row['''label'''] for row in batch] )
_a = torch.stack([row['''image_start_token'''] for row in batch] )
_a = torch.stack([row['''image_end_token'''] for row in batch] )
return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor
def A_ ( ):
"""simple docstring"""
return [
"Crime",
"Drama",
"Thriller",
"Action",
"Comedy",
"Romance",
"Documentary",
"Short",
"Mystery",
"History",
"Family",
"Adventure",
"Fantasy",
"Sci-Fi",
"Western",
"Horror",
"Sport",
"War",
"Music",
"Musical",
"Animation",
"Biography",
"Film-Noir",
]
def A_ ( ):
"""simple docstring"""
return transforms.Compose(
[
transforms.Resize(2_56 ),
transforms.CenterCrop(2_24 ),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.4_6_7_7_7_0_4_4, 0.4_4_5_3_1_4_2_9, 0.4_0_6_6_1_0_1_7], std=[0.1_2_2_2_1_9_9_4, 0.1_2_1_4_5_8_3_5, 0.1_4_3_8_0_4_6_9], ),
] )
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
import re
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
if len(re.findall('''[ATCG]''', _lowerCAmelCase ) ) != len(_lowerCAmelCase ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''', '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
if len(_lowerCAmelCase ) != len(_lowerCAmelCase ):
raise ValueError('''String lengths must match!''' )
_a = 0
for chara, chara in zip(_lowerCAmelCase, _lowerCAmelCase ):
if chara != chara:
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def A_ ( _lowerCAmelCase : List[Any] ):
"""simple docstring"""
def wrapper(*_lowerCAmelCase : Union[str, Any], **_lowerCAmelCase : Any ):
_a = timeit.default_timer()
_a = func(*_lowerCAmelCase, **_lowerCAmelCase )
_a = timeit.default_timer() - starttime
return delta
_a = func.__name__
return wrapper
def A_ ( _lowerCAmelCase : dict, _lowerCAmelCase : Any=1_00, _lowerCAmelCase : List[str]=None ):
"""simple docstring"""
_a = []
_a = seq_shapes or {}
for i in range(_lowerCAmelCase ):
_a = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(_lowerCAmelCase, _ArrayXD ):
_a = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(_lowerCAmelCase, datasets.Value ):
if v.dtype == "string":
_a = '''The small grey turtle was surprisingly fast when challenged.'''
else:
_a = np.random.randint(10, size=1 ).astype(v.dtype ).item()
elif isinstance(_lowerCAmelCase, datasets.Sequence ):
while isinstance(_lowerCAmelCase, datasets.Sequence ):
_a = v.feature
_a = seq_shapes[k]
_a = np.random.rand(*_lowerCAmelCase ).astype(v.dtype )
_a = data
dummy_data.append((i, example) )
return dummy_data
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any]=1_00, _lowerCAmelCase : Any=None ):
"""simple docstring"""
_a = generate_examples(_lowerCAmelCase, num_examples=_lowerCAmelCase, seq_shapes=_lowerCAmelCase )
with ArrowWriter(features=_lowerCAmelCase, path=_lowerCAmelCase ) as writer:
for key, record in dummy_data:
_a = features.encode_example(_lowerCAmelCase )
writer.write(_lowerCAmelCase )
_a , _a = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.' )
_a = datasets.Dataset.from_file(filename=_lowerCAmelCase, info=datasets.DatasetInfo(features=_lowerCAmelCase ) )
return dataset
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['keras_nlp']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''keras_nlp'''] )
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Tuple = ['image_processor', 'tokenizer']
A_ : Union[str, Any] = 'AutoImageProcessor'
A_ : Optional[Any] = 'AutoTokenizer'
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
_a = self.image_processor
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Tuple:
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
_a = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if images is not None:
_a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_a = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _UpperCAmelCase ( self ) -> Any:
return ["input_ids", "attention_mask", "pixel_values"]
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : list, _lowerCAmelCase : list, _lowerCAmelCase : int ):
"""simple docstring"""
if len(_lowerCAmelCase ) != len(_lowerCAmelCase ):
raise ValueError('''The length of profit and weight must be same.''' )
if max_weight <= 0:
raise ValueError('''max_weight must greater than zero.''' )
if any(p < 0 for p in profit ):
raise ValueError('''Profit can not be negative.''' )
if any(w < 0 for w in weight ):
raise ValueError('''Weight can not be negative.''' )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
_a = [p / w for p, w in zip(_lowerCAmelCase, _lowerCAmelCase )]
# Creating a copy of the list and sorting profit/weight in ascending order
_a = sorted(_lowerCAmelCase )
# declaring useful variables
_a = len(_lowerCAmelCase )
_a = 0
_a = 0
_a = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
_a = sorted_profit_by_weight[length - i - 1]
_a = profit_by_weight.index(_lowerCAmelCase )
_a = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
'''Input profits, weights, and then max_weight (all positive ints) separated by '''
'''spaces.'''
)
__snake_case = [int(x) for x in input('''Input profits separated by spaces: ''').split()]
__snake_case = [int(x) for x in input('''Input weights separated by spaces: ''').split()]
__snake_case = int(input('''Max weight allowed: '''))
# Function Call
calc_profit(profit, weight, max_weight)
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def A_ ( ):
"""simple docstring"""
_a , _a = 9, 14 # noqa: F841
_a = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
_a = defaultdict(_lowerCAmelCase )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
_a = mst(_lowerCAmelCase )
_a = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
_a = tuple(answer[:2] )
_a = tuple(edge[::-1] )
assert edge in result or reverse in result
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
import inspect
import re
from hashlib import shaaaa
from typing import Dict, List
from .arrow import arrow
from .audiofolder import audiofolder
from .csv import csv
from .imagefolder import imagefolder
from .json import json
from .pandas import pandas
from .parquet import parquet
from .sql import sql # noqa F401
from .text import text
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = []
for line in lines:
_a = re.sub(R'''#.*''', '''''', _lowerCAmelCase ) # remove comments
if line:
filtered_lines.append(_lowerCAmelCase )
_a = '''\n'''.join(_lowerCAmelCase )
# Make a hash from all this code
_a = full_str.encode('''utf-8''' )
return shaaaa(_lowerCAmelCase ).hexdigest()
# get importable module names and hash for caching
__snake_case = {
'''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())),
'''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())),
'''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())),
'''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())),
'''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())),
'''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())),
'''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())),
'''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())),
}
# Used to infer the module to use based on the data files extensions
__snake_case = {
'''.csv''': ('''csv''', {}),
'''.tsv''': ('''csv''', {'''sep''': '''\t'''}),
'''.json''': ('''json''', {}),
'''.jsonl''': ('''json''', {}),
'''.parquet''': ('''parquet''', {}),
'''.arrow''': ('''arrow''', {}),
'''.txt''': ('''text''', {}),
}
_EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
_EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS})
__snake_case = {'''imagefolder''', '''audiofolder'''}
# Used to filter data files based on extensions given a module name
__snake_case = {}
for _ext, (_module, _) in _EXTENSION_TO_MODULE.items():
_MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext)
_MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''')
_MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__snake_case = '''\
@inproceedings{popovic-2015-chrf,
title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W15-3049",
doi = "10.18653/v1/W15-3049",
pages = "392--395",
}
@inproceedings{popovic-2017-chrf,
title = "chr{F}++: words helping character n-grams",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Second Conference on Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4770",
doi = "10.18653/v1/W17-4770",
pages = "612--618",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
that is already present in sacrebleu.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.
'''
__snake_case = '''
Produces ChrF(++) scores for hypotheses given reference translations.
Args:
predictions (list of str): The predicted sentences.
references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.
char_order (int): Character n-gram order. Defaults to `6`.
word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.
beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.
lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.
whitespace (bool): If `True`, include whitespaces when extracting character n-grams.
eps_smoothing (bool): If `True`, applies epsilon smoothing similar
to reference chrF++.py, NLTK and Moses implementations. If `False`,
it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.
Returns:
\'score\' (float): The chrF (chrF++) score,
\'char_order\' (int): The character n-gram order,
\'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,
\'beta\' (int): Determine the importance of recall w.r.t precision
Examples:
Example 1--a simple example of calculating chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction, references=reference)
>>> print(results)
{\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}
Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2)
>>> print(results)
{\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2,
... lowercase=True)
>>> print(results)
{\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Dict:
if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ):
raise ImportWarning(
'''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n'''
'''You can install it with `pip install "sacrebleu>=1.4.12"`.''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/mjpost/sacreBLEU#chrf--chrf''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#chrf--chrf'''] , reference_urls=[
'''https://github.com/m-popovic/chrF''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = CHRF.CHAR_ORDER , __UpperCAmelCase = CHRF.WORD_ORDER , __UpperCAmelCase = CHRF.BETA , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , ) -> Optional[int]:
_a = len(references[0] )
if any(len(__UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(__UpperCAmelCase )]
_a = CHRF(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = sb_chrf.corpus_score(__UpperCAmelCase , __UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
__snake_case = None
try:
import msvcrt
except ImportError:
__snake_case = None
try:
import fcntl
except ImportError:
__snake_case = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
__snake_case = OSError
# Data
# ------------------------------------------------
__snake_case = [
'''Timeout''',
'''BaseFileLock''',
'''WindowsFileLock''',
'''UnixFileLock''',
'''SoftFileLock''',
'''FileLock''',
]
__snake_case = '''3.0.12'''
__snake_case = None
def A_ ( ):
"""simple docstring"""
global _logger
_a = _logger or logging.getLogger(__name__ )
return _logger
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> int:
_a = lock_file
return None
def __str__( self ) -> int:
_a = F'The file lock \'{self.lock_file}\' could not be acquired.'
return temp
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> List[Any]:
_a = lock
return None
def __enter__( self ) -> Optional[int]:
return self.lock
def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
self.lock.release()
return None
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ) -> Any:
_a = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
_a = self.hash_filename_if_too_long(__UpperCAmelCase , __UpperCAmelCase )
# The path to the lock file.
_a = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
_a = None
# The default timeout value.
_a = timeout
# We use this lock primarily for the lock counter.
_a = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
_a = 0
return None
@property
def _UpperCAmelCase ( self ) -> str:
return self._lock_file
@property
def _UpperCAmelCase ( self ) -> List[Any]:
return self._timeout
@timeout.setter
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
_a = float(__UpperCAmelCase )
return None
def _UpperCAmelCase ( self ) -> Dict:
raise NotImplementedError()
def _UpperCAmelCase ( self ) -> Optional[Any]:
raise NotImplementedError()
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
return self._lock_file_fd is not None
def _UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=0.05 ) -> str:
# Use the default timeout, if no timeout is provided.
if timeout is None:
_a = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
_a = id(self )
_a = self._lock_file
_a = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(F'Attempting to acquire lock {lock_id} on {lock_filename}' )
self._acquire()
if self.is_locked:
logger().debug(F'Lock {lock_id} acquired on {lock_filename}' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(F'Timeout on acquiring lock {lock_id} on {lock_filename}' )
raise Timeout(self._lock_file )
else:
logger().debug(
F'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' )
time.sleep(__UpperCAmelCase )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
_a = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def _UpperCAmelCase ( self , __UpperCAmelCase=False ) -> Dict:
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
_a = id(self )
_a = self._lock_file
logger().debug(F'Attempting to release lock {lock_id} on {lock_filename}' )
self._release()
_a = 0
logger().debug(F'Lock {lock_id} released on {lock_filename}' )
return None
def __enter__( self ) -> Optional[int]:
self.acquire()
return self
def __exit__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
self.release()
return None
def __del__( self ) -> List[str]:
self.release(force=__UpperCAmelCase )
return None
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = os.path.basename(__UpperCAmelCase )
if len(__UpperCAmelCase ) > max_length and max_length > 0:
_a = os.path.dirname(__UpperCAmelCase )
_a = str(hash(__UpperCAmelCase ) )
_a = filename[: max_length - len(__UpperCAmelCase ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(__UpperCAmelCase , __UpperCAmelCase )
else:
return path
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ) -> str:
from .file_utils import relative_to_absolute_path
super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase )
_a = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
_a = os.open(self._lock_file , __UpperCAmelCase )
except OSError:
pass
else:
try:
msvcrt.locking(__UpperCAmelCase , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(__UpperCAmelCase )
else:
_a = fd
return None
def _UpperCAmelCase ( self ) -> str:
_a = self._lock_file_fd
_a = None
msvcrt.locking(__UpperCAmelCase , msvcrt.LK_UNLCK , 1 )
os.close(__UpperCAmelCase )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=-1 , __UpperCAmelCase=None ) -> Dict:
_a = os.statvfs(os.path.dirname(__UpperCAmelCase ) ).f_namemax
super().__init__(__UpperCAmelCase , timeout=__UpperCAmelCase , max_filename_length=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
_a = os.O_RDWR | os.O_CREAT | os.O_TRUNC
_a = os.open(self._lock_file , __UpperCAmelCase )
try:
fcntl.flock(__UpperCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(__UpperCAmelCase )
else:
_a = fd
return None
def _UpperCAmelCase ( self ) -> List[Any]:
# Do not remove the lockfile:
#
# https://github.com/benediktschmitt/py-filelock/issues/31
# https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition
_a = self._lock_file_fd
_a = None
fcntl.flock(__UpperCAmelCase , fcntl.LOCK_UN )
os.close(__UpperCAmelCase )
return None
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> int:
_a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
_a = os.open(self._lock_file , __UpperCAmelCase )
except OSError:
pass
else:
_a = fd
return None
def _UpperCAmelCase ( self ) -> Optional[int]:
os.close(self._lock_file_fd )
_a = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
__snake_case = None
if msvcrt:
__snake_case = WindowsFileLock
elif fcntl:
__snake_case = UnixFileLock
else:
__snake_case = SoftFileLock
if warnings is not None:
warnings.warn('''only soft file lock is available''')
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
__snake_case = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
__snake_case = [ord(letter) for letter in string.ascii_lowercase]
__snake_case = {ord(char) for char in VALID_CHARS}
__snake_case = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A_ ( _lowerCAmelCase : list[int], _lowerCAmelCase : tuple[int, ...] ):
"""simple docstring"""
_a = ""
_a = 42
_a = 42
_a = 42
for keychar, cipherchar in zip(cycle(_lowerCAmelCase ), _lowerCAmelCase ):
_a = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(_lowerCAmelCase )
return decoded
def A_ ( _lowerCAmelCase : list[int] ):
"""simple docstring"""
_a = []
for key in product(_lowerCAmelCase, repeat=3 ):
_a = try_key(_lowerCAmelCase, _lowerCAmelCase )
if encoded is not None:
possibles.append(_lowerCAmelCase )
return possibles
def A_ ( _lowerCAmelCase : list[str], _lowerCAmelCase : str ):
"""simple docstring"""
return [possible for possible in possibles if common_word in possible.lower()]
def A_ ( _lowerCAmelCase : str = "p059_cipher.txt" ):
"""simple docstring"""
_a = 42
_a = 42
_a = 42
_a = 42
_a = Path(_lowerCAmelCase ).parent.joinpath(_lowerCAmelCase ).read_text(encoding='''utf-8''' )
_a = [int(_lowerCAmelCase ) for number in data.strip().split(''',''' )]
_a = filter_valid_chars(_lowerCAmelCase )
for common_word in COMMON_WORDS:
_a = filter_common_word(_lowerCAmelCase, _lowerCAmelCase )
if len(_lowerCAmelCase ) == 1:
break
_a = possibles[0]
return sum(ord(_lowerCAmelCase ) for char in decoded_text )
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
'''constant''': get_constant_schedule,
'''constant_w_warmup''': get_constant_schedule_with_warmup,
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
if config is None:
assert isinstance(self.model , __UpperCAmelCase ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
F' {self.model.__class__}'
)
_a = self.model.config
else:
_a = config
_a = data_args
_a = self.config.tgt_vocab_size if isinstance(self.config , __UpperCAmelCase ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
F'The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for'
''' padding..''' )
if self.args.label_smoothing == 0:
_a = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
_a = label_smoothed_nll_loss
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
if self.optimizer is None:
_a = ['''bias''', '''LayerNorm.weight''']
_a = [
{
'''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
'''weight_decay''': self.args.weight_decay,
},
{
'''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
_a = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
_a = Adafactor
_a = {'''scale_parameter''': False, '''relative_step''': False}
else:
_a = AdamW
_a = {
'''betas''': (self.args.adam_betaa, self.args.adam_betaa),
'''eps''': self.args.adam_epsilon,
}
_a = self.args.learning_rate
if self.sharded_ddp:
_a = OSS(
params=__UpperCAmelCase , optim=__UpperCAmelCase , **__UpperCAmelCase , )
else:
_a = optimizer_cls(__UpperCAmelCase , **__UpperCAmelCase )
if self.lr_scheduler is None:
_a = self._get_lr_scheduler(__UpperCAmelCase )
else: # ignoring --lr_scheduler
logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
_a = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
_a = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
_a = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps )
else:
_a = schedule_func(
self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__UpperCAmelCase )
return scheduler
def _UpperCAmelCase ( self ) -> Optional[torch.utils.data.Sampler]:
if isinstance(self.train_dataset , torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , )
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
_a = model(**__UpperCAmelCase , use_cache=__UpperCAmelCase )[0]
_a = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) )
else:
# compute usual loss via models
_a , _a = model(**__UpperCAmelCase , labels=__UpperCAmelCase , use_cache=__UpperCAmelCase )[:2]
else:
# compute label smoothed loss
_a = model(**__UpperCAmelCase , use_cache=__UpperCAmelCase )[0]
_a = torch.nn.functional.log_softmax(__UpperCAmelCase , dim=-1 )
_a , _a = self.loss_fn(__UpperCAmelCase , __UpperCAmelCase , self.args.label_smoothing , ignore_index=self.config.pad_token_id )
return loss, logits
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
_a = inputs.pop('''labels''' )
_a , _a = self._compute_loss(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return loss
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
_a = self._prepare_inputs(__UpperCAmelCase )
_a = {
'''max_length''': self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
'''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
_a = self.model.generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **__UpperCAmelCase , )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
_a = self._pad_tensors_to_max_len(__UpperCAmelCase , gen_kwargs['''max_length'''] )
_a = inputs.pop('''labels''' )
with torch.no_grad():
# compute loss on predict data
_a , _a = self._compute_loss(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
_a = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
_a = self._pad_tensors_to_max_len(__UpperCAmelCase , gen_kwargs['''max_length'''] )
return (loss, logits, labels)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
# If PAD token is not defined at least EOS token has to be defined
_a = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
'''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be'''
F' padded to `max_length`={max_length}' )
_a = pad_token_id * torch.ones(
(tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device )
_a = tensor
return padded_tensor
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__snake_case = {
'''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''],
'''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''MaskFormerFeatureExtractor''']
__snake_case = ['''MaskFormerImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MaskFormerForInstanceSegmentation''',
'''MaskFormerModel''',
'''MaskFormerPreTrainedModel''',
]
__snake_case = [
'''MaskFormerSwinBackbone''',
'''MaskFormerSwinModel''',
'''MaskFormerSwinPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def _UpperCAmelCase ( self ) -> Any:
_a , _a = FlaxStableDiffusionPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2''' , revision='''bf16''' , dtype=jnp.bfloataa , )
_a = '''A painting of a squirrel eating a burger'''
_a = jax.device_count()
_a = num_samples * [prompt]
_a = sd_pipe.prepare_inputs(__UpperCAmelCase )
_a = replicate(__UpperCAmelCase )
_a = shard(__UpperCAmelCase )
_a = jax.random.PRNGKey(0 )
_a = jax.random.split(__UpperCAmelCase , jax.device_count() )
_a = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=25 , jit=__UpperCAmelCase )[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
_a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
_a = images[0, 253:256, 253:256, -1]
_a = jnp.asarray(jax.device_get(image_slice.flatten() ) )
_a = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] )
print(F'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
def _UpperCAmelCase ( self ) -> int:
_a = '''stabilityai/stable-diffusion-2'''
_a , _a = FlaxDPMSolverMultistepScheduler.from_pretrained(__UpperCAmelCase , subfolder='''scheduler''' )
_a , _a = FlaxStableDiffusionPipeline.from_pretrained(
__UpperCAmelCase , scheduler=__UpperCAmelCase , revision='''bf16''' , dtype=jnp.bfloataa , )
_a = scheduler_params
_a = '''A painting of a squirrel eating a burger'''
_a = jax.device_count()
_a = num_samples * [prompt]
_a = sd_pipe.prepare_inputs(__UpperCAmelCase )
_a = replicate(__UpperCAmelCase )
_a = shard(__UpperCAmelCase )
_a = jax.random.PRNGKey(0 )
_a = jax.random.split(__UpperCAmelCase , jax.device_count() )
_a = sd_pipe(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , num_inference_steps=25 , jit=__UpperCAmelCase )[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
_a = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
_a = images[0, 253:256, 253:256, -1]
_a = jnp.asarray(jax.device_get(image_slice.flatten() ) )
_a = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] )
print(F'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
import numpy as np
def A_ ( _lowerCAmelCase : list[float] ):
"""simple docstring"""
return np.maximum(0, _lowerCAmelCase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
import math
def A_ ( ):
"""simple docstring"""
_a = input('''Enter message: ''' )
_a = int(input(f'Enter key [2-{len(_lowerCAmelCase ) - 1}]: ' ) )
_a = input('''Encryption/Decryption [e/d]: ''' )
if mode.lower().startswith('''e''' ):
_a = encrypt_message(_lowerCAmelCase, _lowerCAmelCase )
elif mode.lower().startswith('''d''' ):
_a = decrypt_message(_lowerCAmelCase, _lowerCAmelCase )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(f'Output:\n{text + "|"}' )
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [''''''] * key
for col in range(_lowerCAmelCase ):
_a = col
while pointer < len(_lowerCAmelCase ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(_lowerCAmelCase )
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : str ):
"""simple docstring"""
_a = math.ceil(len(_lowerCAmelCase ) / key )
_a = key
_a = (num_cols * num_rows) - len(_lowerCAmelCase )
_a = [''''''] * num_cols
_a = 0
_a = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
_a = 0
row += 1
return "".join(_lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int, _lowerCAmelCase : list[list[int]] ):
"""simple docstring"""
def update_area_of_max_square(_lowerCAmelCase : int, _lowerCAmelCase : int ) -> int:
# BASE CASE
if row >= rows or col >= cols:
return 0
_a = update_area_of_max_square(_lowerCAmelCase, col + 1 )
_a = update_area_of_max_square(row + 1, col + 1 )
_a = update_area_of_max_square(row + 1, _lowerCAmelCase )
if mat[row][col]:
_a = 1 + min([right, diagonal, down] )
_a = max(largest_square_area[0], _lowerCAmelCase )
return sub_problem_sol
else:
return 0
_a = [0]
update_area_of_max_square(0, 0 )
return largest_square_area[0]
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int, _lowerCAmelCase : list[list[int]] ):
"""simple docstring"""
def update_area_of_max_square_using_dp_array(
_lowerCAmelCase : int, _lowerCAmelCase : int, _lowerCAmelCase : list[list[int]] ) -> int:
if row >= rows or col >= cols:
return 0
if dp_array[row][col] != -1:
return dp_array[row][col]
_a = update_area_of_max_square_using_dp_array(_lowerCAmelCase, col + 1, _lowerCAmelCase )
_a = update_area_of_max_square_using_dp_array(row + 1, col + 1, _lowerCAmelCase )
_a = update_area_of_max_square_using_dp_array(row + 1, _lowerCAmelCase, _lowerCAmelCase )
if mat[row][col]:
_a = 1 + min([right, diagonal, down] )
_a = max(largest_square_area[0], _lowerCAmelCase )
_a = sub_problem_sol
return sub_problem_sol
else:
return 0
_a = [0]
_a = [[-1] * cols for _ in range(_lowerCAmelCase )]
update_area_of_max_square_using_dp_array(0, 0, _lowerCAmelCase )
return largest_square_area[0]
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int, _lowerCAmelCase : list[list[int]] ):
"""simple docstring"""
_a = [[0] * (cols + 1) for _ in range(rows + 1 )]
_a = 0
for row in range(rows - 1, -1, -1 ):
for col in range(cols - 1, -1, -1 ):
_a = dp_array[row][col + 1]
_a = dp_array[row + 1][col + 1]
_a = dp_array[row + 1][col]
if mat[row][col] == 1:
_a = 1 + min(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = max(dp_array[row][col], _lowerCAmelCase )
else:
_a = 0
return largest_square_area
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int, _lowerCAmelCase : list[list[int]] ):
"""simple docstring"""
_a = [0] * (cols + 1)
_a = [0] * (cols + 1)
_a = 0
for row in range(rows - 1, -1, -1 ):
for col in range(cols - 1, -1, -1 ):
_a = current_row[col + 1]
_a = next_row[col + 1]
_a = next_row[col]
if mat[row][col] == 1:
_a = 1 + min(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = max(current_row[col], _lowerCAmelCase )
else:
_a = 0
_a = current_row
return largest_square_area
if __name__ == "__main__":
import doctest
doctest.testmod()
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = ['image_processor', 'tokenizer']
A_ : Optional[int] = 'OwlViTImageProcessor'
A_ : Any = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[Any]:
_a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __UpperCAmelCase , )
_a = kwargs.pop('''feature_extractor''' )
_a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ) -> Tuple:
if text is None and query_images is None and images is None:
raise ValueError(
'''You have to specify at least one text or query image or image. All three cannot be none.''' )
if text is not None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )):
_a = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )]
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ):
_a = []
# Maximum number of queries across batch
_a = max([len(__UpperCAmelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__UpperCAmelCase ) != max_num_queries:
_a = t + [''' '''] * (max_num_queries - len(__UpperCAmelCase ))
_a = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
encodings.append(__UpperCAmelCase )
else:
raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' )
if return_tensors == "np":
_a = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
_a = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
_a = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
_a = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
_a = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 )
_a = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
_a = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
_a = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
else:
raise ValueError('''Target return tensor type could not be returned''' )
_a = BatchEncoding()
_a = input_ids
_a = attention_mask
if query_images is not None:
_a = BatchEncoding()
_a = self.image_processor(
__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values
_a = query_pixel_values
if images is not None:
_a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
_a = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
_a = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def _UpperCAmelCase ( self ) -> str:
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , )
return self.image_processor_class
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , )
return self.image_processor
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
_a = 0
while num > 0:
digit_sum += num % 10
num //= 10
return digit_sum
def A_ ( _lowerCAmelCase : int = 1_00 ):
"""simple docstring"""
_a = 1
_a = 2
for i in range(2, max_n + 1 ):
_a = pre_numerator
_a = 2 * i // 3 if i % 3 == 0 else 1
_a = cur_numerator
_a = e_cont * pre_numerator + temp
return sum_digits(_lowerCAmelCase )
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import YolosImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=True , __UpperCAmelCase=1 / 255 , __UpperCAmelCase=True , ) -> Optional[int]:
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
_a = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_a = parent
_a = batch_size
_a = num_channels
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
_a = image_mean
_a = image_std
_a = do_rescale
_a = rescale_factor
_a = do_pad
def _UpperCAmelCase ( self ) -> Optional[int]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> List[str]:
if not batched:
_a = image_inputs[0]
if isinstance(__UpperCAmelCase , Image.Image ):
_a , _a = image.size
else:
_a , _a = image.shape[1], image.shape[2]
if w < h:
_a = int(self.size['''shortest_edge'''] * h / w )
_a = self.size['''shortest_edge''']
elif w > h:
_a = self.size['''shortest_edge''']
_a = int(self.size['''shortest_edge'''] * w / h )
else:
_a = self.size['''shortest_edge''']
_a = self.size['''shortest_edge''']
else:
_a = []
for image in image_inputs:
_a , _a = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[0] )[0]
_a = max(__UpperCAmelCase , key=lambda __UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : List[Any] = YolosImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> int:
_a = YolosImageProcessingTester(self )
@property
def _UpperCAmelCase ( self ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) )
def _UpperCAmelCase ( self ) -> List[Any]:
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , __UpperCAmelCase )
_a = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCAmelCase )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
pass
def _UpperCAmelCase ( self ) -> int:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase )
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _UpperCAmelCase ( self ) -> Optional[Any]:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , np.ndarray )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
_a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _UpperCAmelCase ( self ) -> Optional[int]:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
_a , _a = self.image_processor_tester.get_expected_values(__UpperCAmelCase , batched=__UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# Initialize image_processings
_a = self.image_processing_class(**self.image_processor_dict )
_a = self.image_processing_class(do_resize=__UpperCAmelCase , do_normalize=__UpperCAmelCase , do_rescale=__UpperCAmelCase )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
# Test whether the method "pad" and calling the image processor return the same tensors
_a = image_processing_a.pad(__UpperCAmelCase , return_tensors='''pt''' )
_a = image_processing_a(__UpperCAmelCase , return_tensors='''pt''' )
self.assertTrue(
torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) )
@slow
def _UpperCAmelCase ( self ) -> str:
# prepare image and target
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_a = json.loads(f.read() )
_a = {'''image_id''': 39769, '''annotations''': target}
# encode them
_a = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' )
_a = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , return_tensors='''pt''' )
# verify pixel values
_a = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase )
_a = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1e-4 ) )
# verify area
_a = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) )
# verify boxes
_a = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase )
_a = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1e-3 ) )
# verify image_id
_a = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) )
# verify is_crowd
_a = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) )
# verify class_labels
_a = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) )
# verify orig_size
_a = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) )
# verify size
_a = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) )
@slow
def _UpperCAmelCase ( self ) -> Dict:
# prepare image, target and masks_path
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_a = json.loads(f.read() )
_a = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_a = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_a = YolosImageProcessor(format='''coco_panoptic''' )
_a = image_processing(images=__UpperCAmelCase , annotations=__UpperCAmelCase , masks_path=__UpperCAmelCase , return_tensors='''pt''' )
# verify pixel values
_a = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , __UpperCAmelCase )
_a = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , __UpperCAmelCase , atol=1e-4 ) )
# verify area
_a = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , __UpperCAmelCase ) )
# verify boxes
_a = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , __UpperCAmelCase )
_a = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , __UpperCAmelCase , atol=1e-3 ) )
# verify image_id
_a = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , __UpperCAmelCase ) )
# verify is_crowd
_a = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , __UpperCAmelCase ) )
# verify class_labels
_a = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , __UpperCAmelCase ) )
# verify masks
_a = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , __UpperCAmelCase )
# verify orig_size
_a = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , __UpperCAmelCase ) )
# verify size
_a = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , __UpperCAmelCase ) )
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__snake_case = {
'''configuration_groupvit''': [
'''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''GroupViTConfig''',
'''GroupViTOnnxConfig''',
'''GroupViTTextConfig''',
'''GroupViTVisionConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GroupViTModel''',
'''GroupViTPreTrainedModel''',
'''GroupViTTextModel''',
'''GroupViTVisionModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFGroupViTModel''',
'''TFGroupViTPreTrainedModel''',
'''TFGroupViTTextModel''',
'''TFGroupViTVisionModel''',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : int ):
"""simple docstring"""
_a = 1 # To kept the Calculated Value
# Since C(n, k) = C(n, n-k)
if k > (n - k):
_a = n - k
# Calculate C(n,k)
for i in range(_lowerCAmelCase ):
result *= n - i
result //= i + 1
return result
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
return binomial_coefficient(2 * node_count, _lowerCAmelCase ) // (node_count + 1)
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
if n < 0:
raise ValueError('''factorial() not defined for negative values''' )
_a = 1
for i in range(1, n + 1 ):
result *= i
return result
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
return catalan_number(_lowerCAmelCase ) * factorial(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = int(input('''Enter the number of nodes: ''').strip() or 0)
if node_count <= 0:
raise ValueError('''We need some nodes to work with.''')
