code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _a = False class __lowerCamelCase ( unittest.TestCase): """simple docstring""" pass @nightly @require_torch_gpu class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCAmelCase = """A painting of a squirrel eating a burger """ _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase_ ) _UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCamelCase_ ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCAmelCase = generator.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _UpperCAmelCase = """A painting of a squirrel eating a burger """ _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = pipe( prompt=lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _UpperCAmelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
39
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' pass def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ ) import datasets SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) SCREAMING_SNAKE_CASE : Any = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , lowerCamelCase_ , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large""" SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
323
0
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _lowerCamelCase ( unittest.TestCase ): def snake_case_ (self , __a ) -> Optional[Any]: UpperCamelCase = 3 UpperCamelCase = 2_50 UpperCamelCase = ids_tensor((batch_size, length) , lowerCamelCase_ ) UpperCamelCase = torch.ones((batch_size, length) , device=lowerCamelCase_ , dtype=torch.float ) / length return input_ids, scores def snake_case_ (self ) -> str: UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def snake_case_ (self ) -> List[Any]: UpperCamelCase = MaxLengthCriteria(max_length=10 ) UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def snake_case_ (self ) -> Optional[int]: UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def snake_case_ (self ) -> Tuple: UpperCamelCase = self._get_tensors(5 ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowerCamelCase_ , lowerCamelCase_ ) ) def snake_case_ (self ) -> Optional[int]: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowerCamelCase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowerCamelCase_ ) , 1 )
153
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Dict = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : List[Any] = image_mean SCREAMING_SNAKE_CASE : str = image_std def lowerCamelCase_ ( self : Any ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self ) @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
323
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class A_ ( lowercase_ ): _lowercase : Optional[Any] = 4_2 _lowercase : Union[str, Any] = 4_2 _lowercase : Tuple = 4_2 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
322
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCAmelCase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class lowerCamelCase__ ( lowercase_): SCREAMING_SNAKE_CASE__ = '''ibert''' def __init__(self , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase="absolute" , UpperCAmelCase=False , UpperCAmelCase="none" , **UpperCAmelCase , ) -> Union[str, Any]: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =hidden_act _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =quant_mode _lowercase =force_dequant class lowerCamelCase__ ( lowercase_): @property def __A (self ) -> Dict: if self.task == "multiple-choice": _lowercase ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowercase ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
5
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
323
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __a : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=512 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Tuple: '''simple docstring''' lowercase__: Optional[int] = parent lowercase__: Any = 13 lowercase__: Tuple = 7 lowercase__: Optional[int] = True lowercase__: Optional[int] = True lowercase__: List[Any] = True lowercase__: Union[str, Any] = True lowercase__: List[Any] = 99 lowercase__: Tuple = 32 lowercase__: Tuple = 2 lowercase__: str = 4 lowercase__: List[str] = 37 lowercase__: List[Any] = """gelu""" lowercase__: int = 0.1 lowercase__: Dict = 0.1 lowercase__: str = 512 lowercase__: List[str] = 16 lowercase__: Optional[int] = 2 lowercase__: str = 0.0_2 lowercase__: int = 3 lowercase__: Optional[Any] = 4 lowercase__: Dict = None def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__: List[str] = None if self.use_input_mask: lowercase__: List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__: Optional[Any] = None if self.use_token_type_ids: lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__: Tuple = None lowercase__: Tuple = None lowercase__: Dict = None if self.use_labels: lowercase__: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__: Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase__: Tuple = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' lowercase__: str = TFRoFormerModel(config=lowerCamelCase_ ) lowercase__: Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase__: Optional[Any] = [input_ids, input_mask] lowercase__: Optional[int] = model(lowerCamelCase_ ) lowercase__: Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Optional[Any] = True lowercase__: str = TFRoFormerForCausalLM(config=lowerCamelCase_ ) lowercase__: List[str] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__: int = model(lowerCamelCase_ )["""logits"""] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = TFRoFormerForMaskedLM(config=lowerCamelCase_ ) lowercase__: Any = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__: Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: int = self.num_labels lowercase__: Union[str, Any] = TFRoFormerForSequenceClassification(config=lowerCamelCase_ ) lowercase__: Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__: Any = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Optional[Any] = self.num_choices lowercase__: List[Any] = TFRoFormerForMultipleChoice(config=lowerCamelCase_ ) lowercase__: Union[str, Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) lowercase__: Union[str, Any] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) lowercase__: List[str] = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) lowercase__: List[str] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase__: Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Any = self.num_labels lowercase__: int = TFRoFormerForTokenClassification(config=lowerCamelCase_ ) lowercase__: Any = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__: str = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: Tuple = TFRoFormerForQuestionAnswering(config=lowerCamelCase_ ) lowercase__: Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__: List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Optional[int] = self.prepare_config_and_inputs() ( lowercase__ ): int = config_and_inputs lowercase__: List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __a ( lowercase_ , lowercase_ , unittest.TestCase ): __lowercase : Tuple = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __lowercase : Any = ( { 'feature-extraction': TFRoFormerModel, 'fill-mask': TFRoFormerForMaskedLM, 'question-answering': TFRoFormerForQuestionAnswering, 'text-classification': TFRoFormerForSequenceClassification, 'text-generation': TFRoFormerForCausalLM, 'token-classification': TFRoFormerForTokenClassification, 'zero-shot': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Dict = False __lowercase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Union[str, Any] = TFRoFormerModelTester(self ) lowercase__: Tuple = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: int = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class __a ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: Tuple = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) lowercase__: List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase__: int = model(lowerCamelCase_ )[0] # TODO Replace vocab size lowercase__: Dict = 50_000 lowercase__: List[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , lowerCamelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase__: int = tf.constant( [ [ [-0.1_2_0_5_3_3_4_1, -1.0_2_6_4_9_0_1, 0.2_9_2_2_1_9_4_6], [-1.5_1_3_3_7_8_3, 0.1_9_7_4_3_3, 0.1_5_1_9_0_6_0_7], [-5.0_1_3_5_4_0_3, -3.9_0_0_2_5_6, -0.8_4_0_3_8_7_6_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) @require_tf class __a ( unittest.TestCase ): __lowercase : Optional[int] = 1E-4 def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__: Dict = tf.constant([[4, 10]] ) lowercase__: Union[str, Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase__: Optional[int] = emba(input_ids.shape ) lowercase__: Dict = tf.constant( [[0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0, 1.0_0_0_0], [0.8_4_1_5, 0.0_4_6_4, 0.0_0_2_2, 0.5_4_0_3, 0.9_9_8_9, 1.0_0_0_0]] ) tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , atol=self.tolerance ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Tuple = tf.constant( [ [0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0, 0.0_0_0_0], [0.8_4_1_5, 0.8_2_1_9, 0.8_0_2_0, 0.7_8_1_9, 0.7_6_1_7], [0.9_0_9_3, 0.9_3_6_4, 0.9_5_8_1, 0.9_7_4_9, 0.9_8_7_0], ] ) lowercase__: str = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) lowercase__: List[str] = emba.weight[:3, :5] tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , atol=self.tolerance ) @require_tf class __a ( unittest.TestCase ): __lowercase : Dict = 1E-4 def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: Union[str, Any] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase__: List[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 lowercase__: Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase__: Optional[int] = embed_positions([2, 16, 768] )[None, None, :, :] lowercase__: int = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) lowercase__: str = tf.constant( [ [0.0_0_0_0, 0.0_1_0_0, 0.0_2_0_0, 0.0_3_0_0, 0.0_4_0_0, 0.0_5_0_0, 0.0_6_0_0, 0.0_7_0_0], [-0.2_0_1_2, 0.8_8_9_7, 0.0_2_6_3, 0.9_4_0_1, 0.2_0_7_4, 0.9_4_6_3, 0.3_4_8_1, 0.9_3_4_3], [-1.7_0_5_7, 0.6_2_7_1, -1.2_1_4_5, 1.3_8_9_7, -0.6_3_0_3, 1.7_6_4_7, -0.1_1_7_3, 1.8_9_8_5], [-2.1_7_3_1, -1.6_3_9_7, -2.7_3_5_8, 0.2_8_5_4, -2.1_8_4_0, 1.7_1_8_3, -1.3_0_1_8, 2.4_8_7_1], [0.2_7_1_7, -3.6_1_7_3, -2.9_2_0_6, -2.1_9_8_8, -3.6_6_3_8, 0.3_8_5_8, -2.9_1_5_5, 2.2_9_8_0], [3.9_8_5_9, -2.1_5_8_0, -0.7_9_8_4, -4.4_9_0_4, -4.1_1_8_1, -2.0_2_5_2, -4.4_7_8_2, 1.1_2_5_3], ] ) lowercase__: int = tf.constant( [ [0.0_0_0_0, -0.0_1_0_0, -0.0_2_0_0, -0.0_3_0_0, -0.0_4_0_0, -0.0_5_0_0, -0.0_6_0_0, -0.0_7_0_0], [0.2_0_1_2, -0.8_8_9_7, -0.0_2_6_3, -0.9_4_0_1, -0.2_0_7_4, -0.9_4_6_3, -0.3_4_8_1, -0.9_3_4_3], [1.7_0_5_7, -0.6_2_7_1, 1.2_1_4_5, -1.3_8_9_7, 0.6_3_0_3, -1.7_6_4_7, 0.1_1_7_3, -1.8_9_8_5], [2.1_7_3_1, 1.6_3_9_7, 2.7_3_5_8, -0.2_8_5_4, 2.1_8_4_0, -1.7_1_8_3, 1.3_0_1_8, -2.4_8_7_1], [-0.2_7_1_7, 3.6_1_7_3, 2.9_2_0_6, 2.1_9_8_8, 3.6_6_3_8, -0.3_8_5_8, 2.9_1_5_5, -2.2_9_8_0], [-3.9_8_5_9, 2.1_5_8_0, 0.7_9_8_4, 4.4_9_0_4, 4.1_1_8_1, 2.0_2_5_2, 4.4_7_8_2, -1.1_2_5_3], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowerCamelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowerCamelCase_ , atol=self.tolerance )
196
'''simple docstring''' def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number | (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number & ~(1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number ^ (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return ((number >> position) & 1) == 1 def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
323
0
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict =[randint(-1_0_0_0, 1_0_0_0 ) for i in range(1_0 )] SCREAMING_SNAKE_CASE__ : Tuple =randint(-5_0_0_0, 5_0_0_0 ) return (arr, r) a_ = make_dataset() def _a( UpperCamelCase__ : str, UpperCamelCase__ : Tuple ): '''simple docstring''' for triplet in permutations(lowerCamelCase_, 3 ): if sum(lowerCamelCase_ ) == target: return tuple(sorted(lowerCamelCase_ ) ) return (0, 0, 0) def _a( UpperCamelCase__ : Optional[int], UpperCamelCase__ : Dict ): '''simple docstring''' arr.sort() SCREAMING_SNAKE_CASE__ : Any =len(lowerCamelCase_ ) for i in range(n - 1 ): SCREAMING_SNAKE_CASE__ : Tuple =i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =""" from __main__ import dataset, triplet_sum1, triplet_sum2 """ SCREAMING_SNAKE_CASE__ : Tuple =""" triplet_sum1(*dataset) """ SCREAMING_SNAKE_CASE__ : List[Any] =""" triplet_sum2(*dataset) """ SCREAMING_SNAKE_CASE__ : Tuple =repeat(setup=lowerCamelCase_, stmt=lowerCamelCase_, repeat=5, number=1_0_0_0_0 ) SCREAMING_SNAKE_CASE__ : Dict =repeat(setup=lowerCamelCase_, stmt=lowerCamelCase_, repeat=5, number=1_0_0_0_0 ) return (min(lowerCamelCase_ ), min(lowerCamelCase_ )) if __name__ == "__main__": from doctest import testmod testmod() a_ = solution_times() print(F'''The time for naive implementation is {times[0]}.''') print(F'''The time for optimized implementation is {times[1]}.''')