print(
f'Given {node_count} nodes, there are {binary_tree_count(node_count)} '
f'binary trees and {catalan_number(node_count)} binary search trees.'
)
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
import math
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float ):
"""simple docstring"""
if (
not isinstance(_lowerCAmelCase, (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * power_factor
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float ):
"""simple docstring"""
if (
not isinstance(_lowerCAmelCase, (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('''power_factor must be a valid float value between -1 and 1.''' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
_a = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_a = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
_a = 4
_a = 48
_a = '''pixelshuffle_aux'''
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_a = [6, 6, 6, 6]
_a = 60
_a = [6, 6, 6, 6]
_a = '''pixelshuffledirect'''
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_a = 4
_a = '''nearest+conv'''
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
_a = 1
_a = 1
_a = 1_26
_a = 7
_a = 2_5_5.0
_a = ''''''
return config
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if "patch_embed.proj" in name and "layers" not in name:
_a = name.replace('''patch_embed.proj''', '''embeddings.patch_embeddings.projection''' )
if "patch_embed.norm" in name:
_a = name.replace('''patch_embed.norm''', '''embeddings.patch_embeddings.layernorm''' )
if "layers" in name:
_a = name.replace('''layers''', '''encoder.stages''' )
if "residual_group.blocks" in name:
_a = name.replace('''residual_group.blocks''', '''layers''' )
if "attn.proj" in name:
_a = name.replace('''attn.proj''', '''attention.output.dense''' )
if "attn" in name:
_a = name.replace('''attn''', '''attention.self''' )
if "norm1" in name:
_a = name.replace('''norm1''', '''layernorm_before''' )
if "norm2" in name:
_a = name.replace('''norm2''', '''layernorm_after''' )
if "mlp.fc1" in name:
_a = name.replace('''mlp.fc1''', '''intermediate.dense''' )
if "mlp.fc2" in name:
_a = name.replace('''mlp.fc2''', '''output.dense''' )
if "q_bias" in name:
_a = name.replace('''q_bias''', '''query.bias''' )
if "k_bias" in name:
_a = name.replace('''k_bias''', '''key.bias''' )
if "v_bias" in name:
_a = name.replace('''v_bias''', '''value.bias''' )
if "cpb_mlp" in name:
_a = name.replace('''cpb_mlp''', '''continuous_position_bias_mlp''' )
if "patch_embed.proj" in name:
_a = name.replace('''patch_embed.proj''', '''patch_embed.projection''' )
if name == "norm.weight":
_a = '''layernorm.weight'''
if name == "norm.bias":
_a = '''layernorm.bias'''
if "conv_first" in name:
_a = name.replace('''conv_first''', '''first_convolution''' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
_a = name.replace('''conv_last''', '''final_convolution''' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
_a = name.replace('''conv_before_upsample.0''', '''conv_before_upsample''' )
if "upsample.0" in name:
_a = name.replace('''upsample.0''', '''upsample.convolution_0''' )
if "upsample.2" in name:
_a = name.replace('''upsample.2''', '''upsample.convolution_1''' )
_a = '''upsample.''' + name
elif config.upsampler == "pixelshuffledirect":
_a = name.replace('''upsample.0.weight''', '''upsample.conv.weight''' )
_a = name.replace('''upsample.0.bias''', '''upsample.conv.bias''' )
else:
pass
else:
_a = '''swin2sr.''' + name
return name
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : List[Any] ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
_a = orig_state_dict.pop(_lowerCAmelCase )
if "qkv" in key:
_a = key.split('''.''' )
_a = int(key_split[1] )
_a = int(key_split[4] )
_a = config.embed_dim
if "weight" in key:
_a = val[:dim, :]
_a = val[dim : dim * 2, :]
_a = val[-dim:, :]
else:
_a = val[:dim]
_a = val[dim : dim * 2]
_a = val[-dim:]
pass
else:
_a = val
return orig_state_dict
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
_a = get_config(_lowerCAmelCase )
_a = SwinaSRForImageSuperResolution(_lowerCAmelCase )
model.eval()
_a = torch.hub.load_state_dict_from_url(_lowerCAmelCase, map_location='''cpu''' )
_a = convert_state_dict(_lowerCAmelCase, _lowerCAmelCase )
_a , _a = model.load_state_dict(_lowerCAmelCase, strict=_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
raise ValueError('''Missing keys when converting: {}'''.format(_lowerCAmelCase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'Unexpected key {key} in state_dict' )
# verify values
_a = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'''
_a = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw ).convert('''RGB''' )
_a = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
_a = 1_26 if '''Jpeg''' in checkpoint_url else 2_56
_a = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
_a = transforms(_lowerCAmelCase ).unsqueeze(0 )
if config.num_channels == 1:
_a = pixel_values[:, 0, :, :].unsqueeze(1 )
_a = model(_lowerCAmelCase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
_a = torch.Size([1, 3, 5_12, 5_12] )
_a = torch.tensor(
[[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_a = torch.Size([1, 3, 10_24, 10_24] )
_a = torch.tensor(
[[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
_a = torch.Size([1, 3, 10_24, 10_24] )
_a = torch.tensor(
[[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_a = torch.Size([1, 3, 5_12, 5_12] )
_a = torch.tensor(
[[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_a = torch.Size([1, 3, 10_24, 10_24] )
_a = torch.tensor(
[[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowerCAmelCase, atol=1e-3 )
print('''Looks ok!''' )
_a = {
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': (
'''swin2SR-classical-sr-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': (
'''swin2SR-classical-sr-x4-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': (
'''swin2SR-compressed-sr-x4-48'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': (
'''swin2SR-lightweight-x2-64'''
),
'''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': (
'''swin2SR-realworld-sr-x4-64-bsrgan-psnr'''
),
}
_a = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_lowerCAmelCase )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub(f'caidas/{model_name}' )
processor.push_to_hub(f'caidas/{model_name}' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
__snake_case = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=224 , __UpperCAmelCase=1000 , __UpperCAmelCase=[3, 3, 6, 4] , __UpperCAmelCase=[48, 56, 112, 220] , ) -> str:
_a = parent
_a = batch_size
_a = num_channels
_a = is_training
_a = use_labels
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = num_labels
_a = image_size
_a = layer_depths
_a = embed_dims
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.num_labels )
_a = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> List[str]:
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='''gelu''' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__UpperCAmelCase , layer_scale_init_value=1e-5 , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
_a = SwiftFormerModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = self.num_labels
_a = SwiftFormerForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
_a = SwiftFormerForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self ) -> List[str]:
((_a) , (_a) , (_a)) = self.prepare_config_and_inputs()
_a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Dict = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
A_ : Optional[int] = (
{'feature-extraction': SwiftFormerModel, 'image-classification': SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
A_ : Dict = False
A_ : List[Any] = False
A_ : Any = False
A_ : Optional[int] = False
A_ : Optional[int] = False
def _UpperCAmelCase ( self ) -> List[str]:
_a = SwiftFormerModelTester(self )
_a = ConfigTester(
self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def _UpperCAmelCase ( self ) -> Any:
self.config_tester.run_common_tests()
@unittest.skip(reason='''SwiftFormer does not use inputs_embeds''' )
def _UpperCAmelCase ( self ) -> Optional[Any]:
pass
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def _UpperCAmelCase ( self ) -> List[str]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a = [*signature.parameters.keys()]
_a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> str:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Tuple:
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = SwiftFormerModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@unittest.skip(reason='''SwiftFormer does not output attentions''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
def _UpperCAmelCase ( self ) -> Any:
def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
_a = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
with torch.no_grad():
_a = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
_a = outputs.hidden_states
_a = 8
self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(__UpperCAmelCase ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_a = True
check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
def _config_zero_init(__UpperCAmelCase ):
_a = copy.deepcopy(__UpperCAmelCase )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(__UpperCAmelCase , __UpperCAmelCase , 1e-1_0 )
if isinstance(getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ):
_a = _config_zero_init(getattr(__UpperCAmelCase , __UpperCAmelCase ) )
setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return configs_no_init
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
_a = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
pass
def A_ ( ):
"""simple docstring"""
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _UpperCAmelCase ( self ) -> List[Any]:
return ViTImageProcessor.from_pretrained('''MBZUAI/swiftformer-xs''' ) if is_vision_available() else None
@slow
def _UpperCAmelCase ( self ) -> Dict:
_a = SwiftFormerForImageClassification.from_pretrained('''MBZUAI/swiftformer-xs''' ).to(__UpperCAmelCase )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_a = model(**__UpperCAmelCase )
# verify the logits
_a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
_a = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
import argparse
__snake_case = '''docs/source/_static/js/custom.js'''
def A_ ( _lowerCAmelCase : Tuple ):
"""simple docstring"""
with open(_lowerCAmelCase, encoding='''utf-8''', newline='''\n''' ) as f:
_a = f.readlines()
_a = 0
# First let's put the right version
while not lines[index].startswith('''const stableVersion =''' ):
index += 1
_a = f'const stableVersion = "v{version}"\n'
# Then update the dictionary
while not lines[index].startswith('''const versionMapping = {''' ):
index += 1
# We go until the end
while not lines[index].startswith('''}''' ):
index += 1
# We add the new version at the end
lines[index - 1] += f' "v{version}": "v{version}",\n'
with open(_lowerCAmelCase, '''w''', encoding='''utf-8''', newline='''\n''' ) as f:
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--version''', help='''Release version.''')
__snake_case = parser.parse_args()
update_custom_js(args.version)
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''',
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[int] = 'wav2vec2'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="sum" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=(512, 512, 512, 512, 1500) , __UpperCAmelCase=(5, 3, 3, 1, 1) , __UpperCAmelCase=(1, 2, 3, 1, 1) , __UpperCAmelCase=512 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[int]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# adapter
_a = add_adapter
_a = adapter_kernel_size
_a = adapter_stride
_a = num_adapter_layers
_a = output_hidden_size or hidden_size
_a = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_a = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = xvector_output_dim
@property
def _UpperCAmelCase ( self ) -> List[Any]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
__snake_case = logging.get_logger(__name__)
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : str ):
"""simple docstring"""
_a = nn.functional.normalize(_lowerCAmelCase )
_a = nn.functional.normalize(_lowerCAmelCase )
return torch.mm(_lowerCAmelCase, normalized_text_embeds.t() )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = CLIPConfig
A_ : str = ['CLIPEncoderLayer']
def __init__( self , __UpperCAmelCase ) -> Optional[Any]:
super().__init__(__UpperCAmelCase )
_a = CLIPVisionModel(config.vision_config )
_a = nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__UpperCAmelCase )
_a = nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__UpperCAmelCase )
_a = nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__UpperCAmelCase )
_a = nn.Parameter(torch.ones(17 ) , requires_grad=__UpperCAmelCase )
_a = nn.Parameter(torch.ones(3 ) , requires_grad=__UpperCAmelCase )
@torch.no_grad()
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
_a = self.vision_model(__UpperCAmelCase )[1] # pooled_output
_a = self.visual_projection(__UpperCAmelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
_a = cosine_distance(__UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy()
_a = cosine_distance(__UpperCAmelCase , self.concept_embeds ).cpu().float().numpy()
_a = []
_a = image_embeds.shape[0]
for i in range(__UpperCAmelCase ):
_a = {'''special_scores''': {}, '''special_care''': [], '''concept_scores''': {}, '''bad_concepts''': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
_a = 0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
_a = special_cos_dist[i][concept_idx]
_a = self.special_care_embeds_weights[concept_idx].item()
_a = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['''special_scores'''][concept_idx]} )
_a = 0.01
for concept_idx in range(len(cos_dist[0] ) ):
_a = cos_dist[i][concept_idx]
_a = self.concept_embeds_weights[concept_idx].item()
_a = round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(__UpperCAmelCase )
result.append(__UpperCAmelCase )
_a = [len(res['''bad_concepts'''] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
_a = self.vision_model(__UpperCAmelCase )[1] # pooled_output
_a = self.visual_projection(__UpperCAmelCase )
_a = cosine_distance(__UpperCAmelCase , self.special_care_embeds )
_a = cosine_distance(__UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
_a = 0.0
_a = special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
_a = torch.any(special_scores > 0 , dim=1 )
_a = special_care * 0.01
_a = special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
_a = (cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
_a = torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from transformers import BeitConfig
from transformers.testing_utils import require_flax, require_vision, slow
from transformers.utils import cached_property, is_flax_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor
if is_flax_available():
import jax
from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , ) -> Dict:
_a = parent
_a = vocab_size
_a = batch_size
_a = image_size
_a = patch_size
_a = num_channels
_a = is_training
_a = use_labels
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = type_sequence_label_size
_a = initializer_range
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_a = (image_size // patch_size) ** 2
_a = num_patches + 1
def _UpperCAmelCase ( self ) -> Any:
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
return config, pixel_values, labels
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = FlaxBeitModel(config=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
_a = FlaxBeitForMaskedImageModeling(config=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
_a = self.type_sequence_label_size
_a = FlaxBeitForImageClassification(config=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_a = 1
_a = FlaxBeitForImageClassification(__UpperCAmelCase )
_a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_a = model(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : str = (
(FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else ()
)
def _UpperCAmelCase ( self ) -> None:
_a = FlaxBeitModelTester(self )
_a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def _UpperCAmelCase ( self ) -> Tuple:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> List[str]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a = [*signature.parameters.keys()]
_a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_a = model_class(__UpperCAmelCase )
@jax.jit
def model_jitted(__UpperCAmelCase , **__UpperCAmelCase ):
return model(pixel_values=__UpperCAmelCase , **__UpperCAmelCase )
with self.subTest('''JIT Enabled''' ):
_a = model_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_a = model_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
for model_class_name in self.all_model_classes:
_a = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' )
_a = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(__UpperCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_vision
@require_flax
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _UpperCAmelCase ( self ) -> Tuple:
return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None
@slow
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=__UpperCAmelCase , return_tensors='''np''' ).pixel_values
# prepare bool_masked_pos
_a = np.ones((1, 196) , dtype=__UpperCAmelCase )
# forward pass
_a = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase )
_a = outputs.logits
# verify the logits
_a = (1, 196, 8192)
self.assertEqual(logits.shape , __UpperCAmelCase )
_a = np.array(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] )
self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1e-2 ) )
@slow
def _UpperCAmelCase ( self ) -> int:
_a = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=__UpperCAmelCase , return_tensors='''np''' )
# forward pass
_a = model(**__UpperCAmelCase )
_a = outputs.logits
# verify the logits
_a = (1, 1000)
self.assertEqual(logits.shape , __UpperCAmelCase )
_a = np.array([-1.2385, -1.0987, -1.0108] )
self.assertTrue(np.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
_a = 281
self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> str:
_a = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=__UpperCAmelCase , return_tensors='''np''' )
# forward pass
_a = model(**__UpperCAmelCase )
_a = outputs.logits
# verify the logits
_a = (1, 21841)
self.assertEqual(logits.shape , __UpperCAmelCase )
_a = np.array([1.6881, -0.2787, 0.5901] )
self.assertTrue(np.allclose(logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
_a = 2396
self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , )
@pytest.mark.usefixtures('sm_env' )
@parameterized_class(
[
{
'framework': 'pytorch',
'script': 'run_glue_model_parallelism.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
{
'framework': 'pytorch',
'script': 'run_glue.py',
'model_name_or_path': 'roberta-large',
'instance_type': 'ml.p3dn.24xlarge',
'results': {'train_runtime': 1_600, 'eval_accuracy': 0.3, 'eval_loss': 1.2},
},
] )
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Dict:
if self.framework == "pytorch":
subprocess.run(
F'cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'.split() , encoding='''utf-8''' , check=__UpperCAmelCase , )
assert hasattr(self , '''env''' )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
# configuration for running training on smdistributed Model Parallel
_a = {
'''enabled''': True,
'''processes_per_host''': 8,
}
_a = {
'''enabled''': True,
'''parameters''': {
'''microbatches''': 4,
'''placement_strategy''': '''spread''',
'''pipeline''': '''interleaved''',
'''optimize''': '''speed''',
'''partitions''': 4,
'''ddp''': True,
},
}
_a = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options}
_a = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer'''
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'{self.env.base_job_name}-{instance_count}-smp-{name_extension}' , instance_count=__UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCAmelCase , hyperparameters={
**self.env.hyperparameters,
'''model_name_or_path''': self.model_name_or_path,
'''max_steps''': 500,
} , metric_definitions=self.env.metric_definitions , distribution=__UpperCAmelCase , py_version='''py36''' , )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str:
TrainingJobAnalytics(__UpperCAmelCase ).export_csv(F'{self.env.test_path}/{job_name}_metrics.csv' )
@parameterized.expand([(1,)] )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> int:
# create estimator
_a = self.create_estimator(__UpperCAmelCase )
# run training
estimator.fit()
# result dataframe
_a = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
_a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
_a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_a = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(F'{estimator.latest_training_job.name}.json' , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __UpperCAmelCase )
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : str ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''', [False, True] )
def A_ ( _lowerCAmelCase : Optional[int], _lowerCAmelCase : Dict, _lowerCAmelCase : Dict ):
"""simple docstring"""
_a = tmp_path / '''cache'''
_a = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_a = TextDatasetReader(_lowerCAmelCase, cache_dir=_lowerCAmelCase, keep_in_memory=_lowerCAmelCase ).read()
_check_text_dataset(_lowerCAmelCase, _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''', [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
], )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : str ):
"""simple docstring"""
_a = tmp_path / '''cache'''
_a = {'''text''': '''string'''}
_a = features.copy() if features else default_expected_features
_a = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
_a = TextDatasetReader(_lowerCAmelCase, features=_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read()
_check_text_dataset(_lowerCAmelCase, _lowerCAmelCase )
@pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Dict, _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = tmp_path / '''cache'''
_a = {'''text''': '''string'''}
_a = TextDatasetReader(_lowerCAmelCase, cache_dir=_lowerCAmelCase, split=_lowerCAmelCase ).read()
_check_text_dataset(_lowerCAmelCase, _lowerCAmelCase )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''', [str, list] )
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : List[str], _lowerCAmelCase : int ):
"""simple docstring"""
if issubclass(_lowerCAmelCase, _lowerCAmelCase ):
_a = text_path
elif issubclass(_lowerCAmelCase, _lowerCAmelCase ):
_a = [text_path]
_a = tmp_path / '''cache'''
_a = {'''text''': '''string'''}
_a = TextDatasetReader(_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read()
_check_text_dataset(_lowerCAmelCase, _lowerCAmelCase )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : Optional[Any]=("train",) ):
"""simple docstring"""
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
for split in splits:
_a = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''', [False, True] )
def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_a = tmp_path / '''cache'''
_a = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_a = TextDatasetReader({'''train''': text_path}, cache_dir=_lowerCAmelCase, keep_in_memory=_lowerCAmelCase ).read()
_check_text_datasetdict(_lowerCAmelCase, _lowerCAmelCase )
@pytest.mark.parametrize(
'''features''', [
None,
{'''text''': '''string'''},
{'''text''': '''int32'''},
{'''text''': '''float32'''},
], )
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : int, _lowerCAmelCase : Dict ):
"""simple docstring"""
_a = tmp_path / '''cache'''
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
_a = {'''text''': '''string'''}
_a = features.copy() if features else default_expected_features
_a = (
Features({feature: Value(_lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None
)
_a = TextDatasetReader({'''train''': text_path}, features=_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read()
_check_text_datasetdict(_lowerCAmelCase, _lowerCAmelCase )
@pytest.mark.parametrize('''split''', [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Dict, _lowerCAmelCase : Tuple ):
"""simple docstring"""
if split:
_a = {split: text_path}
else:
_a = '''train'''
_a = {'''train''': text_path, '''test''': text_path}
_a = tmp_path / '''cache'''
_a = {'''text''': '''string'''}
_a = TextDatasetReader(_lowerCAmelCase, cache_dir=_lowerCAmelCase ).read()
_check_text_datasetdict(_lowerCAmelCase, _lowerCAmelCase, splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 60_08_51_47_51_43 ):
"""simple docstring"""
try:
_a = int(_lowerCAmelCase )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
_a = 2
_a = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
_a = i
while n % i == 0:
_a = n // i
i += 1
return int(_lowerCAmelCase )
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[int], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
if index == r:
for j in range(_lowerCAmelCase ):
print(data[j], end=''' ''' )
print(''' ''' )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
_a = arr[i]
combination_util(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, index + 1, _lowerCAmelCase, i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Any, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
_a = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, 0, _lowerCAmelCase, 0 )
if __name__ == "__main__":
# Driver code to check the function above
__snake_case = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
__snake_case = logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
__snake_case = {
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
__snake_case = {
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
__snake_case = sorted(arg_to_scheduler.keys())
__snake_case = '''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class __lowerCamelCase ( pl.LightningModule ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> Optional[Any]:
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__UpperCAmelCase )
_a = 0
_a = Path(self.hparams.output_dir )
_a = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
_a = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'''num_labels''': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , )
else:
_a = config
_a = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''')
for p in extra_model_params:
if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ):
assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) )
if tokenizer is None:
_a = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , )
else:
_a = tokenizer
_a = MODEL_MODES[mode]
if model is None:
_a = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('''.ckpt''' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , )
else:
_a = model
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
_a = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Tuple:
_a = arg_to_scheduler[self.hparams.lr_scheduler]
_a = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
_a = {'''scheduler''': scheduler, '''interval''': '''step''', '''frequency''': 1}
return scheduler
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model
_a = ['''bias''', '''LayerNorm.weight''']
_a = [
{
'''params''': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'''weight_decay''': self.hparams.weight_decay,
},
{
'''params''': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
if self.hparams.adafactor:
_a = Adafactor(
__UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase )
else:
_a = AdamW(
__UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
_a = optimizer
_a = self.get_lr_scheduler()
return [optimizer], [scheduler]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
return self.validation_step(__UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str:
return self.validation_end(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
_a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
_a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]:
if stage == "test":
_a = len(self.test_dataloader().dataset )
else:
_a = self.get_dataloader('''train''' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase )
_a = len(self.train_dataloader().dataset )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ) -> Union[str, Any]:
raise NotImplementedError('''You must implement this for your task''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return self.train_loader
def _UpperCAmelCase ( self ) -> int:
return self.get_dataloader('''dev''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
return self.get_dataloader('''test''' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
return os.path.join(
self.hparams.data_dir , '''cached_{}_{}_{}'''.format(
__UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('''/''' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> None:
_a = self.output_dir.joinpath('''best_tfmr''' )
_a = self.step_count
self.model.save_pretrained(__UpperCAmelCase )
self.tokenizer.save_pretrained(__UpperCAmelCase )
@staticmethod
def _UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
parser.add_argument(
'''--model_name_or_path''' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='''Path to pretrained model or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--config_name''' , default='''''' , type=__UpperCAmelCase , help='''Pretrained config name or path if not the same as model_name''' )
parser.add_argument(
'''--tokenizer_name''' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='''Pretrained tokenizer name or path if not the same as model_name''' , )
parser.add_argument(
'''--cache_dir''' , default=str(Path(__UpperCAmelCase ).parent / '''test_run''' / '''cache''' ) , type=__UpperCAmelCase , help='''Where do you want to store the pre-trained models downloaded from huggingface.co''' , )
parser.add_argument(
'''--encoder_layerdrop''' , type=__UpperCAmelCase , help='''Encoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--decoder_layerdrop''' , type=__UpperCAmelCase , help='''Decoder layer dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--dropout''' , type=__UpperCAmelCase , help='''Dropout probability (Optional). Goes into model.config''' , )
parser.add_argument(
'''--attention_dropout''' , type=__UpperCAmelCase , help='''Attention dropout probability (Optional). Goes into model.config''' , )
parser.add_argument('''--learning_rate''' , default=5e-5 , type=__UpperCAmelCase , help='''The initial learning rate for Adam.''' )
parser.add_argument(
'''--lr_scheduler''' , default='''linear''' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='''Learning rate scheduler''' , )
parser.add_argument('''--weight_decay''' , default=0.0 , type=__UpperCAmelCase , help='''Weight decay if we apply some.''' )
parser.add_argument('''--adam_epsilon''' , default=1e-8 , type=__UpperCAmelCase , help='''Epsilon for Adam optimizer.''' )
parser.add_argument('''--warmup_steps''' , default=0 , type=__UpperCAmelCase , help='''Linear warmup over warmup_steps.''' )
parser.add_argument('''--num_workers''' , default=4 , type=__UpperCAmelCase , help='''kwarg passed to DataLoader''' )
parser.add_argument('''--num_train_epochs''' , dest='''max_epochs''' , default=3 , type=__UpperCAmelCase )
parser.add_argument('''--train_batch_size''' , default=32 , type=__UpperCAmelCase )
parser.add_argument('''--eval_batch_size''' , default=32 , type=__UpperCAmelCase )
parser.add_argument('''--adafactor''' , action='''store_true''' )
class __lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class __lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
# print(pl_module.model.rag)
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__UpperCAmelCase )
class __lowerCamelCase ( pl.Callback ):
'''simple docstring'''
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
_a = trainer.lr_schedulers[0]['''scheduler''']
_a = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
rank_zero_info('''***** Validation results *****''' )
_a = trainer.callback_metrics
# Log results
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> str:
rank_zero_info('''***** Test results *****''' )
_a = trainer.callback_metrics
# Log and save results to file
_a = os.path.join(pl_module.hparams.output_dir , '''test_results.txt''' )
with open(__UpperCAmelCase , '''w''' ) as writer:
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
writer.write('''{} = {}\n'''.format(__UpperCAmelCase , str(metrics[key] ) ) )
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Tuple ):
"""simple docstring"""
parser.add_argument(
'''--output_dir''', default=str(Path(_lowerCAmelCase ).parent / '''test_run''' / '''model_checkpoints''' ), type=_lowerCAmelCase, help='''The output directory where the model predictions and checkpoints will be written.''', )
parser.add_argument(
'''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''', )
parser.add_argument(
'''--fp16_opt_level''', type=_lowerCAmelCase, default='''O2''', help=(
'''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'''
'''See details at https://nvidia.github.io/apex/amp.html'''
), )
parser.add_argument('''--n_tpu_cores''', dest='''tpu_cores''', type=_lowerCAmelCase )
parser.add_argument('''--max_grad_norm''', dest='''gradient_clip_val''', default=1.0, type=_lowerCAmelCase, help='''Max gradient norm''' )
parser.add_argument('''--do_train''', action='''store_true''', help='''Whether to run training.''' )
parser.add_argument('''--do_predict''', action='''store_true''', help='''Whether to run predictions on the test set.''' )
parser.add_argument(
'''--gradient_accumulation_steps''', dest='''accumulate_grad_batches''', type=_lowerCAmelCase, default=1, help='''Number of updates steps to accumulate before performing a backward/update pass.''', )
parser.add_argument('''--seed''', type=_lowerCAmelCase, default=42, help='''random seed for initialization''' )
parser.add_argument(
'''--data_dir''', default=str(Path(_lowerCAmelCase ).parent / '''test_run''' / '''dummy-train-data''' ), type=_lowerCAmelCase, help='''The input data dir. Should contain the training files for the CoNLL-2003 NER task.''', )
def A_ ( _lowerCAmelCase : BaseTransformer, _lowerCAmelCase : argparse.Namespace, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[Any]=True, _lowerCAmelCase : Tuple=[], _lowerCAmelCase : str=None, _lowerCAmelCase : int=None, **_lowerCAmelCase : List[Any], ):
"""simple docstring"""
pl.seed_everything(args.seed )
# init model
_a = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_lowerCAmelCase )
# add custom checkpoints
if checkpoint_callback is None:
_a = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir, prefix='''checkpoint''', monitor='''val_loss''', mode='''min''', save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_lowerCAmelCase )
if logging_callback is None:
_a = LoggingCallback()
_a = {}
if args.fpaa:
_a = 16
if args.gpus > 1:
_a = '''auto'''
_a = '''ddp'''
_a = args.accumulate_grad_batches
_a = None
_a = '''auto'''
_a = pl.Trainer.from_argparse_args(
_lowerCAmelCase, weights_summary=_lowerCAmelCase, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=_lowerCAmelCase, val_check_interval=1, num_sanity_val_steps=2, **_lowerCAmelCase, )
if args.do_train:
trainer.fit(_lowerCAmelCase )
else:
print('''RAG modeling tests with new set functions successfuly executed!''' )
return trainer
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
__snake_case = {
'''sample_size''': 32,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 2,
'''num_class_embeds''': 1000,
'''block_out_channels''': [32, 64],
'''attention_head_dim''': 8,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''scale_shift''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
__snake_case = {
'''sample_size''': 64,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 3,
'''num_class_embeds''': 1000,
'''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4],
'''attention_head_dim''': 64,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''scale_shift''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
__snake_case = {
'''sample_size''': 256,
'''in_channels''': 3,
'''out_channels''': 3,
'''layers_per_block''': 2,
'''num_class_embeds''': None,
'''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4],
'''attention_head_dim''': 64,
'''down_block_types''': [
'''ResnetDownsampleBlock2D''',
'''ResnetDownsampleBlock2D''',
'''ResnetDownsampleBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
'''AttnDownBlock2D''',
],
'''up_block_types''': [
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''AttnUpBlock2D''',
'''ResnetUpsampleBlock2D''',
'''ResnetUpsampleBlock2D''',
'''ResnetUpsampleBlock2D''',
],
'''resnet_time_scale_shift''': '''default''',
'''upsample_type''': '''resnet''',
'''downsample_type''': '''resnet''',
}
__snake_case = {
'''num_train_timesteps''': 40,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
__snake_case = {
'''num_train_timesteps''': 201,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
__snake_case = {
'''num_train_timesteps''': 151,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
def A_ ( _lowerCAmelCase : Tuple ):
"""simple docstring"""
if isinstance(_lowerCAmelCase, _lowerCAmelCase ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError('''boolean value expected''' )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : str, _lowerCAmelCase : str, _lowerCAmelCase : Any=False ):
"""simple docstring"""
_a = checkpoint[f'{old_prefix}.in_layers.0.weight']
_a = checkpoint[f'{old_prefix}.in_layers.0.bias']
_a = checkpoint[f'{old_prefix}.in_layers.2.weight']
_a = checkpoint[f'{old_prefix}.in_layers.2.bias']
_a = checkpoint[f'{old_prefix}.emb_layers.1.weight']
_a = checkpoint[f'{old_prefix}.emb_layers.1.bias']
_a = checkpoint[f'{old_prefix}.out_layers.0.weight']
_a = checkpoint[f'{old_prefix}.out_layers.0.bias']
_a = checkpoint[f'{old_prefix}.out_layers.3.weight']
_a = checkpoint[f'{old_prefix}.out_layers.3.bias']
if has_skip:
_a = checkpoint[f'{old_prefix}.skip_connection.weight']
_a = checkpoint[f'{old_prefix}.skip_connection.bias']
return new_checkpoint
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : Any, _lowerCAmelCase : List[str], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int]=None ):
"""simple docstring"""
_a , _a , _a = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3, dim=0 )
_a , _a , _a = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3, dim=0 )
_a = checkpoint[f'{old_prefix}.norm.weight']
_a = checkpoint[f'{old_prefix}.norm.bias']
_a = weight_q.squeeze(-1 ).squeeze(-1 )
_a = bias_q.squeeze(-1 ).squeeze(-1 )
_a = weight_k.squeeze(-1 ).squeeze(-1 )
_a = bias_k.squeeze(-1 ).squeeze(-1 )
_a = weight_v.squeeze(-1 ).squeeze(-1 )
_a = bias_v.squeeze(-1 ).squeeze(-1 )
_a = (
checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 )
)
_a = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = torch.load(_lowerCAmelCase, map_location='''cpu''' )
_a = {}
_a = checkpoint['''time_embed.0.weight''']
_a = checkpoint['''time_embed.0.bias''']
_a = checkpoint['''time_embed.2.weight''']
_a = checkpoint['''time_embed.2.bias''']
if unet_config["num_class_embeds"] is not None:
_a = checkpoint['''label_emb.weight''']
_a = checkpoint['''input_blocks.0.0.weight''']
_a = checkpoint['''input_blocks.0.0.bias''']
_a = unet_config['''down_block_types''']
_a = unet_config['''layers_per_block''']
_a = unet_config['''attention_head_dim''']
_a = unet_config['''block_out_channels''']
_a = 1
_a = channels_list[0]
for i, layer_type in enumerate(_lowerCAmelCase ):
_a = channels_list[i]
_a = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(_lowerCAmelCase ):
_a = f'down_blocks.{i}.resnets.{j}'
_a = f'input_blocks.{current_layer}.0'
_a = True if j == 0 and downsample_block_has_skip else False
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, has_skip=_lowerCAmelCase )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(_lowerCAmelCase ):
_a = f'down_blocks.{i}.resnets.{j}'
_a = f'input_blocks.{current_layer}.0'
_a = True if j == 0 and downsample_block_has_skip else False
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, has_skip=_lowerCAmelCase )
_a = f'down_blocks.{i}.attentions.{j}'
_a = f'input_blocks.{current_layer}.1'
_a = convert_attention(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
current_layer += 1
if i != len(_lowerCAmelCase ) - 1:
_a = f'down_blocks.{i}.downsamplers.0'
_a = f'input_blocks.{current_layer}.0'
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
current_layer += 1
_a = current_channels
# hardcoded the mid-block for now
_a = '''mid_block.resnets.0'''
_a = '''middle_block.0'''
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = '''mid_block.attentions.0'''
_a = '''middle_block.1'''
_a = convert_attention(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = '''mid_block.resnets.1'''
_a = '''middle_block.2'''
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = 0
_a = unet_config['''up_block_types''']
for i, layer_type in enumerate(_lowerCAmelCase ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
_a = f'up_blocks.{i}.resnets.{j}'
_a = f'output_blocks.{current_layer}.0'
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, has_skip=_lowerCAmelCase )
current_layer += 1
if i != len(_lowerCAmelCase ) - 1:
_a = f'up_blocks.{i}.upsamplers.0'
_a = f'output_blocks.{current_layer-1}.1'
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
_a = f'up_blocks.{i}.resnets.{j}'
_a = f'output_blocks.{current_layer}.0'
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, has_skip=_lowerCAmelCase )
_a = f'up_blocks.{i}.attentions.{j}'
_a = f'output_blocks.{current_layer}.1'
_a = convert_attention(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
current_layer += 1
if i != len(_lowerCAmelCase ) - 1:
_a = f'up_blocks.{i}.upsamplers.0'
_a = f'output_blocks.{current_layer-1}.2'
_a = convert_resnet(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = checkpoint['''out.0.weight''']
_a = checkpoint['''out.0.bias''']
_a = checkpoint['''out.2.weight''']
_a = checkpoint['''out.2.bias''']
return new_checkpoint
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''')
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.'''
)
parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''')
__snake_case = parser.parse_args()
__snake_case = strabool(args.class_cond)
__snake_case = os.path.basename(args.unet_path)
print(f'Checkpoint: {ckpt_name}')
# Get U-Net config
if "imagenet64" in ckpt_name:
__snake_case = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
__snake_case = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
__snake_case = TEST_UNET_CONFIG
else:
raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.')
if not args.class_cond:
__snake_case = None
__snake_case = con_pt_to_diffuser(args.unet_path, unet_config)
__snake_case = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
__snake_case = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
__snake_case = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
__snake_case = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.')
__snake_case = CMStochasticIterativeScheduler(**scheduler_config)
__snake_case = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Union[str, Any] = LEDTokenizer
A_ : Dict = LEDTokenizerFast
A_ : Optional[int] = True
def _UpperCAmelCase ( self ) -> int:
super().setUp()
_a = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_a = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) )
_a = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_a = {'''unk_token''': '''<unk>'''}
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(__UpperCAmelCase ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(__UpperCAmelCase ) )
def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> str:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Tuple:
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]:
return "lower newer", "lower newer"
@cached_property
def _UpperCAmelCase ( self ) -> List[str]:
return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' )
@cached_property
def _UpperCAmelCase ( self ) -> Optional[int]:
return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_a = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(__UpperCAmelCase , max_length=len(__UpperCAmelCase ) , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
_a = batch.input_ids.tolist()[0]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@require_torch
def _UpperCAmelCase ( self ) -> List[str]:
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIn('''input_ids''' , __UpperCAmelCase )
self.assertIn('''attention_mask''' , __UpperCAmelCase )
self.assertNotIn('''labels''' , __UpperCAmelCase )
self.assertNotIn('''decoder_attention_mask''' , __UpperCAmelCase )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = [
'''Summary of the text.''',
'''Another summary.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(text_target=__UpperCAmelCase , max_length=32 , padding='''max_length''' , return_tensors='''pt''' )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(
['''I am a small frog''' * 1024, '''I am a small frog'''] , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors='''pt''' )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual(batch.input_ids.shape , (2, 5122) )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = ['''A long paragraph for summarization.''']
_a = [
'''Summary of the text.''',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' )
_a = tokenizer(text_target=__UpperCAmelCase , return_tensors='''pt''' )
_a = inputs['''input_ids''']
_a = targets['''input_ids''']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[int]:
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
_a = ['''Summary of the text.''', '''Another summary.''']
_a = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
_a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase )
_a = [[0] * len(__UpperCAmelCase ) for x in encoded_output['''input_ids''']]
_a = tokenizer.pad(__UpperCAmelCase )
self.assertSequenceEqual(outputs['''global_attention_mask'''] , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
pass
def _UpperCAmelCase ( self ) -> Tuple:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_a = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
_a = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase )
_a = '''A, <mask> AllenNLP sentence.'''
_a = tokenizer_r.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase )
_a = tokenizer_p.encode_plus(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase )
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
_a = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
_a = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] )
self.assertSequenceEqual(
__UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
__UpperCAmelCase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : list[float], _lowerCAmelCase : list[float] ):
"""simple docstring"""
_a = sorted(numsa + numsa )
_a , _a = divmod(len(_lowerCAmelCase ), 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
__snake_case = [float(x) for x in input('''Enter the elements of first array: ''').split()]
__snake_case = [float(x) for x in input('''Enter the elements of second array: ''').split()]
print(f'The median of two arrays is: {median_of_two_arrays(array_a, array_a)}')
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use DeformableDetrImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
if isinstance(_lowerCAmelCase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCamelCase :
'''simple docstring'''
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
pass
def _UpperCAmelCase ( self ) -> Dict:
pass
def _UpperCAmelCase ( self ) -> Dict:
pass
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = np.abs((a - b) ).max()
self.assertLessEqual(__UpperCAmelCase , __UpperCAmelCase , F'Difference between torch and flax is {diff} (>= {tol}).' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Optional[int]:
_a = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase )
_a = FlaxVisionTextDualEncoderModel(__UpperCAmelCase )
_a = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Union[str, Any]:
_a , _a = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase )
_a = {'''vision_model''': vision_model, '''text_model''': text_model}
_a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase )
_a = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Any:
_a , _a = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase )
_a = {'''vision_model''': vision_model, '''text_model''': text_model}
_a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase )
_a = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
_a = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCAmelCase )
_a = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase )
_a = model(input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase )
_a = after_output[0]
_a = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__UpperCAmelCase , 1e-3 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ) -> Dict:
_a , _a = self.get_vision_text_model(__UpperCAmelCase , __UpperCAmelCase )
_a = {'''vision_model''': vision_model, '''text_model''': text_model}
_a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**__UpperCAmelCase )
_a = model(
input_ids=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , output_attentions=__UpperCAmelCase )
_a = output.vision_model_output.attentions
self.assertEqual(len(__UpperCAmelCase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_a = to_atuple(vision_model.config.image_size )
_a = to_atuple(vision_model.config.patch_size )
_a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_a = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_a = output.text_model_output.attentions
self.assertEqual(len(__UpperCAmelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
pt_model.to(__UpperCAmelCase )
pt_model.eval()
# prepare inputs
_a = inputs_dict
_a = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_a = pt_model(**__UpperCAmelCase ).to_tuple()
_a = fx_model(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(__UpperCAmelCase , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__UpperCAmelCase )
_a = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase )
_a = fx_model_loaded(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(__UpperCAmelCase , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__UpperCAmelCase )
_a = VisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase )
pt_model_loaded.to(__UpperCAmelCase )
pt_model_loaded.eval()
with torch.no_grad():
_a = pt_model_loaded(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(__UpperCAmelCase , pt_output_loaded.numpy() , 4e-2 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase )
_a = VisionTextDualEncoderModel(__UpperCAmelCase )
_a = FlaxVisionTextDualEncoderModel(__UpperCAmelCase )
_a = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase )
_a = fx_state
self.check_pt_flax_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_a = VisionTextDualEncoderConfig.from_vision_text_configs(__UpperCAmelCase , __UpperCAmelCase )
_a = VisionTextDualEncoderModel(__UpperCAmelCase )
_a = FlaxVisionTextDualEncoderModel(__UpperCAmelCase )
_a = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params )
self.check_pt_flax_equivalence(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> str:
_a = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.prepare_config_and_inputs()
self.check_save_load(**__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[str]:
_a = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**__UpperCAmelCase )
@is_pt_flax_cross_test
def _UpperCAmelCase ( self ) -> Any:
_a = self.prepare_config_and_inputs()
_a = config_inputs_dict.pop('''vision_config''' )
_a = config_inputs_dict.pop('''text_config''' )
_a = config_inputs_dict
self.check_equivalence_pt_to_flax(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
self.check_equivalence_flax_to_pt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> List[Any]:
_a , _a = self.get_pretrained_model_and_inputs()
_a = model_a(**__UpperCAmelCase )
_a = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(__UpperCAmelCase )
_a = FlaxVisionTextDualEncoderModel.from_pretrained(__UpperCAmelCase )
_a = model_a(**__UpperCAmelCase )
_a = after_outputs[0]
_a = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__UpperCAmelCase , 1e-5 )
@require_flax
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__UpperCAmelCase , text_from_pt=__UpperCAmelCase , )
_a = 13
_a = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_a = random_attention_mask([batch_size, 4] )
_a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
_a = FlaxViTModel(__UpperCAmelCase )
_a = FlaxBertModel(__UpperCAmelCase )
return vision_model, text_model
def _UpperCAmelCase ( self ) -> str:
_a = FlaxViTModelTester(self )
_a = FlaxBertModelTester(self )
_a = vit_model_tester.prepare_config_and_inputs()
_a = bert_model_tester.prepare_config_and_inputs()
_a , _a = vision_config_and_inputs
_a , _a , _a , _a = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Dict:
_a = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=__UpperCAmelCase , text_from_pt=__UpperCAmelCase , )
_a = 13
_a = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_a = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_a = random_attention_mask([batch_size, 4] )
_a = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any:
_a = FlaxCLIPVisionModel(__UpperCAmelCase )
_a = FlaxBertModel(__UpperCAmelCase )
return vision_model, text_model
def _UpperCAmelCase ( self ) -> str:
_a = FlaxCLIPVisionModelTester(self )
_a = FlaxBertModelTester(self )
_a = clip_model_tester.prepare_config_and_inputs()
_a = bert_model_tester.prepare_config_and_inputs()
_a , _a = vision_config_and_inputs
_a , _a , _a , _a = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_a = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_a = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors='''np''' )
_a = model(**__UpperCAmelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_a = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , __UpperCAmelCase , atol=1e-3 ) )
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = [
'''small''',
'''small-base''',
'''medium''',
'''medium-base''',
'''intermediate''',
'''intermediate-base''',
'''large''',
'''large-base''',
'''xlarge''',
'''xlarge-base''',
]
__snake_case = {
'''vocab_file''': {
'''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt''',
'''funnel-transformer/small-base''': '''https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt''',
'''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt''',
'''funnel-transformer/medium-base''': (
'''https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt'''
),
'''funnel-transformer/intermediate''': (
'''https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt'''
),
'''funnel-transformer/intermediate-base''': (
'''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt'''
),
'''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt''',
'''funnel-transformer/large-base''': '''https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt''',
'''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt''',
'''funnel-transformer/xlarge-base''': (
'''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''funnel-transformer/small''': '''https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json''',
'''funnel-transformer/small-base''': (
'''https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/medium''': '''https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json''',
'''funnel-transformer/medium-base''': (
'''https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/intermediate''': (
'''https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json'''
),
'''funnel-transformer/intermediate-base''': (
'''https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/large''': '''https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json''',
'''funnel-transformer/large-base''': (
'''https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json'''
),
'''funnel-transformer/xlarge''': '''https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json''',
'''funnel-transformer/xlarge-base''': (
'''https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json'''
),
},
}
__snake_case = {f'funnel-transformer/{name}': 512 for name in _model_names}
__snake_case = {f'funnel-transformer/{name}': {'''do_lower_case''': True} for name in _model_names}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = VOCAB_FILES_NAMES
A_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
A_ : Any = PRETRAINED_INIT_CONFIGURATION
A_ : Optional[Any] = FunnelTokenizer
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : int = 2
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase="##" , **__UpperCAmelCase , ) -> int:
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , clean_text=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , wordpieces_prefix=__UpperCAmelCase , **__UpperCAmelCase , )
_a = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get('''strip_accents''' , __UpperCAmelCase ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , __UpperCAmelCase ) != tokenize_chinese_chars
):
_a = getattr(__UpperCAmelCase , normalizer_state.pop('''type''' ) )
_a = do_lower_case
_a = strip_accents
_a = tokenize_chinese_chars
_a = normalizer_class(**__UpperCAmelCase )
_a = do_lower_case
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Dict:
_a = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
_a = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from ..utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_pt_objects import * # noqa F403
else:
from .scheduling_consistency_models import CMStochasticIterativeScheduler
from .scheduling_ddim import DDIMScheduler
from .scheduling_ddim_inverse import DDIMInverseScheduler
from .scheduling_ddim_parallel import DDIMParallelScheduler
from .scheduling_ddpm import DDPMScheduler
from .scheduling_ddpm_parallel import DDPMParallelScheduler
from .scheduling_deis_multistep import DEISMultistepScheduler
from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler
from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler
from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler
from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler
from .scheduling_euler_discrete import EulerDiscreteScheduler
from .scheduling_heun_discrete import HeunDiscreteScheduler
from .scheduling_ipndm import IPNDMScheduler
from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler
from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler
from .scheduling_karras_ve import KarrasVeScheduler
from .scheduling_pndm import PNDMScheduler
from .scheduling_repaint import RePaintScheduler
from .scheduling_sde_ve import ScoreSdeVeScheduler
from .scheduling_sde_vp import ScoreSdeVpScheduler
from .scheduling_unclip import UnCLIPScheduler
from .scheduling_unipc_multistep import UniPCMultistepScheduler
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
from .scheduling_vq_diffusion import VQDiffusionScheduler
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_flax_objects import * # noqa F403
else:
from .scheduling_ddim_flax import FlaxDDIMScheduler
from .scheduling_ddpm_flax import FlaxDDPMScheduler
from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler
from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler
from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler
from .scheduling_pndm_flax import FlaxPNDMScheduler
from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler
from .scheduling_utils_flax import (
FlaxKarrasDiffusionSchedulers,
FlaxSchedulerMixin,
FlaxSchedulerOutput,
broadcast_to_shape_from_left,
)
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .scheduling_lms_discrete import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
import os
from pathlib import Path
def A_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
_a = Path(_lowerCAmelCase ).resolve().parent.parent.parent / '''kernels''' / '''deformable_detr'''
_a = [
root / filename
for filename in [
'''vision.cpp''',
os.path.join('''cpu''', '''ms_deform_attn_cpu.cpp''' ),
os.path.join('''cuda''', '''ms_deform_attn_cuda.cu''' ),
]
]
load(
'''MultiScaleDeformableAttention''', _lowerCAmelCase, with_cuda=_lowerCAmelCase, extra_include_paths=[str(_lowerCAmelCase )], extra_cflags=['''-DWITH_CUDA=1'''], extra_cuda_cflags=[
'''-DCUDA_HAS_FP16=1''',
'''-D__CUDA_NO_HALF_OPERATORS__''',
'''-D__CUDA_NO_HALF_CONVERSIONS__''',
'''-D__CUDA_NO_HALF2_OPERATORS__''',
], )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__snake_case = datasets.logging.get_logger(__name__)
__snake_case = '''\
@InProceedings{moosavi2019minimum,
author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},
title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},
year = {2019},
booktitle = {Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers)},
publisher = {Association for Computational Linguistics},
address = {Florence, Italy},
}
@inproceedings{10.3115/1072399.1072405,
author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},
title = {A Model-Theoretic Coreference Scoring Scheme},
year = {1995},
isbn = {1558604022},
publisher = {Association for Computational Linguistics},
address = {USA},
url = {https://doi.org/10.3115/1072399.1072405},
doi = {10.3115/1072399.1072405},
booktitle = {Proceedings of the 6th Conference on Message Understanding},
pages = {45–52},
numpages = {8},
location = {Columbia, Maryland},
series = {MUC6 ’95}
}
@INPROCEEDINGS{Bagga98algorithmsfor,
author = {Amit Bagga and Breck Baldwin},
title = {Algorithms for Scoring Coreference Chains},
booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},
year = {1998},
pages = {563--566}
}
@INPROCEEDINGS{Luo05oncoreference,
author = {Xiaoqiang Luo},
title = {On coreference resolution performance metrics},
booktitle = {In Proc. of HLT/EMNLP},
year = {2005},
pages = {25--32},
publisher = {URL}
}
@inproceedings{moosavi-strube-2016-coreference,
title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",
author = "Moosavi, Nafise Sadat and
Strube, Michael",
booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2016",
address = "Berlin, Germany",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P16-1060",
doi = "10.18653/v1/P16-1060",
pages = "632--642",
}
'''
__snake_case = '''\
CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which
implements of the common evaluation metrics including MUC [Vilain et al, 1995],
B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],
LEA [Moosavi and Strube, 2016] and the averaged CoNLL score
(the average of the F1 values of MUC, B-cubed and CEAFe)
[Denis and Baldridge, 2009a; Pradhan et al., 2011].