152
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : List[Any] = rotary_dim SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = vocab_size - 1 SCREAMING_SNAKE_CASE : str = vocab_size - 1 SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 20 SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : str = model( input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 20 SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Dict = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @tooslow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id SCREAMING_SNAKE_CASE : str = jax.jit(model.generate ) SCREAMING_SNAKE_CASE : str = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
323
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = emb.weight.shape __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = emb.weight.data return lin_layer def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = Namespace(**checkpoint['''cfg''']['''model'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint["""model"""] remove_ignore_keys_(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict["""decoder.embed_tokens.weight"""].shape[0] __SCREAMING_SNAKE_CASE : Optional[Any] = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} __SCREAMING_SNAKE_CASE : List[str] = XGLMConfig( vocab_size=lowerCamelCase_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __SCREAMING_SNAKE_CASE : Tuple = XGLMForCausalLM(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : List[Any] = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) print(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : List[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCAmelCase : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCAmelCase : Optional[Any] =parser.parse_args() __lowerCAmelCase : List[Any] =convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
9
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim SCREAMING_SNAKE_CASE : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : str = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = GPTaConfig( vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Tuple = [] for feature in features: SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam( input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : Dict = input_embeds else: SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : List[Any] = next_tokens else: SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : Tuple = -float(np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : int = scores / seq_lengths SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
323
0
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase_ ( lowercase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase__ : Any = FlaxAutoencoderKL @property def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = (32, 32) __SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) __SCREAMING_SNAKE_CASE = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } __SCREAMING_SNAKE_CASE = self.dummy_input return init_dict, inputs_dict
257
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git_vision_model''' def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git''' def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : str = eos_token_id def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
323
0
'''simple docstring''' from collections import defaultdict from math import ceil, sqrt def lowerCamelCase ( lowerCAmelCase : List[Any] = 100_0000 , lowerCAmelCase : Any = 10 ): """simple docstring""" __magic_name__ : defaultdict = defaultdict(lowerCamelCase_ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: __magic_name__ : Dict = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: __magic_name__ : Optional[int] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(lowerCamelCase_ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
331
'''simple docstring''' from manim import * class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Tuple = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE : List[str] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = fill.copy().set_fill(lowerCamelCase_ , opacity=0.8 ) target.move_to(lowerCamelCase_ ) model_arr.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCamelCase_ ) self.add(*lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Dict = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 ) input.set_fill(lowerCamelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCamelCase_ , buff=0.5 ) self.play(Write(lowerCamelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCamelCase_ , buff=0.02 ) self.play(MoveToTarget(lowerCamelCase_ ) ) self.play(FadeOut(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = Arrow(start=lowerCamelCase_ , end=lowerCamelCase_ , color=lowerCamelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCamelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(lowerCamelCase_ ) , Circumscribe(model_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE : Any = AnimationGroup( FadeOut(lowerCamelCase_ , run_time=0.5 ) , MoveToTarget(lowerCamelCase_ , run_time=0.5 ) , FadeIn(lowerCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCamelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE : Optional[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = a_c SCREAMING_SNAKE_CASE : Optional[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCamelCase_ ) , FadeOut(lowerCamelCase_ , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) , MoveToTarget(lowerCamelCase_ ) ) self.wait()
323
0
__UpperCamelCase : Tuple = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on __UpperCamelCase : Tuple = {value: key for key, value in MORSE_CODE_DICT.items()} def __A ( __lowerCamelCase ) -> str: return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def __A ( __lowerCamelCase ) -> List[Any]: return "".join(REVERSE_DICT[char] for char in message.split() ) def __A ( ) -> Optional[Any]: a = """Morse code here!""" print(lowerCamelCase_ ) a = encrypt(lowerCamelCase_ ) print(lowerCamelCase_ ) a = decrypt(lowerCamelCase_ ) print(lowerCamelCase_ ) if __name__ == "__main__": main()
228