This wrapper of CoVal currently only work with CoNLL line format:
The CoNLL format has one word per line with all the annotation for this word in column separated by spaces:
Column Type Description
1 Document ID This is a variation on the document filename
2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3 Word number
4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.
5 Part-of-Speech
6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.
7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"
8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.
9 Word sense This is the word sense of the word in Column 3.
10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.
11 Named Entities These columns identifies the spans representing various named entities.
12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.
N Coreference Coreference chain information encoded in a parenthesis structure.
More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html
Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md
CoVal code was written by @ns-moosavi.
Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py
The test suite is taken from https://github.com/conll/reference-coreference-scorers/
Mention evaluation and the test suite are added by @andreasvc.
Parsing CoNLL files is developed by Leo Born.
'''
__snake_case = '''
Calculates coreference evaluation metrics.
Args:
predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.
Each prediction is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.
Each reference is a word with its annotations as a string made of columns joined with spaces.
Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)
See the details on the format in the description of the metric.
keep_singletons: After extracting all mentions of key or system files,
mentions whose corresponding coreference chain is of size one,
are considered as singletons. The default evaluation mode will include
singletons in evaluations if they are included in the key or the system files.
By setting \'keep_singletons=False\', all singletons in the key and system files
will be excluded from the evaluation.
NP_only: Most of the recent coreference resolvers only resolve NP mentions and
leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.
min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.
Minimum spans are determined using the MINA algorithm.
Returns:
\'mentions\': mentions
\'muc\': MUC metric [Vilain et al, 1995]
\'bcub\': B-cubed [Bagga and Baldwin, 1998]
\'ceafe\': CEAFe [Luo et al., 2005]
\'lea\': LEA [Moosavi and Strube, 2016]
\'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)
Examples:
>>> coval = datasets.load_metric(\'coval\')
>>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',
... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',
... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',
... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',
... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',
... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']
>>> references = [words]
>>> predictions = [words]
>>> results = coval.compute(predictions=predictions, references=references)
>>> print(results) # doctest:+ELLIPSIS
{\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}
'''
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : List[Any], _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Any=False, _lowerCAmelCase : int=True, _lowerCAmelCase : Any=False, _lowerCAmelCase : str="dummy_doc" ):
"""simple docstring"""
_a = {doc: key_lines}
_a = {doc: sys_lines}
_a = {}
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a = 0
_a , _a = reader.get_doc_mentions(_lowerCAmelCase, key_doc_lines[doc], _lowerCAmelCase )
key_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(_lowerCAmelCase, key_doc_lines[doc], _lowerCAmelCase, _lowerCAmelCase )
_a , _a = reader.get_doc_mentions(_lowerCAmelCase, sys_doc_lines[doc], _lowerCAmelCase )
sys_singletons_num += singletons_num
if NP_only or min_span:
_a = reader.set_annotated_parse_trees(_lowerCAmelCase, key_doc_lines[doc], _lowerCAmelCase, _lowerCAmelCase )
if remove_nested:
_a , _a = reader.remove_nested_coref_mentions(_lowerCAmelCase, _lowerCAmelCase )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
_a , _a = reader.remove_nested_coref_mentions(_lowerCAmelCase, _lowerCAmelCase )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
_a = reader.get_mention_assignments(_lowerCAmelCase, _lowerCAmelCase )
_a = reader.get_mention_assignments(_lowerCAmelCase, _lowerCAmelCase )
_a = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'''Number of removed nested coreferring mentions in the key '''
f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}' )
logger.info(
'''Number of resulting singleton clusters in the key '''
f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}' )
if not keep_singletons:
logger.info(
f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '
'''files, respectively''' )
return doc_coref_infos
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[int], _lowerCAmelCase : Optional[int], _lowerCAmelCase : Optional[int], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Optional[int], _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = get_coref_infos(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = {}
_a = 0
_a = 0
for name, metric in metrics:
_a , _a , _a = evaluator.evaluate_documents(_lowerCAmelCase, _lowerCAmelCase, beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa} )
logger.info(
name.ljust(10 ), f'Recall: {recall * 1_00:.2f}', f' Precision: {precision * 1_00:.2f}', f' F1: {fa * 1_00:.2f}', )
if conll_subparts_num == 3:
_a = (conll / 3) * 1_00
logger.info(f'CoNLL score: {conll:.2f}' )
output_scores.update({'''conll_score''': conll} )
return output_scores
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
_a = False
for line in key_lines:
if not line.startswith('''#''' ):
if len(line.split() ) > 6:
_a = line.split()[5]
if not parse_col == "-":
_a = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Sequence(datasets.Value('''string''' ) ),
} ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[
'''https://github.com/ns-moosavi/coval''',
'''https://www.aclweb.org/anthology/P16-1060''',
'''http://www.conll.cemantix.org/2012/data.html''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False ) -> Optional[Any]:
_a = [
('''mentions''', evaluator.mentions),
('''muc''', evaluator.muc),
('''bcub''', evaluator.b_cubed),
('''ceafe''', evaluator.ceafe),
('''lea''', evaluator.lea),
]
if min_span:
_a = util.check_gold_parse_annotation(__UpperCAmelCase )
if not has_gold_parse:
raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
_a = evaluate(
key_lines=__UpperCAmelCase , sys_lines=__UpperCAmelCase , metrics=__UpperCAmelCase , NP_only=__UpperCAmelCase , remove_nested=__UpperCAmelCase , keep_singletons=__UpperCAmelCase , min_span=__UpperCAmelCase , )
return score
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case = logging.get_logger(__name__)
def A_ ( _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
_a = DPTConfig(embedding_type='''hybrid''' )
if "large" in checkpoint_url:
_a = 10_24
_a = 40_96
_a = 24
_a = 16
_a = [5, 11, 17, 23]
_a = [2_56, 5_12, 10_24, 10_24]
_a = (1, 3_84, 3_84)
if "nyu" or "midas" in checkpoint_url:
_a = 7_68
_a = [1, 1, 1, 0.5]
_a = [2_56, 5_12, 7_68, 7_68]
_a = 1_50
_a = 16
_a = (1, 3_84, 3_84)
_a = False
_a = '''project'''
if "ade" in checkpoint_url:
_a = True
_a = 7_68
_a = [1, 1, 1, 0.5]
_a = 1_50
_a = 16
_a = '''huggingface/label-files'''
_a = '''ade20k-id2label.json'''
_a = json.load(open(cached_download(hf_hub_url(_lowerCAmelCase, _lowerCAmelCase, repo_type='''dataset''' ) ), '''r''' ) )
_a = {int(_lowerCAmelCase ): v for k, v in idalabel.items()}
_a = idalabel
_a = {v: k for k, v in idalabel.items()}
_a = [1, 1_50, 4_80, 4_80]
return config, expected_shape
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = ['''pretrained.model.head.weight''', '''pretrained.model.head.bias''']
for k in ignore_keys:
state_dict.pop(_lowerCAmelCase, _lowerCAmelCase )
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
_a = name.replace('''pretrained.model''', '''dpt.encoder''' )
if "pretrained.model" in name:
_a = name.replace('''pretrained.model''', '''dpt.embeddings''' )
if "patch_embed" in name:
_a = name.replace('''patch_embed''', '''''' )
if "pos_embed" in name:
_a = name.replace('''pos_embed''', '''position_embeddings''' )
if "attn.proj" in name:
_a = name.replace('''attn.proj''', '''attention.output.dense''' )
if "proj" in name and "project" not in name:
_a = name.replace('''proj''', '''projection''' )
if "blocks" in name:
_a = name.replace('''blocks''', '''layer''' )
if "mlp.fc1" in name:
_a = name.replace('''mlp.fc1''', '''intermediate.dense''' )
if "mlp.fc2" in name:
_a = name.replace('''mlp.fc2''', '''output.dense''' )
if "norm1" in name and "backbone" not in name:
_a = name.replace('''norm1''', '''layernorm_before''' )
if "norm2" in name and "backbone" not in name:
_a = name.replace('''norm2''', '''layernorm_after''' )
if "scratch.output_conv" in name:
_a = name.replace('''scratch.output_conv''', '''head''' )
if "scratch" in name:
_a = name.replace('''scratch''', '''neck''' )
if "layer1_rn" in name:
_a = name.replace('''layer1_rn''', '''convs.0''' )
if "layer2_rn" in name:
_a = name.replace('''layer2_rn''', '''convs.1''' )
if "layer3_rn" in name:
_a = name.replace('''layer3_rn''', '''convs.2''' )
if "layer4_rn" in name:
_a = name.replace('''layer4_rn''', '''convs.3''' )
if "refinenet" in name:
_a = int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
_a = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
_a = name.replace('''out_conv''', '''projection''' )
if "resConfUnit1" in name:
_a = name.replace('''resConfUnit1''', '''residual_layer1''' )
if "resConfUnit2" in name:
_a = name.replace('''resConfUnit2''', '''residual_layer2''' )
if "conv1" in name:
_a = name.replace('''conv1''', '''convolution1''' )
if "conv2" in name:
_a = name.replace('''conv2''', '''convolution2''' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
_a = name.replace('''pretrained.act_postprocess1.0.project.0''', '''neck.reassemble_stage.readout_projects.0.0''' )
if "pretrained.act_postprocess2.0.project.0" in name:
_a = name.replace('''pretrained.act_postprocess2.0.project.0''', '''neck.reassemble_stage.readout_projects.1.0''' )
if "pretrained.act_postprocess3.0.project.0" in name:
_a = name.replace('''pretrained.act_postprocess3.0.project.0''', '''neck.reassemble_stage.readout_projects.2.0''' )
if "pretrained.act_postprocess4.0.project.0" in name:
_a = name.replace('''pretrained.act_postprocess4.0.project.0''', '''neck.reassemble_stage.readout_projects.3.0''' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
_a = name.replace('''pretrained.act_postprocess1.3''', '''neck.reassemble_stage.layers.0.projection''' )
if "pretrained.act_postprocess1.4" in name:
_a = name.replace('''pretrained.act_postprocess1.4''', '''neck.reassemble_stage.layers.0.resize''' )
if "pretrained.act_postprocess2.3" in name:
_a = name.replace('''pretrained.act_postprocess2.3''', '''neck.reassemble_stage.layers.1.projection''' )
if "pretrained.act_postprocess2.4" in name:
_a = name.replace('''pretrained.act_postprocess2.4''', '''neck.reassemble_stage.layers.1.resize''' )
if "pretrained.act_postprocess3.3" in name:
_a = name.replace('''pretrained.act_postprocess3.3''', '''neck.reassemble_stage.layers.2.projection''' )
if "pretrained.act_postprocess4.3" in name:
_a = name.replace('''pretrained.act_postprocess4.3''', '''neck.reassemble_stage.layers.3.projection''' )
if "pretrained.act_postprocess4.4" in name:
_a = name.replace('''pretrained.act_postprocess4.4''', '''neck.reassemble_stage.layers.3.resize''' )
if "pretrained" in name:
_a = name.replace('''pretrained''', '''dpt''' )
if "bn" in name:
_a = name.replace('''bn''', '''batch_norm''' )
if "head" in name:
_a = name.replace('''head''', '''head.head''' )
if "encoder.norm" in name:
_a = name.replace('''encoder.norm''', '''layernorm''' )
if "auxlayer" in name:
_a = name.replace('''auxlayer''', '''auxiliary_head.head''' )
if "backbone" in name:
_a = name.replace('''backbone''', '''backbone.bit.encoder''' )
if ".." in name:
_a = name.replace('''..''', '''.''' )
if "stem.conv" in name:
_a = name.replace('''stem.conv''', '''bit.embedder.convolution''' )
if "blocks" in name:
_a = name.replace('''blocks''', '''layers''' )
if "convolution" in name and "backbone" in name:
_a = name.replace('''convolution''', '''conv''' )
if "layer" in name and "backbone" in name:
_a = name.replace('''layer''', '''layers''' )
if "backbone.bit.encoder.bit" in name:
_a = name.replace('''backbone.bit.encoder.bit''', '''backbone.bit''' )
if "embedder.conv" in name:
_a = name.replace('''embedder.conv''', '''embedder.convolution''' )
if "backbone.bit.encoder.stem.norm" in name:
_a = name.replace('''backbone.bit.encoder.stem.norm''', '''backbone.bit.embedder.norm''' )
return name
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : int ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_a = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
_a = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
_a = in_proj_weight[: config.hidden_size, :]
_a = in_proj_bias[: config.hidden_size]
_a = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_a = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_a = in_proj_weight[
-config.hidden_size :, :
]
_a = in_proj_bias[-config.hidden_size :]
def A_ ( ):
"""simple docstring"""
_a = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_a = Image.open(requests.get(_lowerCAmelCase, stream=_lowerCAmelCase ).raw )
return im
@torch.no_grad()
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : List[str], _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a , _a = get_dpt_config(_lowerCAmelCase )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
_a = torch.load(_lowerCAmelCase, map_location='''cpu''' )
# remove certain keys
remove_ignore_keys_(_lowerCAmelCase )
# rename keys
for key in state_dict.copy().keys():
_a = state_dict.pop(_lowerCAmelCase )
_a = val
# read in qkv matrices
read_in_q_k_v(_lowerCAmelCase, _lowerCAmelCase )
# load HuggingFace model
_a = DPTForSemanticSegmentation(_lowerCAmelCase ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(_lowerCAmelCase )
model.load_state_dict(_lowerCAmelCase )
model.eval()
# Check outputs on an image
_a = 4_80 if '''ade''' in checkpoint_url else 3_84
_a = DPTImageProcessor(size=_lowerCAmelCase )
_a = prepare_img()
_a = image_processor(_lowerCAmelCase, return_tensors='''pt''' )
# forward pass
_a = model(**_lowerCAmelCase ).logits if '''ade''' in checkpoint_url else model(**_lowerCAmelCase ).predicted_depth
if show_prediction:
_a = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode='''bicubic''', align_corners=_lowerCAmelCase, )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 2_55 ).show()
if pytorch_dump_folder_path is not None:
Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(_lowerCAmelCase )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(_lowerCAmelCase )
if push_to_hub:
model.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
image_processor.push_to_hub('''ybelkada/dpt-hybrid-midas''' )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=False,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
parser.add_argument(
'''--show_prediction''',
action='''store_true''',
)
__snake_case = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
__snake_case = '''pt'''
elif is_tf_available():
__snake_case = '''tf'''
else:
__snake_case = '''jax'''
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = PerceiverTokenizer
A_ : Optional[Any] = False
def _UpperCAmelCase ( self ) -> Optional[int]:
super().setUp()
_a = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def _UpperCAmelCase ( self ) -> int:
return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' )
def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> PerceiverTokenizer:
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=20 , __UpperCAmelCase=5 ) -> Tuple[str, list]:
# XXX The default common tokenizer tests assume that every ID is decodable on its own.
# This assumption is invalid for Perceiver because single bytes might not be
# valid utf-8 (byte 128 for instance).
# Here we're overriding the smallest possible method to provide
# a clean sequence without making the same assumption.
_a = []
for i in range(len(__UpperCAmelCase ) ):
try:
_a = tokenizer.decode([i] , clean_up_tokenization_spaces=__UpperCAmelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_a = list(filter(lambda __UpperCAmelCase : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , __UpperCAmelCase ) )
_a = list(filter(lambda __UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__UpperCAmelCase ) , __UpperCAmelCase ) )
if max_length is not None and len(__UpperCAmelCase ) > max_length:
_a = toks[:max_length]
if min_length is not None and len(__UpperCAmelCase ) < min_length and len(__UpperCAmelCase ) > 0:
while len(__UpperCAmelCase ) < min_length:
_a = toks + toks
# toks_str = [t[1] for t in toks]
_a = [t[0] for t in toks]
# Ensure consistency
_a = tokenizer.decode(__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase )
if " " not in output_txt and len(__UpperCAmelCase ) > 1:
_a = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__UpperCAmelCase )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__UpperCAmelCase )
)
if with_prefix_space:
_a = ''' ''' + output_txt
_a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
return output_txt, output_ids
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.perceiver_tokenizer
_a = '''Unicode €.'''
_a = tokenizer(__UpperCAmelCase )
_a = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded['''input_ids'''] , __UpperCAmelCase )
# decoding
_a = tokenizer.decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , '''[CLS]Unicode €.[SEP]''' )
_a = tokenizer('''e è é ê ë''' )
_a = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded['''input_ids'''] , __UpperCAmelCase )
# decoding
_a = tokenizer.decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , '''[CLS]e è é ê ë[SEP]''' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' )
def _UpperCAmelCase ( self ) -> Any:
_a = self.perceiver_tokenizer
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
# fmt: off
_a = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
_a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
if FRAMEWORK != "jax":
_a = list(batch.input_ids.numpy()[0] )
else:
_a = list(batch.input_ids.tolist()[0] )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def _UpperCAmelCase ( self ) -> int:
_a = self.perceiver_tokenizer
_a = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_a = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('''input_ids''' , __UpperCAmelCase )
self.assertIn('''attention_mask''' , __UpperCAmelCase )
self.assertNotIn('''decoder_input_ids''' , __UpperCAmelCase )
self.assertNotIn('''decoder_attention_mask''' , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[str]:
_a = self.perceiver_tokenizer
_a = [
'''Summary of the text.''',
'''Another summary.''',
]
_a = tokenizer(
text_target=__UpperCAmelCase , max_length=32 , padding='''max_length''' , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase )
self.assertEqual(32 , targets['''input_ids'''].shape[1] )
def _UpperCAmelCase ( self ) -> Optional[int]:
# safety check on max_len default value so we are sure the test works
_a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
_a = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
_a = tempfile.mkdtemp()
_a = ''' He is very happy, UNwant\u00E9d,running'''
_a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
tokenizer.save_pretrained(__UpperCAmelCase )
_a = tokenizer.__class__.from_pretrained(__UpperCAmelCase )
_a = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
shutil.rmtree(__UpperCAmelCase )
_a = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
# Isolate this from the other tests because we save additional tokens/etc
_a = tempfile.mkdtemp()
_a = ''' He is very happy, UNwant\u00E9d,running'''
tokenizer.add_tokens(['''bim''', '''bambam'''] )
_a = tokenizer.additional_special_tokens
additional_special_tokens.append('''new_additional_special_token''' )
tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} )
_a = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
tokenizer.save_pretrained(__UpperCAmelCase )
_a = tokenizer.__class__.from_pretrained(__UpperCAmelCase )
_a = after_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
_a = tokenizer.__class__.from_pretrained(__UpperCAmelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__UpperCAmelCase )
with open(os.path.join(__UpperCAmelCase , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file:
_a = json.load(__UpperCAmelCase )
with open(os.path.join(__UpperCAmelCase , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file:
_a = json.load(__UpperCAmelCase )
_a = [F'<extra_id_{i}>' for i in range(125 )]
_a = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
_a = added_tokens_extra_ids + [
'''an_additional_special_token'''
]
with open(os.path.join(__UpperCAmelCase , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
with open(os.path.join(__UpperCAmelCase , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile:
json.dump(__UpperCAmelCase , __UpperCAmelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_a = tokenizer_class.from_pretrained(
__UpperCAmelCase , )
self.assertIn(
'''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_a = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=__UpperCAmelCase )]
_a = tokenizer_class.from_pretrained(
__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , )
self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens )
self.assertEqual(
['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , '''�''' )
def _UpperCAmelCase ( self ) -> str:
pass
def _UpperCAmelCase ( self ) -> Any:
pass
def _UpperCAmelCase ( self ) -> List[Any]:
pass
def _UpperCAmelCase ( self ) -> str:
pass
def _UpperCAmelCase ( self ) -> Dict:
# The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character
# strings and special added tokens as tokens
_a = self.get_tokenizers(fast=__UpperCAmelCase , do_lower_case=__UpperCAmelCase )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
_a = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]''']
_a = tokenizer.convert_tokens_to_string(__UpperCAmelCase )
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase )
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
import os
def A_ ( _lowerCAmelCase : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_lowerCAmelCase ), _lowerCAmelCase ) ) as input_file:
_a = [
[int(_lowerCAmelCase ) for element in line.split(''',''' )]
for line in input_file.readlines()
]
_a = len(_lowerCAmelCase )
_a = len(matrix[0] )
_a = [[-1 for _ in range(_lowerCAmelCase )] for _ in range(_lowerCAmelCase )]
for i in range(_lowerCAmelCase ):
_a = matrix[i][0]
for j in range(1, _lowerCAmelCase ):
for i in range(_lowerCAmelCase ):
_a = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1, _lowerCAmelCase ):
_a = min(
minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2, -1, -1 ):
_a = min(
minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
import re
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
_a = re.compile(R'''^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$''' )
if match := re.search(_lowerCAmelCase, _lowerCAmelCase ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator('''+918827897895'''))
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
import importlib.util
import json
import os
import warnings
from dataclasses import dataclass, field
import torch
from ..training_args import TrainingArguments
from ..utils import cached_property, is_sagemaker_dp_enabled, logging
__snake_case = logging.get_logger(__name__)
def A_ ( ):
"""simple docstring"""
_a = os.getenv('''SM_HP_MP_PARAMETERS''', '''{}''' )
try:
# Parse it and check the field "partitions" is included, it is required for model parallel.
_a = json.loads(_lowerCAmelCase )
if "partitions" not in smp_options:
return False
except json.JSONDecodeError:
return False
# Get the sagemaker specific framework parameters from mpi_options variable.
_a = os.getenv('''SM_FRAMEWORK_PARAMS''', '''{}''' )
try:
# Parse it and check the field "sagemaker_distributed_dataparallel_enabled".
_a = json.loads(_lowerCAmelCase )
if not mpi_options.get('''sagemaker_mpi_enabled''', _lowerCAmelCase ):
return False
except json.JSONDecodeError:
return False
# Lastly, check if the `smdistributed` module is present.
return importlib.util.find_spec('''smdistributed''' ) is not None
if is_sagemaker_model_parallel_available():
import smdistributed.modelparallel.torch as smp
smp.init()
@dataclass
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : str = field(
default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , )
def _UpperCAmelCase ( self ) -> List[Any]:
super().__post_init__()
warnings.warn(
'''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use '''
'''`TrainingArguments` instead.''' , __UpperCAmelCase , )
@cached_property
def _UpperCAmelCase ( self ) -> "torch.device":
logger.info('''PyTorch: setting up devices''' )
if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1:
logger.warning(
'''torch.distributed process group is initialized, but local_rank == -1. '''
'''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' )
if self.no_cuda:
_a = torch.device('''cpu''' )
_a = 0
elif is_sagemaker_model_parallel_available():
_a = smp.local_rank()
_a = torch.device('''cuda''' , __UpperCAmelCase )
_a = 1
elif is_sagemaker_dp_enabled():
import smdistributed.dataparallel.torch.torch_smddp # noqa: F401
torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta )
_a = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) )
_a = torch.device('''cuda''' , self.local_rank )
_a = 1
elif self.local_rank == -1:
# if n_gpu is > 1 we'll use nn.DataParallel.
# If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0`
# Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will
# trigger an error that a device index is missing. Index 0 takes into account the
# GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0`
# will use the first GPU in that env, i.e. GPU#1
_a = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
# Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at
# the default value.
_a = torch.cuda.device_count()
else:
# Here, we'll use torch.distributed.
# Initializes the distributed backend which will take care of synchronizing nodes/GPUs
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta )
_a = torch.device('''cuda''' , self.local_rank )
_a = 1
if device.type == "cuda":
torch.cuda.set_device(__UpperCAmelCase )
return device
@property
def _UpperCAmelCase ( self ) -> int:
if is_sagemaker_model_parallel_available():
return smp.dp_size()
return super().world_size
@property
def _UpperCAmelCase ( self ) -> Dict:
return not is_sagemaker_model_parallel_available()
@property
def _UpperCAmelCase ( self ) -> str:
return False
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = inspect.getfile(accelerate.test_utils )
_a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
_a = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
_a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def _UpperCAmelCase ( self ) -> List[str]:
print(F'Found {torch.cuda.device_count()} devices.' )
_a = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def _UpperCAmelCase ( self ) -> List[str]:
print(F'Found {torch.cuda.device_count()} devices.' )
_a = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path]
print(F'Command: {cmd}' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def _UpperCAmelCase ( self ) -> List[str]:
_a = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
@require_multi_gpu
def _UpperCAmelCase ( self ) -> Any:
print(F'Found {torch.cuda.device_count()} devices, using 2 devices only' )
_a = ['''torchrun''', F'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(__UpperCAmelCase , env=os.environ.copy() )
if __name__ == "__main__":
__snake_case = Accelerator()
__snake_case = (accelerator.state.process_index + 2, 10)
__snake_case = torch.randint(0, 10, shape).to(accelerator.device)
__snake_case = ''''''
__snake_case = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
__snake_case = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += f"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
__snake_case = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
from PIL import Image
def A_ ( _lowerCAmelCase : Image, _lowerCAmelCase : int ):
"""simple docstring"""
_a = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level))
def contrast(_lowerCAmelCase : int ) -> int:
return int(1_28 + factor * (c - 1_28) )
return img.point(_lowerCAmelCase )
if __name__ == "__main__":
# Load image
with Image.open('''image_data/lena.jpg''') as img:
# Change contrast to 170
__snake_case = change_contrast(img, 170)
cont_img.save('''image_data/lena_high_contrast.png''', format='''png''')
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
__snake_case = logging.get_logger(__name__)
__snake_case = {}
__snake_case = {}
__snake_case = {}
def A_ ( _lowerCAmelCase : type, _lowerCAmelCase : Optional[str], _lowerCAmelCase : Optional[List[str]] = None, ):
"""simple docstring"""
_a = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' )
_a = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' )
_a = format_type
def A_ ( _lowerCAmelCase : Exception, _lowerCAmelCase : Optional[str], _lowerCAmelCase : Optional[List[str]] = None ):
"""simple docstring"""
_a = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
_a = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['''python'''])
_register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow'''])
_register_formatter(NumpyFormatter, '''numpy''', aliases=['''np'''])
_register_formatter(PandasFormatter, '''pandas''', aliases=['''pd'''])
_register_formatter(CustomFormatter, '''custom''')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch'''])
else:
__snake_case = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''')
_register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch'''])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf'''])
else:
__snake_case = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''')
_register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf'''])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, '''jax''', aliases=[])
else:
__snake_case = ValueError('''JAX needs to be installed to be able to return JAX arrays.''')
_register_unavailable_formatter(_jax_error, '''jax''', aliases=[])
def A_ ( _lowerCAmelCase : Optional[str] ):
"""simple docstring"""
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def A_ ( _lowerCAmelCase : Optional[str], **_lowerCAmelCase : Dict ):
"""simple docstring"""
_a = get_format_type_from_alias(_lowerCAmelCase )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**_lowerCAmelCase )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/cvt-13''': '''https://huggingface.co/microsoft/cvt-13/resolve/main/config.json''',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Tuple = 'cvt'
def __init__( self , __UpperCAmelCase=3 , __UpperCAmelCase=[7, 3, 3] , __UpperCAmelCase=[4, 2, 2] , __UpperCAmelCase=[2, 1, 1] , __UpperCAmelCase=[64, 192, 384] , __UpperCAmelCase=[1, 3, 6] , __UpperCAmelCase=[1, 2, 10] , __UpperCAmelCase=[4.0, 4.0, 4.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.0] , __UpperCAmelCase=[0.0, 0.0, 0.1] , __UpperCAmelCase=[True, True, True] , __UpperCAmelCase=[False, False, True] , __UpperCAmelCase=["dw_bn", "dw_bn", "dw_bn"] , __UpperCAmelCase=[3, 3, 3] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=[1, 1, 1] , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , **__UpperCAmelCase , ) -> Dict:
super().__init__(**__UpperCAmelCase )
_a = num_channels
_a = patch_sizes
_a = patch_stride
_a = patch_padding
_a = embed_dim
_a = num_heads
_a = depth
_a = mlp_ratio
_a = attention_drop_rate
_a = drop_rate
_a = drop_path_rate
_a = qkv_bias
_a = cls_token
_a = qkv_projection_method
_a = kernel_qkv
_a = padding_kv
_a = stride_kv
_a = padding_q
_a = stride_q
_a = initializer_range
_a = layer_norm_eps
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import pi, sqrt
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float ):
"""simple docstring"""
if inductance <= 0:
raise ValueError('''Inductance cannot be 0 or negative''' )
elif capacitance <= 0:
raise ValueError('''Capacitance cannot be 0 or negative''' )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[int] = 'deformable_detr'
A_ : Any = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=3 , __UpperCAmelCase=300 , __UpperCAmelCase=1024 , __UpperCAmelCase=6 , __UpperCAmelCase=1024 , __UpperCAmelCase=8 , __UpperCAmelCase=6 , __UpperCAmelCase=1024 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="sine" , __UpperCAmelCase="resnet50" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=False , __UpperCAmelCase=300 , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.25 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> List[str]:
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_a = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = backbone_config.get('''model_type''' )
_a = CONFIG_MAPPING[backbone_model_type]
_a = config_class.from_dict(__UpperCAmelCase )
_a = use_timm_backbone
_a = backbone_config
_a = num_channels
_a = num_queries
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = init_xavier_std
_a = encoder_layerdrop
_a = auxiliary_loss
_a = position_embedding_type
_a = backbone
_a = use_pretrained_backbone
_a = dilation
# deformable attributes
_a = num_feature_levels
_a = encoder_n_points
_a = decoder_n_points
_a = two_stage
_a = two_stage_num_proposals
_a = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_a = class_cost
_a = bbox_cost
_a = giou_cost
# Loss coefficients
_a = mask_loss_coefficient
_a = dice_loss_coefficient
_a = bbox_loss_coefficient
_a = giou_loss_coefficient
_a = eos_coefficient
_a = focal_alpha
_a = disable_custom_kernels
super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase )
@property
def _UpperCAmelCase ( self ) -> int:
return self.encoder_attention_heads
@property
def _UpperCAmelCase ( self ) -> int:
return self.d_model
def _UpperCAmelCase ( self ) -> str:
_a = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_a = self.backbone_config.to_dict()
_a = self.__class__.model_type
return output
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import requests
__snake_case = '''YOUR API KEY'''
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : str = giphy_api_key ):
"""simple docstring"""
_a = '''+'''.join(query.split() )
_a = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}'
_a = requests.get(_lowerCAmelCase ).json()['''data''']
return [gif["url"] for gif in gifs]
if __name__ == "__main__":
print('''\n'''.join(get_gifs('''space ship''')))
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
from functools import reduce
__snake_case = (
'''73167176531330624919225119674426574742355349194934'''
'''96983520312774506326239578318016984801869478851843'''
'''85861560789112949495459501737958331952853208805511'''
'''12540698747158523863050715693290963295227443043557'''
'''66896648950445244523161731856403098711121722383113'''
'''62229893423380308135336276614282806444486645238749'''
'''30358907296290491560440772390713810515859307960866'''
'''70172427121883998797908792274921901699720888093776'''
'''65727333001053367881220235421809751254540594752243'''
'''52584907711670556013604839586446706324415722155397'''
'''53697817977846174064955149290862569321978468622482'''
'''83972241375657056057490261407972968652414535100474'''
'''82166370484403199890008895243450658541227588666881'''
'''16427171479924442928230863465674813919123162824586'''
'''17866458359124566529476545682848912883142607690042'''
'''24219022671055626321111109370544217506941658960408'''
'''07198403850962455444362981230987879927244284909188'''
'''84580156166097919133875499200524063689912560717606'''
'''05886116467109405077541002256983155200055935729725'''
'''71636269561882670428252483600823257530420752963450'''
)
def A_ ( _lowerCAmelCase : str = N ):
"""simple docstring"""
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _lowerCAmelCase, _lowerCAmelCase : str(int(_lowerCAmelCase ) * int(_lowerCAmelCase ) ), n[i : i + 13] ) )
for i in range(len(_lowerCAmelCase ) - 12 ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['transformers', 'torch', 'note_seq']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
'''files''', [
['''full:README.md''', '''dataset_infos.json'''],
['''empty:README.md''', '''dataset_infos.json'''],
['''dataset_infos.json'''],
['''full:README.md'''],
], )
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
_a = tmp_path_factory.mktemp('''dset_infos_dir''' )
if "full:README.md" in files:
with open(dataset_infos_dir / '''README.md''', '''w''' ) as f:
f.write('''---\ndataset_info:\n dataset_size: 42\n---''' )
if "empty:README.md" in files:
with open(dataset_infos_dir / '''README.md''', '''w''' ) as f:
f.write('''''' )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / '''dataset_infos.json''', '''w''' ) as f:
f.write('''{"default": {"dataset_size": 42}}''' )
_a = DatasetInfosDict.from_directory(_lowerCAmelCase )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
'''dataset_info''', [
DatasetInfo(),
DatasetInfo(
description='''foo''', features=Features({'''a''': Value('''int32''' )} ), builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train'''}], download_size=42, ),
], )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : DatasetInfo ):
"""simple docstring"""
_a = str(_lowerCAmelCase )
dataset_info.write_to_directory(_lowerCAmelCase )
_a = DatasetInfo.from_directory(_lowerCAmelCase )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(_lowerCAmelCase, '''dataset_info.json''' ) )
def A_ ( ):
"""simple docstring"""
_a = DatasetInfo(
description='''foo''', citation='''bar''', homepage='''https://foo.bar''', license='''CC0''', features=Features({'''a''': Value('''int32''' )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train''', '''num_examples''': 42}], download_checksums={}, download_size=13_37, post_processing_size=4_42, dataset_size=12_34, size_in_bytes=13_37 + 4_42 + 12_34, )
_a = dataset_info._to_yaml_dict()
assert sorted(_lowerCAmelCase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) )
_a = yaml.safe_dump(_lowerCAmelCase )
_a = yaml.safe_load(_lowerCAmelCase )
assert dataset_info_yaml_dict == reloaded
def A_ ( ):
"""simple docstring"""
_a = DatasetInfo()
_a = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
'''dataset_infos_dict''', [
DatasetInfosDict(),
DatasetInfosDict({'''default''': DatasetInfo()} ),
DatasetInfosDict({'''my_config_name''': DatasetInfo()} ),
DatasetInfosDict(
{
'''default''': DatasetInfo(
description='''foo''', features=Features({'''a''': Value('''int32''' )} ), builder_name='''builder''', config_name='''config''', version='''1.0.0''', splits=[{'''name''': '''train'''}], download_size=42, )
} ),
DatasetInfosDict(
{
'''v1''': DatasetInfo(dataset_size=42 ),
'''v2''': DatasetInfo(dataset_size=13_37 ),
} ),
], )
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : DatasetInfosDict ):
"""simple docstring"""
_a = str(_lowerCAmelCase )
dataset_infos_dict.write_to_directory(_lowerCAmelCase )
_a = DatasetInfosDict.from_directory(_lowerCAmelCase )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
_a = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
_a = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(_lowerCAmelCase, '''README.md''' ) )
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
__snake_case = {
'''Pillow''': '''Pillow<10.0.0''',
'''accelerate''': '''accelerate>=0.20.3''',
'''av''': '''av==9.2.0''',
'''beautifulsoup4''': '''beautifulsoup4''',
'''black''': '''black~=23.1''',
'''codecarbon''': '''codecarbon==1.2.0''',
'''cookiecutter''': '''cookiecutter==1.7.3''',
'''dataclasses''': '''dataclasses''',
'''datasets''': '''datasets!=2.5.0''',
'''decord''': '''decord==0.6.0''',
'''deepspeed''': '''deepspeed>=0.9.3''',
'''diffusers''': '''diffusers''',
'''dill''': '''dill<0.3.5''',
'''evaluate''': '''evaluate>=0.2.0''',
'''fairscale''': '''fairscale>0.3''',
'''faiss-cpu''': '''faiss-cpu''',
'''fastapi''': '''fastapi''',
'''filelock''': '''filelock''',
'''flax''': '''flax>=0.4.1,<=0.7.0''',
'''ftfy''': '''ftfy''',
'''fugashi''': '''fugashi>=1.0''',
'''GitPython''': '''GitPython<3.1.19''',
'''hf-doc-builder''': '''hf-doc-builder>=0.3.0''',
'''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''',
'''importlib_metadata''': '''importlib_metadata''',
'''ipadic''': '''ipadic>=1.0.0,<2.0''',
'''isort''': '''isort>=5.5.4''',
'''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''',
'''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''',
'''jieba''': '''jieba''',
'''kenlm''': '''kenlm''',
'''keras-nlp''': '''keras-nlp>=0.3.1''',
'''librosa''': '''librosa''',
'''nltk''': '''nltk''',
'''natten''': '''natten>=0.14.6''',
'''numpy''': '''numpy>=1.17''',
'''onnxconverter-common''': '''onnxconverter-common''',
'''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''',
'''onnxruntime''': '''onnxruntime>=1.4.0''',
'''opencv-python''': '''opencv-python''',
'''optuna''': '''optuna''',
'''optax''': '''optax>=0.0.8,<=0.1.4''',
'''packaging''': '''packaging>=20.0''',
'''parameterized''': '''parameterized''',
'''phonemizer''': '''phonemizer''',
'''protobuf''': '''protobuf''',
'''psutil''': '''psutil''',
'''pyyaml''': '''pyyaml>=5.1''',
'''pydantic''': '''pydantic<2''',
'''pytest''': '''pytest>=7.2.0''',
'''pytest-timeout''': '''pytest-timeout''',
'''pytest-xdist''': '''pytest-xdist''',
'''python''': '''python>=3.8.0''',
'''ray[tune]''': '''ray[tune]''',
'''regex''': '''regex!=2019.12.17''',
'''requests''': '''requests''',
'''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''',
'''rjieba''': '''rjieba''',
'''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''',
'''ruff''': '''ruff>=0.0.241,<=0.0.259''',
'''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''',
'''sacremoses''': '''sacremoses''',
'''safetensors''': '''safetensors>=0.3.1''',
'''sagemaker''': '''sagemaker>=2.31.0''',
'''scikit-learn''': '''scikit-learn''',
'''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''',
'''sigopt''': '''sigopt''',
'''starlette''': '''starlette''',
'''sudachipy''': '''sudachipy>=0.6.6''',
'''sudachidict_core''': '''sudachidict_core>=20220729''',
'''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''',
'''tensorflow''': '''tensorflow>=2.6,<2.14''',
'''tensorflow-text''': '''tensorflow-text<2.14''',
'''tf2onnx''': '''tf2onnx''',
'''timeout-decorator''': '''timeout-decorator''',
'''timm''': '''timm''',
'''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''',
'''torch''': '''torch>=1.9,!=1.12.0''',
'''torchaudio''': '''torchaudio''',
'''torchvision''': '''torchvision''',
'''pyctcdecode''': '''pyctcdecode>=0.4.0''',
'''tqdm''': '''tqdm>=4.27''',
'''unidic''': '''unidic>=1.0.2''',
'''unidic_lite''': '''unidic_lite>=1.0.7''',
'''urllib3''': '''urllib3<2.0.0''',
'''uvicorn''': '''uvicorn''',
}
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name
__snake_case = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : Any, _lowerCAmelCase : int=8 ):
"""simple docstring"""
_a = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
_a = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def A_ ( _lowerCAmelCase : int, _lowerCAmelCase : str=5_12, _lowerCAmelCase : int=5_12 ):
"""simple docstring"""
_a = pil_image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1 )
_a = np.array(pil_image.convert('''RGB''' ) )
_a = arr.astype(np.floataa ) / 1_2_7.5 - 1
_a = np.transpose(_lowerCAmelCase, [2, 0, 1] )
_a = torch.from_numpy(_lowerCAmelCase ).unsqueeze(0 )
return image
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
super().__init__()
self.register_modules(
unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , movq=__UpperCAmelCase , )
_a = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
# get the original timestep using init_timestep
_a = min(int(num_inference_steps * strength ) , __UpperCAmelCase )
_a = max(num_inference_steps - init_timestep , 0 )
_a = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> int:
if not isinstance(__UpperCAmelCase , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__UpperCAmelCase )}' )
_a = image.to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
_a = batch_size * num_images_per_prompt
if image.shape[1] == 4:
_a = image
else:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCAmelCase )
]
_a = torch.cat(__UpperCAmelCase , dim=0 )
else:
_a = self.movq.encode(__UpperCAmelCase ).latent_dist.sample(__UpperCAmelCase )
_a = self.movq.config.scaling_factor * init_latents
_a = torch.cat([init_latents] , dim=0 )
_a = init_latents.shape
_a = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase )
# get latents
_a = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = init_latents
return latents
def _UpperCAmelCase ( self , __UpperCAmelCase=0 ) -> Dict:
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
_a = torch.device(F'cuda:{gpu_id}' )
_a = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(__UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=0 ) -> str:
if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' )
_a = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to('''cpu''' , silence_dtype_warnings=__UpperCAmelCase )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
_a = None
for cpu_offloaded_model in [self.unet, self.movq]:
_a , _a = cpu_offload_with_hook(__UpperCAmelCase , __UpperCAmelCase , prev_module_hook=__UpperCAmelCase )
# We'll offload the last model manually.
_a = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def _UpperCAmelCase ( self ) -> Union[str, Any]:
if not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(__UpperCAmelCase , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(__UpperCAmelCase )
def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 512 , __UpperCAmelCase = 512 , __UpperCAmelCase = 100 , __UpperCAmelCase = 4.0 , __UpperCAmelCase = 0.3 , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , ) -> str:
_a = self._execution_device
_a = guidance_scale > 1.0
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = torch.cat(__UpperCAmelCase , dim=0 )
_a = image_embeds.shape[0]
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = torch.cat(__UpperCAmelCase , dim=0 )
if do_classifier_free_guidance:
_a = image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 )
_a = negative_image_embeds.repeat_interleave(__UpperCAmelCase , dim=0 )
_a = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=__UpperCAmelCase )
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = [image]
if not all(isinstance(__UpperCAmelCase , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F'Input is in incorrect format: {[type(__UpperCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor' )
_a = torch.cat([prepare_image(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for i in image] , dim=0 )
_a = image.to(dtype=image_embeds.dtype , device=__UpperCAmelCase )
_a = self.movq.encode(__UpperCAmelCase )['''latents''']
_a = latents.repeat_interleave(__UpperCAmelCase , dim=0 )
self.scheduler.set_timesteps(__UpperCAmelCase , device=__UpperCAmelCase )
_a , _a = self.get_timesteps(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = timesteps[:1].repeat(batch_size * num_images_per_prompt )
_a , _a = downscale_height_and_width(__UpperCAmelCase , __UpperCAmelCase , self.movq_scale_factor )
_a = self.prepare_latents(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , image_embeds.dtype , __UpperCAmelCase , __UpperCAmelCase )
for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ):
# expand the latents if we are doing classifier free guidance
_a = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
_a = {'''image_embeds''': image_embeds}
_a = self.unet(
sample=__UpperCAmelCase , timestep=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , added_cond_kwargs=__UpperCAmelCase , return_dict=__UpperCAmelCase , )[0]
if do_classifier_free_guidance:
_a , _a = noise_pred.split(latents.shape[1] , dim=1 )
_a , _a = noise_pred.chunk(2 )
_a , _a = variance_pred.chunk(2 )
_a = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
_a = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , '''variance_type''' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
_a , _a = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
_a = self.scheduler.step(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase , )[0]
# post-processing
_a = self.movq.decode(__UpperCAmelCase , force_not_quantize=__UpperCAmelCase )['''sample''']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
_a = image * 0.5 + 0.5
_a = image.clamp(0 , 1 )
_a = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
_a = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCAmelCase )
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import mpmath # for roots of unity
import numpy as np
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]:
# Input as list
_a = list(poly_a or [0] )[:]
_a = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
_a = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
_a = len(self.polyB )
# Add 0 to make lengths equal a power of 2
_a = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
_a = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
_a = self.__multiply()
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]:
_a = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB]
# Corner case
if len(__UpperCAmelCase ) <= 1:
return dft[0]
#
_a = self.c_max_length // 2
while next_ncol > 0:
_a = [[] for i in range(__UpperCAmelCase )]
_a = self.root**next_ncol
# First half of next step
_a = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(__UpperCAmelCase ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
_a = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(__UpperCAmelCase ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
_a = new_dft
_a = next_ncol // 2
return dft[0]
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.__dft('''A''' )
_a = self.__dft('''B''' )
_a = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
_a = 2
while next_ncol <= self.c_max_length:
_a = [[] for i in range(__UpperCAmelCase )]
_a = self.root ** (next_ncol // 2)
_a = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
_a = new_inverse_c
next_ncol *= 2
# Unpack
_a = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self ) -> Dict:
_a = '''A = ''' + ''' + '''.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) )
_a = '''B = ''' + ''' + '''.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) )
_a = '''A*B = ''' + ''' + '''.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.product ) )
return F'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , ) -> List[Any]:
_a = size if size is not None else {'''height''': 18, '''width''': 18}
_a = parent
_a = batch_size
_a = num_channels
_a = image_size
_a = min_resolution
_a = max_resolution
_a = do_resize
_a = size
_a = do_normalize
_a = image_mean
_a = image_std
def _UpperCAmelCase ( self ) -> Any:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[int] = DPTImageProcessor if is_vision_available() else None
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = DPTImageProcessingTester(self )
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_mean''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''image_std''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_normalize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''do_resize''' ) )
self.assertTrue(hasattr(__UpperCAmelCase , '''size''' ) )
def _UpperCAmelCase ( self ) -> Any:
_a = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
_a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
def _UpperCAmelCase ( self ) -> Optional[Any]:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , np.ndarray )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
def _UpperCAmelCase ( self ) -> List[Any]:
# Initialize image_processing
_a = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_a = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
# Test not batched input
_a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
_a = image_processing(__UpperCAmelCase , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from typing import Any
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ) -> Union[str, Any]:
_a = data
_a = None
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Any:
_a = None
def _UpperCAmelCase ( self ) -> Dict:
_a = self.head
while temp is not None:
print(temp.data , end=''' ''' )
_a = temp.next
print()
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_a = Node(__UpperCAmelCase )
_a = self.head
_a = new_node
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if node_data_a == node_data_a:
return
else:
_a = self.head
while node_a is not None and node_a.data != node_data_a:
_a = node_a.next
_a = self.head
while node_a is not None and node_a.data != node_data_a:
_a = node_a.next
if node_a is None or node_a is None:
return
_a , _a = node_a.data, node_a.data
if __name__ == "__main__":
__snake_case = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print('''After swapping''')
ll.print_list()
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
import random
import torch
from huggingface_hub import HfApi
from diffusers import UNetaDModel
__snake_case = HfApi()
__snake_case = {}
# fmt: off
__snake_case = torch.tensor([
-0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467,
1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189,
-1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839,
0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557
])
__snake_case = torch.tensor([
-2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436,
1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208,
-2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948,
2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365
])
__snake_case = torch.tensor([
-0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869,
-0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304,
-0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925,
0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943
])
__snake_case = torch.tensor([
0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172,
-0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309,
0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805,
-0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505
])
__snake_case = torch.tensor([
0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133,
-0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395,
0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559,
-0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386
])
__snake_case = torch.tensor([
0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078,
-0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330,
0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683,
-0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431
])
__snake_case = torch.tensor([
0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042,
-0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398,
0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574,
-0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390
])
__snake_case = torch.tensor([
0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042,
-0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290,
0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746,
-0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473
])
__snake_case = torch.tensor([
-1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330,
1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243,
-2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810,
1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251])
__snake_case = torch.tensor([
-1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324,
0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181,
-2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259,
1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266
])
__snake_case = torch.tensor([
-1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212,
0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027,
-2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131,
1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355
])
__snake_case = torch.tensor([
-2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959,
1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351,
-3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341,
3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066
])
__snake_case = torch.tensor([
-2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740,
1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398,
-2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395,
2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243
])
__snake_case = torch.tensor([
-2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336,
1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908,
-3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560,
3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343
])
__snake_case = torch.tensor([
-1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344,
1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391,
-2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439,
1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219
])
# fmt: on
__snake_case = api.list_models(filter='''diffusers''')
for mod in models:
if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256":
__snake_case = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1]
print(f'Started running {mod.modelId}!!!')
if mod.modelId.startswith('''CompVis'''):
__snake_case = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''')
else:
__snake_case = UNetaDModel.from_pretrained(local_checkpoint)
torch.manual_seed(0)
random.seed(0)
__snake_case = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
__snake_case = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
__snake_case = model(noise, time_step).sample
assert torch.allclose(
logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1E-3
)
print(f'{mod.modelId} has passed successfully!!!')