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE : dict[str, str | None] = {} SCREAMING_SNAKE_CASE : List[str] = source_vertex def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex} SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vertex queue.append(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE : Tuple = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCamelCase_ ) return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}''' if __name__ == "__main__": __UpperCAmelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
323
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , ): __a : List[str] = size if size is not None else {"""shortest_edge""": 20} __a : List[Any] = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __a : int = parent __a : List[str] = batch_size __a : Union[str, Any] = num_channels __a : int = image_size __a : List[Any] = min_resolution __a : Tuple = max_resolution __a : Tuple = do_resize __a : List[str] = size __a : List[str] = do_center_crop __a : List[Any] = crop_size def _lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = MobileNetVaImageProcessor if is_vision_available() else None def _lowerCamelCase ( self ): __a : Optional[Any] = MobileNetVaImageProcessingTester(self ) @property def _lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def _lowerCamelCase ( self ): __a : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''size''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCamelCase_ , '''crop_size''' ) ) def _lowerCamelCase ( self ): __a : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __a : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): __a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input __a : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : str = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self ): __a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input __a : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : int = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __a : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input __a : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __a : Union[str, Any] = image_processing(lowerCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
160
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __UpperCAmelCase = 0 __UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __UpperCAmelCase = tuple[int, int] class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Node | None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = pos_x SCREAMING_SNAKE_CASE : Any = pos_y SCREAMING_SNAKE_CASE : Optional[int] = (pos_y, pos_x) SCREAMING_SNAKE_CASE : Tuple = goal_x SCREAMING_SNAKE_CASE : List[str] = goal_y SCREAMING_SNAKE_CASE : Optional[Any] = g_cost SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = self.calculate_heuristic() SCREAMING_SNAKE_CASE : Tuple = self.g_cost + self.h_cost def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.pos_x - self.goal_x SCREAMING_SNAKE_CASE : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase_ ) + abs(lowerCamelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , lowerCamelCase_ : Node ): '''simple docstring''' return self.f_cost < other.f_cost class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [self.start] SCREAMING_SNAKE_CASE : list[Node] = [] SCREAMING_SNAKE_CASE : str = False def lowerCamelCase_ ( self : Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase_ ) self.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_successors(lowerCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase_ ) else: self.open_nodes.append(lowerCamelCase_ ) return [self.start.pos] def lowerCamelCase_ ( self : int , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] for action in delta: SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase_ , ) ) return successors def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = node SCREAMING_SNAKE_CASE : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Optional[Any] = current_node.parent path.reverse() return path class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() SCREAMING_SNAKE_CASE : List[str] = self.fwd_astar.open_nodes.pop(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase_ , lowerCamelCase_ ) self.fwd_astar.closed_nodes.append(lowerCamelCase_ ) self.bwd_astar.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = current_bwd_node SCREAMING_SNAKE_CASE : Any = current_fwd_node SCREAMING_SNAKE_CASE : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase_ ) else: astar.open_nodes.append(lowerCamelCase_ ) return [self.fwd_astar.start.pos] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Node , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_astar.retrace_path(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.bwd_astar.retrace_path(lowerCamelCase_ ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __UpperCAmelCase = (0, 0) __UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCAmelCase = time.time() __UpperCAmelCase = AStar(init, goal) __UpperCAmelCase = a_star.search() __UpperCAmelCase = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __UpperCAmelCase = time.time() __UpperCAmelCase = BidirectionalAStar(init, goal) __UpperCAmelCase = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
323
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class __lowerCamelCase ( unittest.TestCase): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=99 , UpperCAmelCase=32 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=4 , ): """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_choices def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_attention_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCamelCase_ , ) return config, input_ids, attention_mask def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __lowerCamelCase ( lowercase_ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained('distilbert-base-uncased' ) _UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class __lowerCamelCase ( unittest.TestCase): """simple docstring""" @slow def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) _UpperCAmelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCAmelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCAmelCase = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] _UpperCAmelCase = (1, 11, 768) self.assertEqual(output.shape , lowerCamelCase_ ) _UpperCAmelCase = np.array([[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCamelCase_ , atol=1e-4 ) )