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
__snake_case = logging.getLogger()
@unittest.skip('Temporarily disable the doc tests.' )
@require_torch
@require_tf
@slow
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , ) -> Tuple:
_a = [file for file in os.listdir(__UpperCAmelCase ) if os.path.isfile(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) )]
if identifier is not None:
_a = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
for n_ in n_identifier:
_a = [file for file in files if n_ not in file]
else:
_a = [file for file in files if n_identifier not in file]
_a = ignore_files or []
ignore_files.append('''__init__.py''' )
_a = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print('''Testing''' , __UpperCAmelCase )
if only_modules:
_a = file.split('''.''' )[0]
try:
_a = getattr(__UpperCAmelCase , __UpperCAmelCase )
_a = doctest.DocTestSuite(__UpperCAmelCase )
_a = unittest.TextTestRunner().run(__UpperCAmelCase )
self.assertIs(len(result.failures ) , 0 )
except AttributeError:
logger.info(F'{module_identifier} is not a module.' )
else:
_a = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS )
self.assertIs(result.failed , 0 )
def _UpperCAmelCase ( self ) -> Any:
_a = Path('''src/transformers''' )
_a = '''modeling'''
_a = [
'''modeling_ctrl.py''',
'''modeling_tf_ctrl.py''',
]
self.analyze_directory(__UpperCAmelCase , identifier=__UpperCAmelCase , ignore_files=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = Path('''src/transformers''' )
_a = '''tokenization'''
self.analyze_directory(__UpperCAmelCase , identifier=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = Path('''src/transformers''' )
_a = '''configuration'''
self.analyze_directory(__UpperCAmelCase , identifier=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = Path('''src/transformers''' )
_a = ['''configuration''', '''modeling''', '''tokenization''']
self.analyze_directory(__UpperCAmelCase , n_identifier=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
_a = Path('''docs/source''' )
_a = ['''favicon.ico''']
self.analyze_directory(__UpperCAmelCase , ignore_files=__UpperCAmelCase , only_modules=__UpperCAmelCase )
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
import os
def A_ ( ):
"""simple docstring"""
with open(os.path.dirname(_lowerCAmelCase ) + '''/p022_names.txt''' ) as file:
_a = str(file.readlines()[0] )
_a = names.replace('''"''', '''''' ).split(''',''' )
names.sort()
_a = 0
_a = 0
for i, name in enumerate(_lowerCAmelCase ):
for letter in name:
name_score += ord(_lowerCAmelCase ) - 64
total_score += (i + 1) * name_score
_a = 0
return total_score
if __name__ == "__main__":
print(solution())
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=2 , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = image_size
_a = patch_size
_a = num_channels
_a = is_training
_a = use_labels
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = type_sequence_label_size
_a = initializer_range
_a = scope
_a = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
_a = (image_size // patch_size) ** 2
_a = num_patches + 2
def _UpperCAmelCase ( self ) -> List[Any]:
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> Any:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]:
_a = DeiTModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
_a = DeiTForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_a = 1
_a = DeiTForMaskedImageModeling(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict:
_a = self.type_sequence_label_size
_a = DeiTForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_a = 1
_a = DeiTForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_a = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _UpperCAmelCase ( self ) -> Dict:
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCamelCase ( a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Any = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
A_ : Union[str, Any] = (
{
'feature-extraction': DeiTModel,
'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
A_ : Tuple = False
A_ : List[Any] = False
A_ : Any = False
def _UpperCAmelCase ( self ) -> str:
_a = DeiTModelTester(self )
_a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def _UpperCAmelCase ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason='''DeiT does not use inputs_embeds''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
pass
def _UpperCAmelCase ( self ) -> List[Any]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_a = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a = [*signature.parameters.keys()]
_a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[str]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Dict:
_a = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _UpperCAmelCase ( self ) -> int:
if not self.model_tester.is_training:
return
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__UpperCAmelCase )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
_a = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
_a = model(**__UpperCAmelCase ).loss
loss.backward()
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_a = False
_a = True
for model_class in self.all_model_classes:
if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
_a = model_class(__UpperCAmelCase )
model.gradient_checkpointing_enable()
model.to(__UpperCAmelCase )
model.train()
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
_a = model(**__UpperCAmelCase ).loss
loss.backward()
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = [
{'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float},
{'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long},
{'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__UpperCAmelCase ),
*get_values(__UpperCAmelCase ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ):
_a = problem_type['''title''']
_a = problem_type['''num_labels''']
_a = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
if problem_type["num_labels"] > 1:
_a = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] )
_a = inputs['''labels'''].to(problem_type['''dtype'''] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list:
_a = model(**__UpperCAmelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F'Something is going wrong in the regression problem: intercepted {w.message}' )
loss.backward()
@slow
def _UpperCAmelCase ( self ) -> str:
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = DeiTModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _UpperCAmelCase ( self ) -> Optional[Any]:
return (
DeiTImageProcessor.from_pretrained('''facebook/deit-base-distilled-patch16-224''' )
if is_vision_available()
else None
)
@slow
def _UpperCAmelCase ( self ) -> Tuple:
_a = DeiTForImageClassificationWithTeacher.from_pretrained('''facebook/deit-base-distilled-patch16-224''' ).to(
__UpperCAmelCase )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
_a = model(**__UpperCAmelCase )
# verify the logits
_a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
_a = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def _UpperCAmelCase ( self ) -> List[str]:
_a = DeiTModel.from_pretrained(
'''facebook/deit-base-distilled-patch16-224''' , torch_dtype=torch.floataa , device_map='''auto''' )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' )
_a = inputs.pixel_values.to(__UpperCAmelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
_a = model(__UpperCAmelCase )
| 320 |
"""simple docstring"""
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@require_torch
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task="fill-mask", model=mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet")
socket.socket = offline_socket
'''
# Force fetching the files so that we can use the cache
_a = '''hf-internal-testing/tiny-random-bert'''
BertConfig.from_pretrained(__UpperCAmelCase )
BertModel.from_pretrained(__UpperCAmelCase )
BertTokenizer.from_pretrained(__UpperCAmelCase )
pipeline(task='''fill-mask''' , model=__UpperCAmelCase )
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Optional[Any]:
# this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before
# `transformers` is loaded, and it's too late for inside pytest - so we are changing it
# while running an external program
# python one-liner segments
# this must be loaded before socket.socket is monkey-patched
_a = '''
from transformers import BertConfig, BertModel, BertTokenizer
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert-sharded"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print("success")
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled")
socket.socket = offline_socket
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# next emulate no network
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
@require_torch
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''
from transformers import pipeline
'''
_a = '''
mname = "hf-internal-testing/tiny-random-bert"
pipe = pipeline(model=mname)
'''
_a = '''
import socket
def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled")
socket.socket = offline_socket
'''
_a = self.get_env()
_a = '''1'''
_a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )]
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 1 , result.stderr )
self.assertIn(
'''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , )
@require_torch
def _UpperCAmelCase ( self ) -> List[Any]:
_a = '''
from transformers import AutoModel
'''
_a = '''
mname = "hf-internal-testing/test_dynamic_model"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print("success")
'''
# baseline - just load from_pretrained with normal network
_a = [sys.executable, '''-c''', '''\n'''.join([load, run] )]
# should succeed
_a = self.get_env()
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_a = '''1'''
_a = subprocess.run(__UpperCAmelCase , env=__UpperCAmelCase , check=__UpperCAmelCase , capture_output=__UpperCAmelCase )
self.assertEqual(result.returncode , 0 , result.stderr )
self.assertIn('''success''' , result.stdout.decode() )
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import json
import math
import os
import tempfile
import unittest
from importlib import import_module
import numpy as np
from transformers import ViTMAEConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTMAEForPreTraining, TFViTMAEModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=0.6 , __UpperCAmelCase=None , ) -> List[str]:
_a = parent
_a = batch_size
_a = image_size
_a = patch_size
_a = num_channels
_a = is_training
_a = use_labels
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = type_sequence_label_size
_a = initializer_range
_a = mask_ratio
_a = scope
# in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above
# (we add 1 for the [CLS] token)
_a = (image_size // patch_size) ** 2
_a = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) )
def _UpperCAmelCase ( self ) -> int:
_a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self ) -> Optional[int]:
return ViTMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = TFViTMAEModel(config=__UpperCAmelCase )
_a = model(__UpperCAmelCase , training=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = TFViTMAEForPreTraining(__UpperCAmelCase )
_a = model(__UpperCAmelCase , training=__UpperCAmelCase )
# expected sequence length = num_patches
_a = (self.image_size // self.patch_size) ** 2
_a = self.patch_size**2 * self.num_channels
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
# test greyscale images
_a = 1
_a = TFViTMAEForPreTraining(__UpperCAmelCase )
_a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_a = model(__UpperCAmelCase , training=__UpperCAmelCase )
_a = self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.prepare_config_and_inputs()
((_a) , (_a) , (_a)) = config_and_inputs
_a = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else ()
A_ : List[Any] = {'feature-extraction': TFViTMAEModel} if is_tf_available() else {}
A_ : Optional[int] = False
A_ : Dict = False
A_ : Optional[Any] = False
A_ : Any = False
def _UpperCAmelCase ( self ) -> List[Any]:
_a = TFViTMAEModelTester(self )
_a = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def _UpperCAmelCase ( self ) -> str:
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMAE does not use inputs_embeds''' )
def _UpperCAmelCase ( self ) -> str:
pass
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
_a = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , tf.keras.layers.Layer ) )
def _UpperCAmelCase ( self ) -> str:
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a = [*signature.parameters.keys()]
_a = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> str:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
# make the mask reproducible
np.random.seed(2 )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = int((config.image_size // config.patch_size) ** 2 )
_a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_a = model(__UpperCAmelCase , noise=__UpperCAmelCase )
_a = copy.deepcopy(self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) )
_a = model(**__UpperCAmelCase , noise=__UpperCAmelCase )
_a = outputs_dict[0].numpy()
_a = outputs_keywords[0].numpy()
self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 )
def _UpperCAmelCase ( self ) -> Optional[int]:
# make the mask reproducible
np.random.seed(2 )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = int((config.image_size // config.patch_size) ** 2 )
_a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
def prepare_numpy_arrays(__UpperCAmelCase ):
_a = {}
for k, v in inputs_dict.items():
if tf.is_tensor(__UpperCAmelCase ):
_a = v.numpy()
else:
_a = np.array(__UpperCAmelCase )
return inputs_np_dict
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_a = prepare_numpy_arrays(__UpperCAmelCase )
_a = model(__UpperCAmelCase , noise=__UpperCAmelCase )
_a = model(**__UpperCAmelCase , noise=__UpperCAmelCase )
self.assert_outputs_same(__UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int:
# make masks reproducible
np.random.seed(2 )
_a = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 )
_a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_a = tf.constant(__UpperCAmelCase )
# Add `noise` argument.
# PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument
_a = tf_noise
super().check_pt_tf_models(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[str]:
# make mask reproducible
np.random.seed(2 )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = {
module_member
for model_class in self.all_model_classes
for module in (import_module(model_class.__module__ ),)
for module_member_name in dir(__UpperCAmelCase )
if module_member_name.endswith('''MainLayer''' )
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`.
and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )]
for module_member in (getattr(__UpperCAmelCase , __UpperCAmelCase ),)
if isinstance(__UpperCAmelCase , __UpperCAmelCase )
and tf.keras.layers.Layer in module_member.__bases__
and getattr(__UpperCAmelCase , '''_keras_serializable''' , __UpperCAmelCase )
}
_a = int((config.image_size // config.patch_size) ** 2 )
_a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
_a = tf.convert_to_tensor(__UpperCAmelCase )
inputs_dict.update({'''noise''': noise} )
for main_layer_class in tf_main_layer_classes:
_a = main_layer_class(__UpperCAmelCase )
_a = {
name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items()
}
_a = tf.keras.Model(__UpperCAmelCase , outputs=main_layer(__UpperCAmelCase ) )
_a = model(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
_a = os.path.join(__UpperCAmelCase , '''keras_model.h5''' )
model.save(__UpperCAmelCase )
_a = tf.keras.models.load_model(
__UpperCAmelCase , custom_objects={main_layer_class.__name__: main_layer_class} )
assert isinstance(__UpperCAmelCase , tf.keras.Model )
_a = model(__UpperCAmelCase )
self.assert_outputs_same(__UpperCAmelCase , __UpperCAmelCase )
@slow
def _UpperCAmelCase ( self ) -> Union[str, Any]:
# make mask reproducible
np.random.seed(2 )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = int((config.image_size // config.patch_size) ** 2 )
_a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_a = model(__UpperCAmelCase , noise=__UpperCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
_a = outputs.last_hidden_state.numpy()
_a = 0
else:
_a = outputs.logits.numpy()
_a = 0
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCAmelCase , saved_model=__UpperCAmelCase )
_a = model_class.from_pretrained(__UpperCAmelCase )
_a = model(__UpperCAmelCase , noise=__UpperCAmelCase )
if model_class.__name__ == "TFViTMAEModel":
_a = after_outputs['''last_hidden_state'''].numpy()
_a = 0
else:
_a = after_outputs['''logits'''].numpy()
_a = 0
_a = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__UpperCAmelCase , 1e-5 )
def _UpperCAmelCase ( self ) -> Optional[Any]:
# make mask reproducible
np.random.seed(2 )
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
_a = int((config.image_size // config.patch_size) ** 2 )
_a = np.random.uniform(size=(self.model_tester.batch_size, num_patches) )
for model_class in self.all_model_classes:
_a = model_class(__UpperCAmelCase )
_a = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
_a = model(__UpperCAmelCase , noise=__UpperCAmelCase )
_a = model.get_config()
# make sure that returned config is jsonifiable, which is required by keras
json.dumps(__UpperCAmelCase )
_a = model_class.from_config(model.get_config() )
# make sure it also accepts a normal config
_a = model_class.from_config(model.config )
_a = new_model(__UpperCAmelCase ) # Build model
new_model.set_weights(model.get_weights() )
_a = new_model(__UpperCAmelCase , noise=__UpperCAmelCase )
self.assert_outputs_same(__UpperCAmelCase , __UpperCAmelCase )
@unittest.skip(
reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load
to get deterministic results.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' )
def _UpperCAmelCase ( self ) -> Tuple:
pass
@slow
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' )
self.assertIsNotNone(__UpperCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_tf
@require_vision
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _UpperCAmelCase ( self ) -> Optional[int]:
return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None
@slow
def _UpperCAmelCase ( self ) -> str:
# make random mask reproducible across the PT and TF model
np.random.seed(2 )
_a = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' )
_a = self.default_image_processor
_a = prepare_img()
_a = image_processor(images=__UpperCAmelCase , return_tensors='''tf''' )
# prepare a noise vector that will be also used for testing the TF model
# (this way we can ensure that the PT and TF models operate on the same inputs)
_a = ViTMAEConfig()
_a = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 )
_a = np.random.uniform(size=(1, num_patches) )
# forward pass
_a = model(**__UpperCAmelCase , noise=__UpperCAmelCase )
# verify the logits
_a = tf.convert_to_tensor([1, 196, 768] )
self.assertEqual(outputs.logits.shape , __UpperCAmelCase )
_a = tf.convert_to_tensor(
[[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] )
tf.debugging.assert_near(outputs.logits[0, :3, :3] , __UpperCAmelCase , atol=1e-4 )
| 320 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : str ):
"""simple docstring"""
_a = [1]
for i in range(2, _lowerCAmelCase ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
_a = []
_a = list(range(_lowerCAmelCase ) )
# Find permutation
while factorials:
_a = factorials.pop()
_a , _a = divmod(_lowerCAmelCase, _lowerCAmelCase )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__snake_case = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__snake_case = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__snake_case = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
def remove_articles(_lowerCAmelCase : Optional[int] ):
_a = re.compile(R'''\b(a|an|the)\b''', re.UNICODE )
return re.sub(_lowerCAmelCase, ''' ''', _lowerCAmelCase )
def white_space_fix(_lowerCAmelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCAmelCase : Tuple ):
_a = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCAmelCase : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCAmelCase ) ) ) )
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return int(normalize_answer(_lowerCAmelCase ) == normalize_answer(_lowerCAmelCase ) )
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = [any(compute_exact(_lowerCAmelCase, _lowerCAmelCase ) for ref in refs ) for pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase )]
return (sum(_lowerCAmelCase ) / len(_lowerCAmelCase )) * 1_00
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : List[Any], _lowerCAmelCase : str, _lowerCAmelCase : str ):
"""simple docstring"""
_a = [rgram for rgrams in rgramslist for rgram in rgrams]
_a = Counter(_lowerCAmelCase )
_a = Counter(_lowerCAmelCase )
_a = Counter()
for sgram, scount in sgramcounter.items():
_a = scount * numref
_a = Counter(_lowerCAmelCase )
_a = Counter()
for cgram, ccount in cgramcounter.items():
_a = ccount * numref
# KEEP
_a = sgramcounter_rep & cgramcounter_rep
_a = keepgramcounter_rep & rgramcounter
_a = sgramcounter_rep & rgramcounter
_a = 0
_a = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = keeptmpscorea / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
_a = keeptmpscorea / sum(keepgramcounterall_rep.values() )
_a = 0
if keepscore_precision > 0 or keepscore_recall > 0:
_a = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
_a = sgramcounter_rep - cgramcounter_rep
_a = delgramcounter_rep - rgramcounter
_a = sgramcounter_rep - rgramcounter
_a = 0
_a = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = deltmpscorea / len(_lowerCAmelCase )
# ADDITION
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) & set(_lowerCAmelCase )
_a = set(_lowerCAmelCase ) - set(_lowerCAmelCase )
_a = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
_a = 1
_a = 1
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
_a = addtmpscore / len(_lowerCAmelCase )
_a = 0
if addscore_precision > 0 or addscore_recall > 0:
_a = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Any ):
"""simple docstring"""
_a = len(_lowerCAmelCase )
_a = ssent.split(''' ''' )
_a = csent.split(''' ''' )
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
_a = []
for rsent in rsents:
_a = rsent.split(''' ''' )
_a = []
_a = []
_a = []
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
ragramslist.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(_lowerCAmelCase )
for i in range(0, len(_lowerCAmelCase ) - 1 ):
if i < len(_lowerCAmelCase ) - 1:
_a = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 2:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(_lowerCAmelCase )
if i < len(_lowerCAmelCase ) - 3:
_a = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(_lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
((_a) , (_a) , (_a)) = SARIngram(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
_a = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
_a = sum([delascore, delascore, delascore, delascore] ) / 4
_a = sum([addascore, addascore, addascore, addascore] ) / 4
_a = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def A_ ( _lowerCAmelCase : str, _lowerCAmelCase : bool = True, _lowerCAmelCase : str = "13a", _lowerCAmelCase : bool = True ):
"""simple docstring"""
if lowercase:
_a = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
_a = sacrebleu.metrics.bleu._get_tokenizer(_lowerCAmelCase )()(_lowerCAmelCase )
else:
_a = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCAmelCase )
elif tokenizer == "moses":
_a = sacremoses.MosesTokenizer().tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase, escape=_lowerCAmelCase )
elif tokenizer == "penn":
_a = sacremoses.MosesTokenizer().penn_tokenize(_lowerCAmelCase, return_str=_lowerCAmelCase )
else:
_a = sentence
if not return_str:
_a = normalized_sent.split()
return normalized_sent
def A_ ( _lowerCAmelCase : List[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
if not (len(_lowerCAmelCase ) == len(_lowerCAmelCase ) == len(_lowerCAmelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
_a = 0
for src, pred, refs in zip(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ):
sari_score += SARIsent(normalize(_lowerCAmelCase ), normalize(_lowerCAmelCase ), [normalize(_lowerCAmelCase ) for sent in refs] )
_a = sari_score / len(_lowerCAmelCase )
return 1_00 * sari_score
def A_ ( _lowerCAmelCase : Tuple, _lowerCAmelCase : Tuple, _lowerCAmelCase : Any="exp", _lowerCAmelCase : Tuple=None, _lowerCAmelCase : Union[str, Any]=False, _lowerCAmelCase : Optional[Any]=False, _lowerCAmelCase : List[str]=False, ):
"""simple docstring"""
_a = len(references[0] )
if any(len(_lowerCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
_a = [[refs[i] for refs in references] for i in range(_lowerCAmelCase )]
_a = sacrebleu.corpus_bleu(
_lowerCAmelCase, _lowerCAmelCase, smooth_method=_lowerCAmelCase, smooth_value=_lowerCAmelCase, force=_lowerCAmelCase, lowercase=_lowerCAmelCase, use_effective_order=_lowerCAmelCase, )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCamelCase ( datasets.Metric ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str:
_a = {}
result.update({'''sari''': compute_sari(sources=__UpperCAmelCase , predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
result.update({'''exact''': compute_em(predictions=__UpperCAmelCase , references=__UpperCAmelCase )} )
return result
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float ):
"""simple docstring"""
if mass < 0:
raise ValueError('''The mass of a body cannot be negative''' )
return 0.5 * mass * abs(_lowerCAmelCase ) * abs(_lowerCAmelCase )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 320 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int = 50 ):
"""simple docstring"""
_a = [1] * (length + 1)
for row_length in range(3, length + 1 ):
for block_length in range(3, row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(f'{solution() = }')
| 320 | 1 |
"""simple docstring"""
def A_ ( _lowerCAmelCase : int ):
"""simple docstring"""
if isinstance(_lowerCAmelCase, _lowerCAmelCase ):
raise TypeError('''\'float\' object cannot be interpreted as an integer''' )
if isinstance(_lowerCAmelCase, _lowerCAmelCase ):
raise TypeError('''\'str\' object cannot be interpreted as an integer''' )
if num == 0:
return "0b0"
_a = False
if num < 0:
_a = True
_a = -num
_a = []
while num > 0:
binary.insert(0, num % 2 )
num >>= 1
if negative:
return "-0b" + "".join(str(_lowerCAmelCase ) for e in binary )
return "0b" + "".join(str(_lowerCAmelCase ) for e in binary )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import argparse
import torch
from transformers import (
SpeechTaConfig,
SpeechTaFeatureExtractor,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaProcessor,
SpeechTaTokenizer,
logging,
)
from transformers.tokenization_utils import AddedToken
logging.set_verbosity_info()
__snake_case = logging.get_logger('''transformers.models.speecht5''')
__snake_case = {
'''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''',
'''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''',
'''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''',
'''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''',
}
__snake_case = {
'''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''',
'''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''',
}
__snake_case = {
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''',
'''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''',
'''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''',
'''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''',
'''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''',
}
__snake_case = {
'''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''',
'''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''',
'''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''',
'''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''',
'''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''',
'''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''',
'''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''',
'''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''',
'''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''',
}
__snake_case = {
'''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''',
}
__snake_case = {
'''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''',
}
__snake_case = {
'''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''',
'''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''',
'''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''',
'''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''',
'''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''',
'''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''',
'''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''',
'''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''',
'''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''',
'''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''',
}
__snake_case = {
'''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''',
'''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''',
'''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''',
'''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''',
'''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''',
'''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''',
'''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''',
'''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''',
'''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''',
'''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''',
'''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''',
'''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''',
'''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''',
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_TEXT_DECODER_PRENET,
**MAPPING_TEXT_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_TEXT_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = {
**MAPPING_SPEECH_ENCODER_PRENET,
**MAPPING_ENCODER,
**MAPPING_DECODER,
**MAPPING_SPEECH_DECODER_PRENET,
**MAPPING_SPEECH_DECODER_POSTNET,
}
__snake_case = []
__snake_case = [
'''encoder.version''',
'''encoder.layers.*.norm_k.weight''',
'''encoder.layers.*.norm_k.bias''',
'''decoder.version''',
'''decoder.layers.*.norm_k.weight''',
'''decoder.layers.*.norm_k.bias''',
'''decoder.pos_emb.pe_k''',
'''speech_encoder_prenet.embed_positions._float_tensor''',
'''text_decoder_prenet.embed_positions._float_tensor''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''speech_decoder_prenet.*''',
'''speech_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''speech_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
__snake_case = IGNORE_KEYS + [
'''encoder.proj''',
'''text_encoder_prenet.*''',
'''text_decoder_prenet.*''',
'''text_decoder_postnet.*''',
]
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Dict, _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
for attribute in key.split('''.''' ):
_a = getattr(_lowerCAmelCase, _lowerCAmelCase )
if weight_type is not None:
_a = getattr(_lowerCAmelCase, _lowerCAmelCase ).shape
else:
_a = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
_a = value
elif weight_type == "weight_g":
_a = value
elif weight_type == "weight_v":
_a = value
elif weight_type == "bias":
_a = value
elif weight_type == "running_mean":
_a = value
elif weight_type == "running_var":
_a = value
elif weight_type == "num_batches_tracked":
_a = value
else:
_a = value
logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
for key in ignore_keys:
if key.endswith('''.*''' ):
if name.startswith(key[:-1] ):
return True
elif ".*." in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
return True
elif key in name:
return True
return False
def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : int ):
"""simple docstring"""
_a = []
if task == "s2t":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2T
_a = IGNORE_KEYS_S2T
elif task == "t2s":
_a = None
_a = MAPPING_T2S
_a = IGNORE_KEYS_T2S
elif task == "s2s":
_a = hf_model.speechta.encoder.prenet.feature_encoder
_a = MAPPING_S2S
_a = IGNORE_KEYS_S2S
else:
raise ValueError(f'Unsupported task: {task}' )
for name, value in fairseq_dict.items():
if should_ignore(_lowerCAmelCase, _lowerCAmelCase ):
logger.info(f'{name} was ignored' )
continue
_a = False
if "conv_layers" in name:
load_conv_layer(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, hf_model.config.feat_extract_norm == '''group''', )
_a = True
else:
for key, mapped_key in MAPPING.items():
# mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if "*" in key:
_a , _a = key.split('''.*.''' )
if prefix in name and suffix in name:
_a = suffix
# if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
if key in name:
_a = True
if "*" in mapped_key:
_a = name.split(_lowerCAmelCase )[0].split('''.''' )[-2]
_a = mapped_key.replace('''*''', _lowerCAmelCase )
if "weight_g" in name:
_a = '''weight_g'''
elif "weight_v" in name:
_a = '''weight_v'''
elif "bias" in name:
_a = '''bias'''
elif "weight" in name:
_a = '''weight'''
elif "running_mean" in name:
_a = '''running_mean'''
elif "running_var" in name:
_a = '''running_var'''
elif "num_batches_tracked" in name:
_a = '''num_batches_tracked'''
else:
_a = None
set_recursively(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
continue
if not is_used:
unused_weights.append(_lowerCAmelCase )
logger.warning(f'Unused weights: {unused_weights}' )
def A_ ( _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any], _lowerCAmelCase : List[Any] ):
"""simple docstring"""
_a = full_name.split('''conv_layers.''' )[-1]
_a = name.split('''.''' )
_a = int(items[0] )
_a = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' )
_a = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_lowerCAmelCase )
@torch.no_grad()
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Dict, _lowerCAmelCase : List[Any]=None, _lowerCAmelCase : List[str]=None, _lowerCAmelCase : int=None, ):
"""simple docstring"""
if config_path is not None:
_a = SpeechTaConfig.from_pretrained(_lowerCAmelCase )
else:
_a = SpeechTaConfig()
if task == "s2t":
_a = config.max_text_positions
_a = SpeechTaForSpeechToText(_lowerCAmelCase )
elif task == "t2s":
_a = 18_76
_a = 6_00
_a = config.max_speech_positions
_a = SpeechTaForTextToSpeech(_lowerCAmelCase )
elif task == "s2s":
_a = 18_76
_a = config.max_speech_positions
_a = SpeechTaForSpeechToSpeech(_lowerCAmelCase )
else:
raise ValueError(f'Unknown task name: {task}' )
if vocab_path:
_a = SpeechTaTokenizer(_lowerCAmelCase, model_max_length=config.max_text_positions )
# Mask token behaves like a normal word, i.e. include the space before it
_a = AddedToken('''<mask>''', lstrip=_lowerCAmelCase, rstrip=_lowerCAmelCase )
_a = mask_token
tokenizer.add_special_tokens({'''mask_token''': mask_token} )
tokenizer.add_tokens(['''<ctc_blank>'''] )
_a = SpeechTaFeatureExtractor()
_a = SpeechTaProcessor(tokenizer=_lowerCAmelCase, feature_extractor=_lowerCAmelCase )
processor.save_pretrained(_lowerCAmelCase )
_a = torch.load(_lowerCAmelCase )
recursively_load_weights(fairseq_checkpoint['''model'''], _lowerCAmelCase, _lowerCAmelCase )
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
processor.push_to_hub(_lowerCAmelCase )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
parser.add_argument(
'''--task''',
default='''s2t''',
type=str,
help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''',
)
parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
__snake_case = parser.parse_args()
convert_speechta_checkpoint(
args.task,
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.vocab_path,
args.push_to_hub,
)
| 320 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''',
'''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''',
'''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''',
'''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''',
'''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''',
'''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''',
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[int] = 'roberta'
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) -> str:
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = position_embedding_type
_a = use_cache
_a = classifier_dropout
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 320 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''edbeeching/decision-transformer-gym-hopper-medium''': (
'''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json'''
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'decision_transformer'
A_ : Union[str, Any] = ['past_key_values']
A_ : str = {
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=17 , __UpperCAmelCase=4 , __UpperCAmelCase=128 , __UpperCAmelCase=4096 , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=1024 , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=None , __UpperCAmelCase="relu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Optional[int]:
_a = state_dim
_a = act_dim
_a = hidden_size
_a = max_ep_len
_a = action_tanh
_a = vocab_size
_a = n_positions
_a = n_layer
_a = n_head
_a = n_inner
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = scale_attn_weights
_a = use_cache
_a = scale_attn_by_inverse_layer_idx
_a = reorder_and_upcast_attn
_a = bos_token_id
_a = eos_token_id
super().__init__(bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
__snake_case = {
# 1536-bit
5: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 2048-bit
14: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 3072-bit
15: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 4096-bit
16: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199'''
+ '''FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 6144-bit
17: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08'''
+ '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B'''
+ '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9'''
+ '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6'''
+ '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8'''
+ '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C'''
+ '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718'''
+ '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D'''
+ '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D'''
+ '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226'''
+ '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC'''
+ '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26'''
+ '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB'''
+ '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2'''
+ '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127'''
+ '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406'''
+ '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918'''
+ '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151'''
+ '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03'''
+ '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F'''
+ '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B'''
+ '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632'''
+ '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E'''
+ '''6DCC4024FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 8192-bit
18: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD'''
+ '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831'''
+ '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B'''
+ '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF'''
+ '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6'''
+ '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3'''
+ '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328'''
+ '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C'''
+ '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE'''
+ '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4'''
+ '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300'''
+ '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568'''
+ '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9'''
+ '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B'''
+ '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A'''
+ '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36'''
+ '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1'''
+ '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92'''
+ '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47'''
+ '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71'''
+ '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
}
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase = 14 ) -> None:
if group not in primes:
raise ValueError('''Unsupported Group''' )
_a = primes[group]['''prime''']
_a = primes[group]['''generator''']
_a = int(hexlify(urandom(32 ) ) , base=16 )
def _UpperCAmelCase ( self ) -> str:
return hex(self.__private_key )[2:]
def _UpperCAmelCase ( self ) -> str:
_a = pow(self.generator , self.__private_key , self.prime )
return hex(__UpperCAmelCase )[2:]
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> bool:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= key <= self.prime - 2
and pow(__UpperCAmelCase , (self.prime - 1) // 2 , self.prime ) == 1
)
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str:
_a = int(__UpperCAmelCase , base=16 )
if not self.is_valid_public_key(__UpperCAmelCase ):
raise ValueError('''Invalid public key''' )
_a = pow(__UpperCAmelCase , self.__private_key , self.prime )
return shaaaa(str(__UpperCAmelCase ).encode() ).hexdigest()
@staticmethod
def _UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ) -> bool:
# check if the other public key is valid based on NIST SP800-56
return (
2 <= remote_public_key_str <= prime - 2
and pow(__UpperCAmelCase , (prime - 1) // 2 , __UpperCAmelCase ) == 1
)
@staticmethod
def _UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 14 ) -> str:
_a = int(__UpperCAmelCase , base=16 )
_a = int(__UpperCAmelCase , base=16 )
_a = primes[group]['''prime''']
if not DiffieHellman.is_valid_public_key_static(__UpperCAmelCase , __UpperCAmelCase ):
raise ValueError('''Invalid public key''' )
_a = pow(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return shaaaa(str(__UpperCAmelCase ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
__snake_case = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = resample
_a = do_center_crop
_a = crop_size
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_a = image_std if image_std is not None else OPENAI_CLIP_STD
_a = do_convert_rgb
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" not in size:
raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
_a = get_resize_output_image_size(__UpperCAmelCase , size=size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , param_name='''size''' , default_to_square=__UpperCAmelCase )
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' , default_to_square=__UpperCAmelCase )
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_a = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_a = [convert_to_rgb(__UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
_a = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_resize:
_a = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images]
if do_center_crop:
_a = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
if do_rescale:
_a = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_normalize:
_a = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images]
_a = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
_a = {'''pixel_values''': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
__snake_case = {
'''facebook/maskformer-swin-base-ade''': (
'''https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'''
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Tuple = 'maskformer'
A_ : str = {'hidden_size': 'mask_feature_size'}
A_ : Optional[Any] = ['resnet', 'swin']
A_ : int = ['detr']
def __init__( self , __UpperCAmelCase = 256 , __UpperCAmelCase = 256 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 0.02 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = 20.0 , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[int]:
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
_a = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = backbone_config.pop('''model_type''' )
_a = CONFIG_MAPPING[backbone_model_type]
_a = config_class.from_dict(__UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '
F'Supported model types: {",".join(self.backbones_supported )}' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
_a = DetrConfig()
else:
# verify that the decoder is supported
_a = (
decoder_config.pop('''model_type''' ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
F'Transformer Decoder {decoder_type} not supported, please use one of'
F' {",".join(self.decoders_supported )}' )
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
_a = CONFIG_MAPPING[decoder_type]
_a = config_class.from_dict(__UpperCAmelCase )
_a = backbone_config
_a = decoder_config
# main feature dimension for the model
_a = fpn_feature_size
_a = mask_feature_size
# initializer
_a = init_std
_a = init_xavier_std
# Hungarian matcher && loss
_a = cross_entropy_weight
_a = dice_weight
_a = mask_weight
_a = use_auxiliary_loss
_a = no_object_weight
_a = output_auxiliary_logits
_a = self.decoder_config.encoder_attention_heads
_a = self.decoder_config.num_hidden_layers
super().__init__(**__UpperCAmelCase )
@classmethod
def _UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
return cls(
backbone_config=__UpperCAmelCase , decoder_config=__UpperCAmelCase , **__UpperCAmelCase , )
def _UpperCAmelCase ( self ) -> Dict[str, any]:
_a = copy.deepcopy(self.__dict__ )
_a = self.backbone_config.to_dict()
_a = self.decoder_config.to_dict()
_a = self.__class__.model_type
return output
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
'''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''BloomTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BloomForCausalLM''',
'''BloomModel''',
'''BloomPreTrainedModel''',
'''BloomForSequenceClassification''',
'''BloomForTokenClassification''',
'''BloomForQuestionAnswering''',
]
if TYPE_CHECKING:
from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bloom_fast import BloomTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bloom import (
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST,
BloomForCausalLM,
BloomForQuestionAnswering,
BloomForSequenceClassification,
BloomForTokenClassification,
BloomModel,
BloomPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
"""simple docstring"""
import argparse
import json
import subprocess
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : Tuple ):
"""simple docstring"""
_a = []
_a = (
f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"'
''' https://api.github.com/repos/huggingface/transformers/actions/runners'''
)
_a = subprocess.run(_lowerCAmelCase, shell=_lowerCAmelCase, stdout=subprocess.PIPE )
_a = output.stdout.decode('''utf-8''' )
_a = json.loads(_lowerCAmelCase )
_a = status['''runners''']
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(_lowerCAmelCase )
# save the result so we can report them on Slack
with open('''offline_runners.txt''', '''w''' ) as fp:
fp.write(json.dumps(_lowerCAmelCase ) )
if len(_lowerCAmelCase ) > 0:
_a = '''\n'''.join([x['''name'''] for x in offline_runners] )
raise ValueError(f'The following runners are offline:\n{failed}' )
if __name__ == "__main__":
def A_ ( _lowerCAmelCase : Optional[int] ):
"""simple docstring"""
return values.split(''',''' )
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--target_runners''',
default=None,
type=list_str,
required=True,
help='''Comma-separated list of runners to check status.''',
)
parser.add_argument(
'''--token''', default=None, type=str, required=True, help='''A token that has actions:read permission.'''