39
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''efficientnet''' def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : int , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : int = width_coefficient SCREAMING_SNAKE_CASE : List[str] = depth_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = depth_divisor SCREAMING_SNAKE_CASE : List[str] = kernel_sizes SCREAMING_SNAKE_CASE : Dict = in_channels SCREAMING_SNAKE_CASE : List[str] = out_channels SCREAMING_SNAKE_CASE : Any = depthwise_padding SCREAMING_SNAKE_CASE : Dict = strides SCREAMING_SNAKE_CASE : Optional[Any] = num_block_repeats SCREAMING_SNAKE_CASE : Any = expand_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dim SCREAMING_SNAKE_CASE : List[str] = pooling_type SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = batch_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum SCREAMING_SNAKE_CASE : Dict = dropout_rate SCREAMING_SNAKE_CASE : int = drop_connect_rate SCREAMING_SNAKE_CASE : Optional[Any] = sum(lowerCamelCase_ ) * 4 class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return 1e-5
323
0
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 ): """simple docstring""" UpperCamelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) UpperCamelCase = DatasetDict( { "train": dataset["train"].select(lowerCamelCase_ ), "validation": dataset["train"].select(lowerCamelCase_ ), "test": dataset["validation"], } ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase = datasets.map( lowerCamelCase_ , batched=lowerCamelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase = 16 elif accelerator.mixed_precision != "no": UpperCamelCase = 8 else: UpperCamelCase = None return tokenizer.pad( lowerCamelCase_ , padding="longest" , max_length=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. UpperCamelCase = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) UpperCamelCase = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) UpperCamelCase = DataLoader( tokenized_datasets["test"] , shuffle=lowerCamelCase_ , collate_fn=lowerCamelCase_ , batch_size=lowerCamelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = [] # Download the dataset UpperCamelCase = load_dataset("glue" , "mrpc" ) # Create our splits UpperCamelCase = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator UpperCamelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase = config["""lr"""] UpperCamelCase = int(config["num_epochs"] ) UpperCamelCase = int(config["seed"] ) UpperCamelCase = int(config["batch_size"] ) UpperCamelCase = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation UpperCamelCase = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: UpperCamelCase = batch_size // MAX_GPU_BATCH_SIZE UpperCamelCase = MAX_GPU_BATCH_SIZE set_seed(lowerCamelCase_ ) # New Code # # Create our folds: UpperCamelCase = kfold.split(np.zeros(datasets["train"].num_rows ) , datasets["train"]["label"] ) UpperCamelCase = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCamelCase_ ): UpperCamelCase = get_fold_dataloaders( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase = AdamW(params=model.parameters() , lr=lowerCamelCase_ ) # Instantiate scheduler UpperCamelCase = get_linear_schedule_with_warmup( optimizer=lowerCamelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCamelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase = accelerator.prepare( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Now we train the model for epoch in range(lowerCamelCase_ ): model.train() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) UpperCamelCase = model(**lowerCamelCase_ ) UpperCamelCase = outputs.loss UpperCamelCase = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) UpperCamelCase = outputs.logits.argmax(dim=-1 ) UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase_ , references=lowerCamelCase_ , ) UpperCamelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , lowerCamelCase_ ) # New Code # # We also run predictions on the test set at the very end UpperCamelCase = [] for step, batch in enumerate(lowerCamelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) UpperCamelCase = outputs.logits UpperCamelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCamelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: UpperCamelCase = torch.cat(lowerCamelCase_ , dim=0 ) UpperCamelCase = torch.stack(lowerCamelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) UpperCamelCase = metric.compute(predictions=lowerCamelCase_ , references=lowerCamelCase_ ) accelerator.print("Average test metrics from all folds:" , lowerCamelCase_ ) def a__ ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase_ , default=lowerCamelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds" , type=lowerCamelCase_ , default=3 , help="The number of splits to perform across the dataset" ) UpperCamelCase = parser.parse_args() UpperCamelCase = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": main()
153
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : List[Any] = {} if prompt is not None: SCREAMING_SNAKE_CASE : List[Any] = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE : Optional[Any] = None return model_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): SCREAMING_SNAKE_CASE : List[str] = None if generate_kwargs is None: SCREAMING_SNAKE_CASE : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name ) SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE : List[Any] = { """generated_text""": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
323
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": _a = input('''Enter image url: ''').strip() print(f"Downloading image from {url} ...") _a = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image _a = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] _a = requests.get(image_url).content _a = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, '''wb''') as fp: fp.write(image_data) print(f"Done. Image saved to disk as {file_name}.")
322
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCamelCase_ ) return config def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0] SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = 1 scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = scheduler.timesteps SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCamelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Dict = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0] with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
323
0
from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase__ ( lowercase_ , lowercase_ , lowercase_): SCREAMING_SNAKE_CASE__ = [r'''h\.\d+\.attn\.bias''', r'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = 5_0_2_5_7 , UpperCAmelCase = 1_0_2_4 , UpperCAmelCase = 7_6_8 , UpperCAmelCase = 1_2 , UpperCAmelCase = 1_2 , UpperCAmelCase = None , UpperCAmelCase = "gelu_new" , UpperCAmelCase = 0.1 , UpperCAmelCase = 0.1 , UpperCAmelCase = 0.1 , UpperCAmelCase = 1e-5 , UpperCAmelCase = 0.02 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = False , UpperCAmelCase = False , ) -> Tuple: super().__init__() _lowercase =prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) _lowercase =prefix_inner_dim _lowercase =prefix_hidden_dim _lowercase =( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowercase =( nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowercase =GPTaConfig( vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , ) _lowercase =GPTaLMHeadModel(lowerCamelCase_ ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> int: _lowercase =self.transformer.transformer.wte(lowerCamelCase_ ) _lowercase =self.encode_prefix(lowerCamelCase_ ) _lowercase =self.decode_prefix(lowerCamelCase_ ) _lowercase =torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _lowercase =self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _lowercase =torch.cat((dummy_token, input_ids) , dim=1 ) _lowercase =self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __A (self , UpperCAmelCase , UpperCAmelCase ) -> Tuple: return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ ) def __A (self , UpperCAmelCase ) -> Optional[Any]: return self.encode_prefix(lowerCamelCase_ ) @torch.no_grad() def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: _lowercase =torch.split(lowerCamelCase_ , 1 , dim=0 ) _lowercase =[] _lowercase =[] for feature in features: _lowercase =self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature # Only support beam search for now _lowercase =self.generate_beam( input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _lowercase =torch.stack(lowerCamelCase_ ) _lowercase =torch.stack(lowerCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __A (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = 5 , UpperCAmelCase = 6_7 , UpperCAmelCase = 1.0 , UpperCAmelCase = None , ) -> Optional[Any]: _lowercase =eos_token_id _lowercase =None _lowercase =None _lowercase =torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int ) _lowercase =torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool ) if input_embeds is not None: _lowercase =input_embeds else: _lowercase =self.transformer.transformer.wte(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): _lowercase =self.transformer(inputs_embeds=lowerCamelCase_ ) _lowercase =outputs.logits _lowercase =logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowercase =logits.softmax(-1 ).log() if scores is None: _lowercase =logits.topk(lowerCamelCase_ , -1 ) _lowercase =generated.expand(lowerCamelCase_ , *generated.shape[1:] ) _lowercase =next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _lowercase =next_tokens else: _lowercase =tokens.expand(lowerCamelCase_ , *tokens.shape[1:] ) _lowercase =torch.cat((tokens, next_tokens) , dim=1 ) else: _lowercase =-float(np.inf ) _lowercase =0 _lowercase =scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowercase =scores_sum / seq_lengths[:, None] _lowercase =scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 ) _lowercase =next_tokens // scores_sum.shape[1] _lowercase =seq_lengths[next_tokens_source] _lowercase =next_tokens % scores_sum.shape[1] _lowercase =next_tokens.unsqueeze(1 ) _lowercase =tokens[next_tokens_source] _lowercase =torch.cat((tokens, next_tokens) , dim=1 ) _lowercase =generated[next_tokens_source] _lowercase =scores_sum_average * seq_lengths _lowercase =is_stopped[next_tokens_source] _lowercase =self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _lowercase =torch.cat((generated, next_token_embed) , dim=1 ) _lowercase =is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze() if is_stopped.all(): break _lowercase =scores / seq_lengths _lowercase =scores.argsort(descending=lowerCamelCase_ ) # tokens tensors are already padded to max_seq_length _lowercase =[tokens[i] for i in order] _lowercase =torch.stack(lowerCamelCase_ , dim=0 ) _lowercase =torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
5
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE : Optional[int] = Text( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset
323
0
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __a ( lowercase_ ): __lowercase : Dict = CustomTokenizer pass
196
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 3_84 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 if "tiny" in model_name: SCREAMING_SNAKE_CASE : List[str] = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif "small" in model_name: SCREAMING_SNAKE_CASE : Any = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif "base" in model_name: SCREAMING_SNAKE_CASE : int = 1_28 SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32) SCREAMING_SNAKE_CASE : Optional[Any] = 12 SCREAMING_SNAKE_CASE : str = 5_12 elif "large" in model_name: SCREAMING_SNAKE_CASE : Tuple = 1_92 SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) SCREAMING_SNAKE_CASE : Tuple = 12 SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68 # set label information SCREAMING_SNAKE_CASE : List[str] = 1_50 SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files""" SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json""" SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) SCREAMING_SNAKE_CASE : List[str] = UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = val def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :] # fmt: on def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = x.shape[0] SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = x.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name] SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[ """state_dict""" ] for name, param in state_dict.items(): print(lowerCamelCase_ , param.shape ) SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ ) if "bn" in key: SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" ) SCREAMING_SNAKE_CASE : Optional[Any] = val # rename keys SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ ) if "norm" in key: SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify on image SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor() SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
323
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'OPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OPTForCausalLM', 'OPTModel', 'OPTPreTrainedModel', 'OPTForSequenceClassification', 'OPTForQuestionAnswering', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'FlaxOPTForCausalLM', 'FlaxOPTModel', 'FlaxOPTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