)
__snake_case = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 320 |
"""simple docstring"""
from collections import defaultdict
from pathlib import Path
import pandas as pd
from rouge_cli import calculate_rouge_path
from utils import calculate_rouge
__snake_case = [
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the'''
''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe'''
''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''',
'''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal'''
''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s'''
''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the'''
''' body.''',
'''Amnesty International releases its annual report on the death penalty. The report catalogs the use of'''
''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the'''
''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital'''
''' punishment.''',
]
__snake_case = [
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .'''
''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz'''
''' had informed his Lufthansa training school of an episode of severe depression, airline says .''',
'''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .'''
''' Israel and the United States opposed the move, which could open the door to war crimes investigations against'''
''' Israelis .''',
'''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to'''
''' death . Organization claims that governments around the world are using the threat of terrorism to advance'''
''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death'''
''' sentences up by 28% .''',
]
def A_ ( ):
"""simple docstring"""
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2''', '''rougeL'''] )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, bootstrap_aggregation=_lowerCAmelCase, rouge_keys=['''rouge2'''] )
assert (
pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean()
== pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean()
)
def A_ ( ):
"""simple docstring"""
_a = '''rougeLsum'''
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=[k] )[k]
assert score > score_no_sep
def A_ ( ):
"""simple docstring"""
_a = ['''rouge1''', '''rouge2''', '''rougeL''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase, rouge_keys=_lowerCAmelCase )
assert score_sep == score_no_sep
def A_ ( ):
"""simple docstring"""
_a = [
'''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''',
]
_a = [
'''Margot Frank, died in 1945, a month earlier than previously thought.''',
'''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of'''
''' the final seconds on board Flight 9525.''',
]
assert calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase ) == calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, newline_sep=_lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = [
'''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" '''
]
_a = [
''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .'''
]
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''], newline_sep=_lowerCAmelCase )['''rougeLsum''']
_a = calculate_rouge(_lowerCAmelCase, _lowerCAmelCase, rouge_keys=['''rougeLsum'''] )['''rougeLsum''']
assert new_score > prev_score
def A_ ( ):
"""simple docstring"""
_a = Path('''examples/seq2seq/test_data/wmt_en_ro''' )
_a = calculate_rouge_path(data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ) )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
_a = calculate_rouge_path(
data_dir.joinpath('''test.source''' ), data_dir.joinpath('''test.target''' ), bootstrap_aggregation=_lowerCAmelCase )
assert isinstance(_lowerCAmelCase, _lowerCAmelCase )
| 320 | 1 |
"""simple docstring"""
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'M-CLIP'
def __init__( self , __UpperCAmelCase=1024 , __UpperCAmelCase=768 , **__UpperCAmelCase ) -> List[str]:
_a = transformerDimSize
_a = imageDimSize
super().__init__(**__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : int = MCLIPConfig
def __init__( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
super().__init__(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )
_a = XLMRobertaModel(__UpperCAmelCase )
_a = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
_a = self.transformer(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0]
_a = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(__UpperCAmelCase ), embs
| 320 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__snake_case = logging.get_logger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None:
warnings.warn(
'''The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use ChineseCLIPImageProcessor instead.''' , __UpperCAmelCase , )
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json''',
'''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json''',
'''junnyu/roformer_chinese_char_small''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json'''
),
'''junnyu/roformer_chinese_char_base''': (
'''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json'''
),
'''junnyu/roformer_small_discriminator''': (
'''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json'''
),
'''junnyu/roformer_small_generator''': (
'''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json'''
),
# See all RoFormer models at https://huggingface.co/models?filter=roformer
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[int] = 'roformer'
def __init__( self , __UpperCAmelCase=50000 , __UpperCAmelCase=None , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1536 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-1_2 , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ) -> Dict:
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
_a = vocab_size
_a = hidden_size if embedding_size is None else embedding_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = hidden_act
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = initializer_range
_a = layer_norm_eps
_a = rotary_value
_a = use_cache
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
_a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 320 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, ):
"""simple docstring"""
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 | 1 |
"""simple docstring"""
import argparse
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__snake_case = 16
__snake_case = 32
def A_ ( _lowerCAmelCase : Accelerator, _lowerCAmelCase : int = 16 ):
"""simple docstring"""
_a = AutoTokenizer.from_pretrained('''bert-base-cased''' )
_a = load_dataset('''glue''', '''mrpc''' )
def tokenize_function(_lowerCAmelCase : str ):
# max_length=None => use the model max length (it's actually the default)
_a = tokenizer(examples['''sentence1'''], examples['''sentence2'''], truncation=_lowerCAmelCase, max_length=_lowerCAmelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_a = datasets.map(
_lowerCAmelCase, batched=_lowerCAmelCase, remove_columns=['''idx''', '''sentence1''', '''sentence2'''], )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_a = tokenized_datasets.rename_column('''label''', '''labels''' )
def collate_fn(_lowerCAmelCase : Optional[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_a = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_a = 16
elif accelerator.mixed_precision != "no":
_a = 8
else:
_a = None
return tokenizer.pad(
_lowerCAmelCase, padding='''longest''', max_length=_lowerCAmelCase, pad_to_multiple_of=_lowerCAmelCase, return_tensors='''pt''', )
# Instantiate dataloaders.
_a = DataLoader(
tokenized_datasets['''train'''], shuffle=_lowerCAmelCase, collate_fn=_lowerCAmelCase, batch_size=_lowerCAmelCase, drop_last=_lowerCAmelCase )
_a = DataLoader(
tokenized_datasets['''validation'''], shuffle=_lowerCAmelCase, collate_fn=_lowerCAmelCase, batch_size=_lowerCAmelCase, drop_last=(accelerator.mixed_precision == '''fp8'''), )
return train_dataloader, eval_dataloader
def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Tuple ):
"""simple docstring"""
_a = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_a = config['''lr''']
_a = int(config['''num_epochs'''] )
_a = int(config['''seed'''] )
_a = int(config['''batch_size'''] )
_a = evaluate.load('''glue''', '''mrpc''' )
# If the batch size is too big we use gradient accumulation
_a = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_a = batch_size // MAX_GPU_BATCH_SIZE
_a = MAX_GPU_BATCH_SIZE
set_seed(_lowerCAmelCase )
_a , _a = get_dataloaders(_lowerCAmelCase, _lowerCAmelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''', return_dict=_lowerCAmelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_a = model.to(accelerator.device )
# Instantiate optimizer
_a = AdamW(params=model.parameters(), lr=_lowerCAmelCase )
# Instantiate scheduler
_a = get_linear_schedule_with_warmup(
optimizer=_lowerCAmelCase, num_warmup_steps=1_00, num_training_steps=(len(_lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps, )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_a , _a , _a , _a , _a = accelerator.prepare(
_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
# Now we train the model
for epoch in range(_lowerCAmelCase ):
model.train()
for step, batch in enumerate(_lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_a = model(**_lowerCAmelCase )
_a = outputs.loss
_a = loss / gradient_accumulation_steps
accelerator.backward(_lowerCAmelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_lowerCAmelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_a = model(**_lowerCAmelCase )
_a = outputs.logits.argmax(dim=-1 )
_a , _a = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=_lowerCAmelCase, references=_lowerCAmelCase, )
_a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'epoch {epoch}:', _lowerCAmelCase )
def A_ ( ):
"""simple docstring"""
_a = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''', type=_lowerCAmelCase, default=_lowerCAmelCase, choices=['''no''', '''fp16''', '''bf16''', '''fp8'''], help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''', )
parser.add_argument('''--cpu''', action='''store_true''', help='''If passed, will train on the CPU.''' )
_a = parser.parse_args()
_a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(_lowerCAmelCase, _lowerCAmelCase )
if __name__ == "__main__":
main()
| 320 |
"""simple docstring"""
def A_ ( ):
"""simple docstring"""
_a = []
_a = 1
while len(_lowerCAmelCase ) < 1e6:
constant.append(str(_lowerCAmelCase ) )
i += 1
_a = ''''''.join(_lowerCAmelCase )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[9_99] )
* int(constant[99_99] )
* int(constant[9_99_99] )
* int(constant[99_99_99] )
)
if __name__ == "__main__":
print(solution())
| 320 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__snake_case = logging.get_logger(__name__)
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
if isinstance(_lowerCAmelCase, (list, tuple) ) and isinstance(videos[0], (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(_lowerCAmelCase, (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(_lowerCAmelCase ):
return [[videos]]
raise ValueError(f'Could not make batched video from {videos}' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[int] = ['pixel_values']
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None:
super().__init__(**__UpperCAmelCase )
_a = size if size is not None else {'''shortest_edge''': 224}
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' )
_a = do_resize
_a = size
_a = do_center_crop
_a = crop_size
_a = resample
_a = do_rescale
_a = rescale_factor
_a = do_normalize
_a = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_a = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
if "shortest_edge" in size:
_a = get_resize_output_image_size(__UpperCAmelCase , size['''shortest_edge'''] , default_to_square=__UpperCAmelCase )
elif "height" in size and "width" in size:
_a = (size['''height'''], size['''width'''])
else:
raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' )
return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
_a = get_size_dict(__UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' )
return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> Optional[Any]:
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray:
return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError('''Size and resample must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_a = to_numpy_array(__UpperCAmelCase )
if do_resize:
_a = self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase )
if do_center_crop:
_a = self.center_crop(__UpperCAmelCase , size=__UpperCAmelCase )
if do_rescale:
_a = self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase )
if do_normalize:
_a = self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase )
_a = to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase )
return image
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image:
_a = do_resize if do_resize is not None else self.do_resize
_a = resample if resample is not None else self.resample
_a = do_center_crop if do_center_crop is not None else self.do_center_crop
_a = do_rescale if do_rescale is not None else self.do_rescale
_a = rescale_factor if rescale_factor is not None else self.rescale_factor
_a = do_normalize if do_normalize is not None else self.do_normalize
_a = image_mean if image_mean is not None else self.image_mean
_a = image_std if image_std is not None else self.image_std
_a = size if size is not None else self.size
_a = get_size_dict(__UpperCAmelCase , default_to_square=__UpperCAmelCase )
_a = crop_size if crop_size is not None else self.crop_size
_a = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
_a = make_batched(__UpperCAmelCase )
_a = [
[
self._preprocess_image(
image=__UpperCAmelCase , do_resize=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , do_center_crop=__UpperCAmelCase , crop_size=__UpperCAmelCase , do_rescale=__UpperCAmelCase , rescale_factor=__UpperCAmelCase , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , data_format=__UpperCAmelCase , )
for img in video
]
for video in videos
]
_a = {'''pixel_values''': videos}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 320 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''',
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[str] = 'bart'
A_ : Optional[Any] = ['past_key_values']
A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple:
_a = vocab_size
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = encoder_layerdrop
_a = decoder_layerdrop
_a = classifier_dropout
_a = use_cache
_a = encoder_layers
_a = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ):
_a = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'''The config can simply be saved and uploaded again to be fixed.''' )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a = {0: '''batch'''}
_a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''decoder_sequence'''}
_a = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
elif self.task == "causal-lm":
# TODO: figure this case out.
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
] )
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
else:
_a = OrderedDict(
[
('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}),
('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}),
('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}),
] )
return common_inputs
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task in ["default", "seq2seq-lm"]:
_a = super().outputs
else:
_a = super(__UpperCAmelCase , self ).outputs
if self.use_past:
_a , _a = self.num_layers
for i in range(__UpperCAmelCase ):
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
_a = {0: '''batch''', 2: '''past_sequence + sequence'''}
return common_outputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
_a = seq_length if not self.use_past else 1
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
_a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
_a = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
_a = common_inputs['''decoder_input_ids'''].shape[1]
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = decoder_seq_length + 3
_a = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
_a = torch.cat(
[common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
_a = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
_a , _a = self.num_layers
_a = min(__UpperCAmelCase , __UpperCAmelCase )
_a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
_a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder'''
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
_a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a , _a = self.num_layers
_a , _a = self.num_attention_heads
_a = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
_a = common_inputs['''attention_mask'''].dtype
_a = torch.cat(
[common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
_a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
_a = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
_a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size
_a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
_a = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
_a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]:
if self.task in ["default", "seq2seq-lm"]:
_a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
_a = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import FunnelConfig, is_tf_available
from transformers.testing_utils import require_tf
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFFunnelBaseModel,
TFFunnelForMaskedLM,
TFFunnelForMultipleChoice,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForSequenceClassification,
TFFunnelForTokenClassification,
TFFunnelModel,
)
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=[1, 1, 2] , __UpperCAmelCase=1 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=8 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=3 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , __UpperCAmelCase=False , ) -> Optional[Any]:
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = block_sizes
_a = num_decoder_layers
_a = d_model
_a = n_head
_a = d_head
_a = d_inner
_a = hidden_act
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = max_position_embeddings
_a = type_vocab_size
_a = 2
_a = num_labels
_a = num_choices
_a = scope
_a = initializer_std
# Used in the tests to check the size of the first attention layer
_a = n_head
# Used in the tests to check the size of the first hidden state
_a = self.d_model
# Used in the tests to check the number of output hidden states/attentions
_a = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers)
# FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with
# the last hidden state of the first block (which is the first hidden state of the decoder).
if not base:
_a = self.num_hidden_layers + 2
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = FunnelConfig(
vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
)
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = TFFunnelModel(config=__UpperCAmelCase )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_a = model(__UpperCAmelCase )
_a = [input_ids, input_mask]
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
_a = False
_a = TFFunnelModel(config=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
_a = False
_a = TFFunnelModel(config=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
_a = TFFunnelBaseModel(config=__UpperCAmelCase )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_a = model(__UpperCAmelCase )
_a = [input_ids, input_mask]
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
_a = False
_a = TFFunnelBaseModel(config=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) )
_a = False
_a = TFFunnelBaseModel(config=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int:
_a = TFFunnelForPreTraining(config=__UpperCAmelCase )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = TFFunnelForMaskedLM(config=__UpperCAmelCase )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int:
_a = self.num_labels
_a = TFFunnelForSequenceClassification(config=__UpperCAmelCase )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> List[str]:
_a = self.num_choices
_a = TFFunnelForMultipleChoice(config=__UpperCAmelCase )
_a = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
_a = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
_a = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
_a = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any:
_a = self.num_labels
_a = TFFunnelForTokenClassification(config=__UpperCAmelCase )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = TFFunnelForQuestionAnswering(config=__UpperCAmelCase )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_a = model(__UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class __lowerCamelCase ( a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Dict = (
(
TFFunnelModel,
TFFunnelForMaskedLM,
TFFunnelForPreTraining,
TFFunnelForQuestionAnswering,
TFFunnelForTokenClassification,
)
if is_tf_available()
else ()
)
A_ : str = (
{
'feature-extraction': (TFFunnelBaseModel, TFFunnelModel),
'fill-mask': TFFunnelForMaskedLM,
'question-answering': TFFunnelForQuestionAnswering,
'text-classification': TFFunnelForSequenceClassification,
'token-classification': TFFunnelForTokenClassification,
'zero-shot': TFFunnelForSequenceClassification,
}
if is_tf_available()
else {}
)
A_ : Union[str, Any] = False
A_ : List[str] = False
def _UpperCAmelCase ( self ) -> int:
_a = TFFunnelModelTester(self )
_a = ConfigTester(self , config_class=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> List[Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase )
@require_tf
class __lowerCamelCase ( a__ , unittest.TestCase ):
'''simple docstring'''
A_ : int = (
(TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else ()
)
A_ : str = False
A_ : Tuple = False
def _UpperCAmelCase ( self ) -> str:
_a = TFFunnelModelTester(self , base=__UpperCAmelCase )
_a = ConfigTester(self , config_class=__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self ) -> str:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_base_model(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Dict:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
| 320 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def A_ ( _lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0x4e00 and cp <= 0x9fff)
or (cp >= 0x3400 and cp <= 0x4dbf) #
or (cp >= 0x2_0000 and cp <= 0x2_a6df) #
or (cp >= 0x2_a700 and cp <= 0x2_b73f) #
or (cp >= 0x2_b740 and cp <= 0x2_b81f) #
or (cp >= 0x2_b820 and cp <= 0x2_ceaf) #
or (cp >= 0xf900 and cp <= 0xfaff)
or (cp >= 0x2_f800 and cp <= 0x2_fa1f) #
): #
return True
return False
def A_ ( _lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
_a = ord(_lowerCAmelCase )
if not _is_chinese_char(_lowerCAmelCase ):
return 0
return 1
def A_ ( _lowerCAmelCase : List[str] ):
"""simple docstring"""
_a = set()
for token in tokens:
_a = len(_lowerCAmelCase ) > 1 and is_chinese(_lowerCAmelCase )
if chinese_word:
word_set.add(_lowerCAmelCase )
_a = list(_lowerCAmelCase )
return word_list
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
_a = max([len(_lowerCAmelCase ) for w in chinese_word_set] )
_a = bert_tokens
_a , _a = 0, len(_lowerCAmelCase )
while start < end:
_a = True
if is_chinese(bert_word[start] ):
_a = min(end - start, _lowerCAmelCase )
for i in range(_lowerCAmelCase, 1, -1 ):
_a = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_a = '''##''' + bert_word[j]
_a = start + i
_a = False
break
if single_word:
start += 1
return bert_word
def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : LTP, _lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = ltp_tokenizer.pipeline(lines[i : i + 1_00], tasks=['''cws'''] ).cws
_a = [get_chinese_word(_lowerCAmelCase ) for r in res]
ltp_res.extend(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for i in range(0, len(_lowerCAmelCase ), 1_00 ):
_a = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=_lowerCAmelCase, truncation=_lowerCAmelCase, max_length=5_12 )
bert_res.extend(res['''input_ids'''] )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
_a = []
for input_ids, chinese_word in zip(_lowerCAmelCase, _lowerCAmelCase ):
_a = []
for id in input_ids:
_a = bert_tokenizer._convert_id_to_token(_lowerCAmelCase )
input_tokens.append(_lowerCAmelCase )
_a = add_sub_symbol(_lowerCAmelCase, _lowerCAmelCase )
_a = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCAmelCase ):
if token[:2] == "##":
_a = token[2:]
# save chinese tokens' pos
if len(_lowerCAmelCase ) == 1 and _is_chinese_char(ord(_lowerCAmelCase ) ):
ref_id.append(_lowerCAmelCase )
ref_ids.append(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
return ref_ids
def A_ ( _lowerCAmelCase : Any ):
"""simple docstring"""
with open(args.file_name, '''r''', encoding='''utf-8''' ) as f:
_a = f.readlines()
_a = [line.strip() for line in data if len(_lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_a = LTP(args.ltp ) # faster in GPU device
_a = BertTokenizer.from_pretrained(args.bert )
_a = prepare_ref(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase )
with open(args.save_path, '''w''', encoding='''utf-8''' ) as f:
_a = [json.dumps(_lowerCAmelCase ) + '''\n''' for ref in ref_ids]
f.writelines(_lowerCAmelCase )
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
required=False,
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''',
required=False,
type=str,
default='''./resources/ltp''',
help='''resources for LTP tokenizer, usually a path''',
)
parser.add_argument(
'''--bert''',
required=False,
type=str,
default='''./resources/robert''',
help='''resources for Bert tokenizer''',
)
parser.add_argument(
'''--save_path''',
required=False,
type=str,
default='''./resources/ref.txt''',
help='''path to save res''',
)
__snake_case = parser.parse_args()
main(args)
| 320 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase ( a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Any = StableDiffusionXLImgaImgPipeline
A_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
A_ : Any = PipelineTesterMixin.required_optional_params - {'latents'}
A_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A_ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
A_ : Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _UpperCAmelCase ( self ) -> int:
torch.manual_seed(0 )
_a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
_a = EulerDiscreteScheduler(
beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , )
torch.manual_seed(0 )
_a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
_a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , )
_a = CLIPTextModel(__UpperCAmelCase )
_a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__UpperCAmelCase )
_a = CLIPTextModelWithProjection(__UpperCAmelCase )
_a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__UpperCAmelCase )
_a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''text_encoder_2''': text_encoder_a,
'''tokenizer_2''': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Optional[int]:
_a = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
_a = image / 2 + 0.5
if str(__UpperCAmelCase ).startswith('''mps''' ):
_a = torch.manual_seed(__UpperCAmelCase )
else:
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
_a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 5.0,
'''output_type''': '''numpy''',
'''strength''': 0.75,
}
return inputs
def _UpperCAmelCase ( self ) -> Tuple:
_a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_a = self.get_dummy_components()
_a = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase )
_a = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_a = self.get_dummy_inputs(__UpperCAmelCase )
_a = sd_pipe(**__UpperCAmelCase ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _UpperCAmelCase ( self ) -> Tuple:
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 )
def _UpperCAmelCase ( self ) -> List[Any]:
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
def _UpperCAmelCase ( self ) -> List[Any]:
pass
def _UpperCAmelCase ( self ) -> str:
_a = self.get_dummy_components()
_a = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase )
_a = sd_pipe.to(__UpperCAmelCase )
_a = sd_pipe.to(__UpperCAmelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase )
# forward without prompt embeds
_a = self.get_dummy_inputs(__UpperCAmelCase )
_a = 3 * ['''this is a negative prompt''']
_a = negative_prompt
_a = 3 * [inputs['''prompt''']]
_a = sd_pipe(**__UpperCAmelCase )
_a = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
_a = self.get_dummy_inputs(__UpperCAmelCase )
_a = 3 * ['''this is a negative prompt''']
_a = 3 * [inputs.pop('''prompt''' )]
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = sd_pipe.encode_prompt(__UpperCAmelCase , negative_prompt=__UpperCAmelCase )
_a = sd_pipe(
**__UpperCAmelCase , prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , pooled_prompt_embeds=__UpperCAmelCase , negative_pooled_prompt_embeds=__UpperCAmelCase , )
_a = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4
@slow
@require_torch_gpu
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> Optional[Any]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ) -> int:
_a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
_a = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) )
_a = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase )
_a = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
_a = self.get_inputs(__UpperCAmelCase )
_a = pipe(**__UpperCAmelCase ).images
_a = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
_a = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] )
assert np.abs(image_slice - expected_slice ).max() < 7e-3
| 320 |
"""simple docstring"""
from collections import OrderedDict
from typing import Any, List, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast, PatchingSpec
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''',
# See all GPT-J models at https://huggingface.co/models?filter=gpt_j
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'gptj'
A_ : Optional[int] = {
'max_position_embeddings': 'n_positions',
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , __UpperCAmelCase=50400 , __UpperCAmelCase=2048 , __UpperCAmelCase=4096 , __UpperCAmelCase=28 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=None , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1e-5 , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=50256 , __UpperCAmelCase=50256 , __UpperCAmelCase=False , **__UpperCAmelCase , ) -> Union[str, Any]:
_a = vocab_size
_a = n_positions
_a = n_embd
_a = n_layer
_a = n_head
_a = n_inner
_a = rotary_dim
_a = activation_function
_a = resid_pdrop
_a = embd_pdrop
_a = attn_pdrop
_a = layer_norm_epsilon
_a = initializer_range
_a = use_cache
_a = bos_token_id
_a = eos_token_id
super().__init__(
bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , **__UpperCAmelCase )
class __lowerCamelCase ( a__ ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "default" , __UpperCAmelCase = None , __UpperCAmelCase = False , ) -> Optional[Any]:
super().__init__(__UpperCAmelCase , task=__UpperCAmelCase , patching_specs=__UpperCAmelCase , use_past=__UpperCAmelCase )
if not getattr(self._config , '''pad_token_id''' , __UpperCAmelCase ):
# TODO: how to do that better?
_a = 0
@property
def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]:
_a = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' )
_a = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_a = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_layer
@property
def _UpperCAmelCase ( self ) -> int:
return self._config.n_head
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]:
_a = super(__UpperCAmelCase , self ).generate_dummy_inputs(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
# We need to order the input in the way they appears in the forward()
_a = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_a , _a = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_a = seqlen + 2
_a = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_a = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(self.num_layers )
]
_a = common_inputs['''attention_mask''']
if self.use_past:
_a = ordered_inputs['''attention_mask'''].dtype
_a = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
return ordered_inputs
@property
def _UpperCAmelCase ( self ) -> int:
return 13
| 320 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : str = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Dict = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> int:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Union[str, Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Tuple = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Optional[Any] = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
requires_backends(cls , ['''flax'''] )
class __lowerCamelCase ( metaclass=a__ ):
'''simple docstring'''
A_ : Any = ['flax']
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[Any]:
requires_backends(self , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
requires_backends(cls , ['''flax'''] )
@classmethod
def _UpperCAmelCase ( cls , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
requires_backends(cls , ['''flax'''] )
| 320 |
"""simple docstring"""
import os
import sys
import unittest
__snake_case = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
__snake_case = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
__snake_case = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = get_test_to_tester_mapping(__UpperCAmelCase )
_a = {'''BertModelTest''': '''BertModelTester'''}
_a = {
'''BlipModelTest''': '''BlipModelTester''',
'''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''',
'''BlipTextModelTest''': '''BlipTextModelTester''',
'''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''',
'''BlipVQAModelTest''': '''BlipVQAModelTester''',
'''BlipVisionModelTest''': '''BlipVisionModelTester''',
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = get_model_to_test_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTest'''],
'''BertForMultipleChoice''': ['''BertModelTest'''],
'''BertForNextSentencePrediction''': ['''BertModelTest'''],
'''BertForPreTraining''': ['''BertModelTest'''],
'''BertForQuestionAnswering''': ['''BertModelTest'''],
'''BertForSequenceClassification''': ['''BertModelTest'''],
'''BertForTokenClassification''': ['''BertModelTest'''],
'''BertLMHeadModel''': ['''BertModelTest'''],
'''BertModel''': ['''BertModelTest'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''],
'''BlipModel''': ['''BlipModelTest'''],
'''BlipTextModel''': ['''BlipTextModelTest'''],
'''BlipVisionModel''': ['''BlipVisionModelTest'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = get_model_to_tester_mapping(__UpperCAmelCase )
_a = {
'''BertForMaskedLM''': ['''BertModelTester'''],
'''BertForMultipleChoice''': ['''BertModelTester'''],
'''BertForNextSentencePrediction''': ['''BertModelTester'''],
'''BertForPreTraining''': ['''BertModelTester'''],
'''BertForQuestionAnswering''': ['''BertModelTester'''],
'''BertForSequenceClassification''': ['''BertModelTester'''],
'''BertForTokenClassification''': ['''BertModelTester'''],
'''BertLMHeadModel''': ['''BertModelTester'''],
'''BertModel''': ['''BertModelTester'''],
}
_a = {
'''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''],
'''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''],
'''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''],
'''BlipModel''': ['''BlipModelTester'''],
'''BlipTextModel''': ['''BlipTextModelTester'''],
'''BlipVisionModel''': ['''BlipVisionModelTester'''],
}
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(get_test_info.to_json(__UpperCAmelCase ) , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
from typing import List, Optional
import numpy as np
from ...processing_utils import ProcessorMixin
from ...utils import to_numpy
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'EncodecFeatureExtractor'
A_ : Union[str, Any] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
_a = self.feature_extractor
_a = False
def _UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True ) -> Union[str, Any]:
return self.tokenizer.get_decoder_prompt_ids(task=__UpperCAmelCase , language=__UpperCAmelCase , no_timestamps=__UpperCAmelCase )
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Dict:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase )
_a = kwargs.pop('''audio''' , __UpperCAmelCase )
_a = kwargs.pop('''sampling_rate''' , __UpperCAmelCase )
_a = kwargs.pop('''text''' , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
_a = args[0]
_a = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if text is not None:
_a = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
if audio is not None:
_a = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase )
if audio is None:
return inputs
elif text is None:
return audio_inputs
else:
_a = audio_inputs['''input_values''']
if "padding_mask" in audio_inputs:
_a = audio_inputs['''padding_mask''']
return inputs
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
_a = kwargs.pop('''audio''' , __UpperCAmelCase )
_a = kwargs.pop('''padding_mask''' , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
_a = args[0]
_a = args[1:]
if audio_values is not None:
return self._decode_audio(__UpperCAmelCase , padding_mask=__UpperCAmelCase )
else:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> Any:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[np.ndarray]:
_a = to_numpy(__UpperCAmelCase )
_a , _a , _a = audio_values.shape
if padding_mask is None:
return list(__UpperCAmelCase )
_a = to_numpy(__UpperCAmelCase )
# match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding**
# token (so that the generated audio values are **not** treated as padded tokens)
_a = seq_len - padding_mask.shape[-1]
_a = 1 - self.feature_extractor.padding_value
_a = np.pad(__UpperCAmelCase , ((0, 0), (0, difference)) , '''constant''' , constant_values=__UpperCAmelCase )
_a = audio_values.tolist()
for i in range(__UpperCAmelCase ):
_a = np.asarray(audio_values[i] )[
padding_mask[i][None, :] != self.feature_extractor.padding_value
]
_a = sliced_audio.reshape(__UpperCAmelCase , -1 )
return audio_values
| 320 |
"""simple docstring"""
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class __lowerCamelCase :
'''simple docstring'''
@staticmethod
def _UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ) -> Tuple:
pass
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = hashlib.mda(image.tobytes() )
return m.hexdigest()[:10]
def A_ ( _lowerCAmelCase : Image ):
"""simple docstring"""
_a = np.array(_lowerCAmelCase )
_a = npimg.shape
return {"hash": hashimage(_lowerCAmelCase ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
A_ : Any = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
A_ : str = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
_a = MaskGenerationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase )
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int:
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''' )
def _UpperCAmelCase ( self ) -> List[str]:
pass
@slow
@require_torch
def _UpperCAmelCase ( self ) -> int:
_a = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''' )
_a = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.021},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (480, 640)}, '''scores''': 0.9967},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (480, 640)}, '''scores''': 0.993},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (480, 640)}, '''scores''': 0.9909},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (480, 640)}, '''scores''': 0.9879},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (480, 640)}, '''scores''': 0.9834},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (480, 640)}, '''scores''': 0.9716},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (480, 640)}, '''scores''': 0.9612},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (480, 640)}, '''scores''': 0.9599},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (480, 640)}, '''scores''': 0.9552},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (480, 640)}, '''scores''': 0.9532},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (480, 640)}, '''scores''': 0.9516},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (480, 640)}, '''scores''': 0.9499},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (480, 640)}, '''scores''': 0.9483},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (480, 640)}, '''scores''': 0.9464},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (480, 640)}, '''scores''': 0.943},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (480, 640)}, '''scores''': 0.9408},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (480, 640)}, '''scores''': 0.9335},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (480, 640)}, '''scores''': 0.9326},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (480, 640)}, '''scores''': 0.9262},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (480, 640)}, '''scores''': 0.8999},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (480, 640)}, '''scores''': 0.8986},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (480, 640)}, '''scores''': 0.8984},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (480, 640)}, '''scores''': 0.8873},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (480, 640)}, '''scores''': 0.8871}
] , )
# fmt: on
@require_torch
@slow
def _UpperCAmelCase ( self ) -> Any:
_a = '''facebook/sam-vit-huge'''
_a = pipeline('''mask-generation''' , model=__UpperCAmelCase )
_a = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=256 )
# Shortening by hashing
_a = []
for i, o in enumerate(outputs['''masks'''] ):
new_outupt += [{"mask": mask_to_test_readable(__UpperCAmelCase ), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(__UpperCAmelCase , decimals=4 ) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (480, 640)}, '''scores''': 1.0444},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (480, 640)}, '''scores''': 1.0210},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (480, 640)}, '''scores''': 1.0167},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (480, 640)}, '''scores''': 1.0132},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (480, 640)}, '''scores''': 1.0053},
] , )
| 320 | 1 |
"""simple docstring"""
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
__snake_case = 637_8137.0
__snake_case = 635_6752.31_4245
__snake_case = 6378137
def A_ ( _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float, _lowerCAmelCase : float ):
"""simple docstring"""
_a = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
_a = atan((1 - flattening) * tan(radians(_lowerCAmelCase ) ) )
_a = atan((1 - flattening) * tan(radians(_lowerCAmelCase ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
_a = haversine_distance(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
_a = (b_lata + b_lata) / 2
_a = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
_a = (sin(_lowerCAmelCase ) ** 2) * (cos(_lowerCAmelCase ) ** 2)
_a = cos(sigma / 2 ) ** 2
_a = (sigma - sin(_lowerCAmelCase )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
_a = (cos(_lowerCAmelCase ) ** 2) * (sin(_lowerCAmelCase ) ** 2)
_a = sin(sigma / 2 ) ** 2
_a = (sigma + sin(_lowerCAmelCase )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 320 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __lowerCamelCase :
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=9 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=8 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.002 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = encoder_seq_length
_a = decoder_seq_length
# For common tests
_a = self.decoder_seq_length
_a = is_training
_a = use_attention_mask
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = d_ff
_a = relative_attention_num_buckets
_a = dropout_rate
_a = initializer_factor
_a = eos_token_id
_a = pad_token_id
_a = decoder_start_token_id
_a = None
_a = decoder_layers
def _UpperCAmelCase ( self ) -> Dict:
return TaConfig.from_pretrained('''google/umt5-base''' )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Optional[int]:
if attention_mask is None:
_a = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_a = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_a = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCAmelCase )
if decoder_head_mask is None:
_a = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
if cross_attn_head_mask is None:
_a = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCAmelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _UpperCAmelCase ( self ) -> Tuple:
_a = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_a = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_a = input_ids.clamp(self.pad_token_id + 1 )
_a = decoder_input_ids.clamp(self.pad_token_id + 1 )
_a = self.get_config()
_a = config.num_attention_heads
_a = self.prepare_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
return config, input_dict
def _UpperCAmelCase ( self ) -> int:
_a , _a = self.prepare_config_and_inputs()
return config, inputs_dict
def _UpperCAmelCase ( self ) -> Tuple:
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self ) -> List[str]:
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict:
_a = UMTaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
_a = model(
input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , decoder_attention_mask=__UpperCAmelCase , )
_a = model(input_ids=__UpperCAmelCase , decoder_input_ids=__UpperCAmelCase )
_a = result.last_hidden_state
_a = result.past_key_values
_a = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCAmelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]:
_a = UMTaModel(config=__UpperCAmelCase ).get_decoder().to(__UpperCAmelCase ).eval()
# first forward pass
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
_a = model(__UpperCAmelCase )
_a = model(__UpperCAmelCase , use_cache=__UpperCAmelCase )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) )
self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 )
_a , _a = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_a = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_a = torch.cat([input_ids, next_tokens] , dim=-1 )
_a = model(__UpperCAmelCase )['''last_hidden_state''']
_a = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['''last_hidden_state''']
# select random slice
_a = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_a = output_from_no_past[:, -1, random_slice_idx].detach()
_a = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1e-3 ) )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]:
_a = UMTaModel(config=__UpperCAmelCase ).to(__UpperCAmelCase ).half().eval()
_a = model(**__UpperCAmelCase )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(__UpperCAmelCase ).any().item() )
@require_torch
class __lowerCamelCase ( a__ , a__ , a__ , unittest.TestCase ):
'''simple docstring'''
A_ : Optional[Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ : Optional[Any] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ : int = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ : str = True
A_ : List[str] = False
A_ : List[Any] = False
A_ : str = True
A_ : List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ : Optional[Any] = [0.8, 0.9]
def _UpperCAmelCase ( self ) -> Tuple:
_a = UMTaModelTester(self )
@unittest.skip('''Test has a segmentation fault on torch 1.8.0''' )
def _UpperCAmelCase ( self ) -> int:
_a = self.model_tester.prepare_config_and_inputs()
_a = UMTaModel(config_and_inputs[0] ).to(__UpperCAmelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'{tmpdirname}/t5_test.onnx' , export_params=__UpperCAmelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , )
@unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Union[str, Any]:
_a = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
_a = self.model_tester.prepare_config_and_inputs()
_a = config_and_inputs[0]
_a = UMTaForConditionalGeneration(__UpperCAmelCase ).eval()
model.to(__UpperCAmelCase )
_a = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__UpperCAmelCase ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase ),
}
for attn_name, (name, mask) in zip(__UpperCAmelCase , head_masking.items() ):
_a = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_a = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCAmelCase )
_a = model.generate(
config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__UpperCAmelCase , return_dict_in_generate=__UpperCAmelCase , **__UpperCAmelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_a = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' )
def _UpperCAmelCase ( self ) -> int:
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' )
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__UpperCAmelCase ).to(__UpperCAmelCase )
_a = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__UpperCAmelCase , legacy=__UpperCAmelCase )
_a = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
_a = tokenizer(__UpperCAmelCase , return_tensors='''pt''' , padding=__UpperCAmelCase ).input_ids
# fmt: off
_a = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCAmelCase , __UpperCAmelCase )
_a = model.generate(input_ids.to(__UpperCAmelCase ) )
_a = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
_a = tokenizer.batch_decode(__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 320 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
torch.manual_seed(0 )
_a = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def _UpperCAmelCase ( self ) -> Tuple:
_a = self.dummy_uncond_unet
_a = ScoreSdeVeScheduler()
_a = ScoreSdeVePipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
sde_ve.to(__UpperCAmelCase )
sde_ve.set_progress_bar_config(disable=__UpperCAmelCase )
_a = torch.manual_seed(0 )
_a = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__UpperCAmelCase ).images
_a = torch.manual_seed(0 )
_a = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__UpperCAmelCase , return_dict=__UpperCAmelCase )[
0
]
_a = image[0, -3:, -3:, -1]
_a = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_a = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def _UpperCAmelCase ( self ) -> str:
_a = '''google/ncsnpp-church-256'''
_a = UNetaDModel.from_pretrained(__UpperCAmelCase )
_a = ScoreSdeVeScheduler.from_pretrained(__UpperCAmelCase )
_a = ScoreSdeVePipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
sde_ve.to(__UpperCAmelCase )
sde_ve.set_progress_bar_config(disable=__UpperCAmelCase )
_a = torch.manual_seed(0 )
_a = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__UpperCAmelCase ).images
_a = image[0, -3:, -3:, -1]
assert image.shape == (1, 256, 256, 3)
_a = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 320 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Tuple:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> int:
if self.graph.get(__UpperCAmelCase ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_a = [[w, v]]
if not self.graph.get(__UpperCAmelCase ):
_a = []
def _UpperCAmelCase ( self ) -> int:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[str]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple:
_a = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
_a = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return sorted_nodes
def _UpperCAmelCase ( self ) -> Optional[int]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Any:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Optional[int]:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Optional[Any]:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
class __lowerCamelCase :
'''simple docstring'''
def __init__( self ) -> Optional[int]:
_a = {}
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ) -> Dict:
# check if the u exists
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_a = [[w, v]]
# add the other way
if self.graph.get(__UpperCAmelCase ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_a = [[w, u]]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Tuple:
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(__UpperCAmelCase )
# the other way round
if self.graph.get(__UpperCAmelCase ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Dict:
if s == d:
return []
_a = []
_a = []
if s == -2:
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(__UpperCAmelCase )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase=-1 ) -> Tuple:
if c == -1:
_a = floor(random() * 10000 ) + 10
for i in range(__UpperCAmelCase ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_a = floor(random() * c ) + 1
if n != i:
self.add_pair(__UpperCAmelCase , __UpperCAmelCase , 1 )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> List[Any]:
_a = deque()
_a = []
if s == -2:
_a = list(self.graph )[0]
d.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
while d:
_a = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict:
return len(self.graph[u] )
def _UpperCAmelCase ( self ) -> int:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return list(__UpperCAmelCase )
def _UpperCAmelCase ( self ) -> Optional[Any]:
_a = []
_a = []
_a = list(self.graph )[0]
stack.append(__UpperCAmelCase )
visited.append(__UpperCAmelCase )
_a = -2
_a = []
_a = s
_a = False
_a = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_a = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_a = len(__UpperCAmelCase ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_a = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_a = True
if len(__UpperCAmelCase ) != 0:
_a = stack[len(__UpperCAmelCase ) - 1]
else:
_a = False
indirect_parents.append(__UpperCAmelCase )
_a = s
_a = ss
# check if se have reached the starting point
if len(__UpperCAmelCase ) == 0:
return False
def _UpperCAmelCase ( self ) -> Union[str, Any]:
return list(self.graph )
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 , __UpperCAmelCase=-1 ) -> Tuple:
_a = time()
self.dfs(__UpperCAmelCase , __UpperCAmelCase )
_a = time()
return end - begin
def _UpperCAmelCase ( self , __UpperCAmelCase=-2 ) -> Tuple:
_a = time()
self.bfs(__UpperCAmelCase )
_a = time()
return end - begin
| 320 | 1 |
"""simple docstring"""
import warnings
from contextlib import contextmanager
from ....processing_utils import ProcessorMixin
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : str = 'MCTCTFeatureExtractor'
A_ : Tuple = 'AutoTokenizer'
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
_a = self.feature_extractor
_a = False
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase )
if "raw_speech" in kwargs:
warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' )
_a = kwargs.pop('''raw_speech''' )
else:
_a = kwargs.pop('''audio''' , __UpperCAmelCase )
_a = kwargs.pop('''sampling_rate''' , __UpperCAmelCase )
_a = kwargs.pop('''text''' , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
_a = args[0]
_a = args[1:]
if audio is None and text is None:
raise ValueError('''You need to specify either an `audio` or `text` input to process.''' )
if audio is not None:
_a = self.feature_extractor(__UpperCAmelCase , *__UpperCAmelCase , sampling_rate=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
_a = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
_a = encodings['''input_ids''']
return inputs
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> List[str]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*__UpperCAmelCase , **__UpperCAmelCase )
_a = kwargs.pop('''input_features''' , __UpperCAmelCase )
_a = kwargs.pop('''labels''' , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
_a = args[0]
_a = args[1:]
if input_features is not None:
_a = self.feature_extractor.pad(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )
if labels is not None:
_a = self.tokenizer.pad(__UpperCAmelCase , **__UpperCAmelCase )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
_a = labels['''input_ids''']
return input_features
def _UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> str:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@contextmanager
def _UpperCAmelCase ( self ) -> List[Any]:
warnings.warn(
'''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your '''
'''labels by using the argument `text` of the regular `__call__` method (either in the same call as '''
'''your audio inputs, or in a separate call.''' )
_a = True
_a = self.tokenizer
yield
_a = self.feature_extractor
_a = False
| 320 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''microsoft/unispeech-large-1500h-cv''': (
'''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json'''
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Dict = 'unispeech'
def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]:
super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase )
_a = hidden_size
_a = feat_extract_norm
_a = feat_extract_activation
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = list(__UpperCAmelCase )
_a = conv_bias
_a = num_conv_pos_embeddings
_a = num_conv_pos_embedding_groups
_a = len(self.conv_dim )
_a = num_hidden_layers
_a = intermediate_size
_a = hidden_act
_a = num_attention_heads
_a = hidden_dropout
_a = attention_dropout
_a = activation_dropout
_a = feat_proj_dropout
_a = final_dropout
_a = layerdrop
_a = layer_norm_eps
_a = initializer_range
_a = num_ctc_classes
_a = vocab_size
_a = do_stable_layer_norm
_a = use_weighted_layer_sum
_a = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_a = apply_spec_augment
_a = mask_time_prob
_a = mask_time_length
_a = mask_time_min_masks
_a = mask_feature_prob
_a = mask_feature_length
_a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_a = num_codevectors_per_group
_a = num_codevector_groups
_a = contrastive_logits_temperature
_a = feat_quantizer_dropout
_a = num_negatives
_a = codevector_dim
_a = proj_codevector_dim
_a = diversity_loss_weight
# ctc loss
_a = ctc_loss_reduction
_a = ctc_zero_infinity
# pretraining loss
_a = replace_prob
@property
def _UpperCAmelCase ( self ) -> Optional[int]:
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 320 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''SEWForCTC''',
'''SEWForSequenceClassification''',
'''SEWModel''',
'''SEWPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_sew import (
SEW_PRETRAINED_MODEL_ARCHIVE_LIST,
SEWForCTC,
SEWForSequenceClassification,
SEWModel,
SEWPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__snake_case = None
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__snake_case = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
'''tokenizer_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''',
},
}
__snake_case = {
'''google/rembert''': 256,
}
__snake_case = '''▁'''
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : Optional[Any] = VOCAB_FILES_NAMES
A_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
A_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ : List[Any] = RemBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) -> List[Any]:
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , **__UpperCAmelCase , )
_a = do_lower_case
_a = remove_space
_a = keep_accents
_a = vocab_file
_a = False if not self.vocab_file else True
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]:
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]:
if not os.path.isdir(__UpperCAmelCase ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(__UpperCAmelCase ) )
return
_a = os.path.join(
__UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ):
copyfile(self.vocab_file , __UpperCAmelCase )
return (out_vocab_file,)
| 320 | 1 |
"""simple docstring"""
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
__snake_case = logging.getLogger(__name__)
class __lowerCamelCase ( a__ ):
'''simple docstring'''
A_ : List[Any] = 'token-classification'
def __init__( self , __UpperCAmelCase ) -> List[Any]:
if type(__UpperCAmelCase ) == dict:
_a = Namespace(**__UpperCAmelCase )
_a = import_module('''tasks''' )
try:
_a = getattr(__UpperCAmelCase , hparams.task_type )
_a = token_classification_task_clazz()
except AttributeError:
raise ValueError(
F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. '
F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' )
_a = self.token_classification_task.get_labels(hparams.labels )
_a = CrossEntropyLoss().ignore_index
super().__init__(__UpperCAmelCase , len(self.labels ) , self.mode )
def _UpperCAmelCase ( self , **__UpperCAmelCase ) -> Optional[Any]:
return self.model(**__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
_a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type != "distilbert":
_a = (
batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None
) # XLM and RoBERTa don"t use token_type_ids
_a = self(**__UpperCAmelCase )
_a = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def _UpperCAmelCase ( self ) -> List[Any]:
_a = self.hparams
for mode in ["train", "dev", "test"]:
_a = self._feature_file(__UpperCAmelCase )
if os.path.exists(__UpperCAmelCase ) and not args.overwrite_cache:
logger.info('''Loading features from cached file %s''' , __UpperCAmelCase )
_a = torch.load(__UpperCAmelCase )
else:
logger.info('''Creating features from dataset file at %s''' , args.data_dir )
_a = self.token_classification_task.read_examples_from_file(args.data_dir , __UpperCAmelCase )
_a = self.token_classification_task.convert_examples_to_features(
__UpperCAmelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__UpperCAmelCase , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info('''Saving features into cached file %s''' , __UpperCAmelCase )
torch.save(__UpperCAmelCase , __UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ) -> DataLoader:
_a = self._feature_file(__UpperCAmelCase )
logger.info('''Loading features from cached file %s''' , __UpperCAmelCase )
_a = torch.load(__UpperCAmelCase )
_a = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
_a = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
_a = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
_a = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
_a = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) , batch_size=__UpperCAmelCase )
def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
"""Compute validation""" ""
_a = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]}
if self.config.model_type != "distilbert":
_a = (
batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None
) # XLM and RoBERTa don"t use token_type_ids
_a = self(**__UpperCAmelCase )
_a , _a = outputs[:2]
_a = logits.detach().cpu().numpy()
_a = inputs['''labels'''].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]:
_a = torch.stack([x['''val_loss'''] for x in outputs] ).mean()
_a = np.concatenate([x['''pred'''] for x in outputs] , axis=0 )
_a = np.argmax(__UpperCAmelCase , axis=2 )
_a = np.concatenate([x['''target'''] for x in outputs] , axis=0 )
_a = dict(enumerate(self.labels ) )
_a = [[] for _ in range(out_label_ids.shape[0] )]
_a = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
_a = {
'''val_loss''': val_loss_mean,
'''accuracy_score''': accuracy_score(__UpperCAmelCase , __UpperCAmelCase ),
'''precision''': precision_score(__UpperCAmelCase , __UpperCAmelCase ),
'''recall''': recall_score(__UpperCAmelCase , __UpperCAmelCase ),
'''f1''': fa_score(__UpperCAmelCase , __UpperCAmelCase ),
}
_a = dict(results.items() )
_a = results
return ret, preds_list, out_label_list
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str:
# when stable
_a , _a , _a = self._eval_end(__UpperCAmelCase )
_a = ret['''log''']
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Any:
# updating to test_epoch_end instead of deprecated test_end
_a , _a , _a = self._eval_end(__UpperCAmelCase )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
_a = ret['''log''']
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def _UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]:
# Add NER specific options
BaseTransformer.add_model_specific_args(__UpperCAmelCase , __UpperCAmelCase )
parser.add_argument(
'''--task_type''' , default='''NER''' , type=__UpperCAmelCase , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' )
parser.add_argument(
'''--max_seq_length''' , default=128 , type=__UpperCAmelCase , help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
) , )
parser.add_argument(
'''--labels''' , default='''''' , type=__UpperCAmelCase , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , )
parser.add_argument(
'''--gpus''' , default=0 , type=__UpperCAmelCase , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , )
parser.add_argument(
'''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' )
return parser
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
__snake_case = NERTransformer.add_model_specific_args(parser, os.getcwd())
__snake_case = parser.parse_args()
__snake_case = NERTransformer(args)
__snake_case = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
__snake_case = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True))
__snake_case = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 320 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 320 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.