152
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Any = pad_token_id SCREAMING_SNAKE_CASE : List[Any] = max_length SCREAMING_SNAKE_CASE : Optional[int] = vocab SCREAMING_SNAKE_CASE : List[Any] = merges SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : GPTaTokenizer , *lowerCamelCase_ : str , **lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab() return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Tuple ): '''simple docstring''' return cls(**lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tf_tokenizer(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = pad_model_inputs( lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
323
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE : List[str] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) __SCREAMING_SNAKE_CASE : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __SCREAMING_SNAKE_CASE : Dict = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) __SCREAMING_SNAKE_CASE : Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4814_5466, 0.457_8275, 0.4082_1073], """image_std""": [0.2686_2954, 0.2613_0258, 0.2757_7711], } __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , lowerCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCamelCase_ , lowerCamelCase_ ) def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> str: return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __magic_name__( self :str , **lowerCAmelCase__ :Union[str, Any] ) -> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __magic_name__( self :List[Any] , **lowerCAmelCase__ :Any ) -> Any: return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __magic_name__( self :Optional[Any] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : Any = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[int] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase_ ) def __magic_name__( self :Any ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) def __magic_name__( self :Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Any = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : str = image_processor(lowerCamelCase_ , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : int = processor(images=lowerCamelCase_ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Dict = """lower newer""" __SCREAMING_SNAKE_CASE : int = processor(text=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(lowerCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __magic_name__( self :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[Any] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : int = """lower newer""" __SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : str = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() __SCREAMING_SNAKE_CASE : List[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : List[str] = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : int = processor.batch_decode(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __magic_name__( self :Tuple ) -> int: __SCREAMING_SNAKE_CASE : int = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : int = CLIPProcessor(tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = """lower newer""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
9
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train""" SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Union[str, Any] = streaming SCREAMING_SNAKE_CASE : Optional[int] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : int = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Tuple = streaming SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Dict ): '''simple docstring''' pass
323
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = BlipImageProcessor() __SCREAMING_SNAKE_CASE = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) __SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) __SCREAMING_SNAKE_CASE = InstructBlipProcessor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) def _A ( self , **_A ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).tokenizer def _A ( self , **_A ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).image_processor def _A ( self , **_A ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase_ ).qformer_tokenizer def _A ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(lowerCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=lowerCamelCase_ , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=lowerCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase_ ) self.assertIsInstance(processor.qformer_tokenizer , lowerCamelCase_ ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase_ , return_tensors='np' ) __SCREAMING_SNAKE_CASE = processor(images=lowerCamelCase_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = tokenizer(lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = qformer_tokenizer(lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase_ ): processor() def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_qformer_tokenizer() __SCREAMING_SNAKE_CASE = InstructBlipProcessor( tokenizer=lowerCamelCase_ , image_processor=lowerCamelCase_ , qformer_tokenizer=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=lowerCamelCase_ , images=lowerCamelCase_ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
257
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small""" SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : str = """en_speaker_1""" SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string""" SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json""" SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings""" def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) SCREAMING_SNAKE_CASE : List[str] = 35 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : int = 8 SCREAMING_SNAKE_CASE : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string ) SCREAMING_SNAKE_CASE : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
323
0
'''simple docstring''' def lowerCamelCase ( lowerCAmelCase : List[Any] , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : Optional[Any] = int(lowerCamelCase_ ) # Initialize Result __magic_name__ : Union[str, Any] = [] # Traverse through all denomination for denomination in reversed(lowerCamelCase_ ): # Find denominations while int(lowerCamelCase_ ) >= int(lowerCamelCase_ ): total_value -= int(lowerCamelCase_ ) answer.append(lowerCamelCase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCAmelCase :str = [] lowerCAmelCase :Tuple = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): lowerCAmelCase :List[Any] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'Denomination {i}: ').strip())) lowerCAmelCase :Dict = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter lowerCAmelCase :Tuple = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] lowerCAmelCase :Tuple = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'Following is minimal change for {value}: ') lowerCAmelCase :Union[str, Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
331
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCAmelCase = logging.getLogger(__name__) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return (preds == labels).mean() @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) SCREAMING_SNAKE_CASE__ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE : Dict = processors[data_args.task_name]() SCREAMING_SNAKE_CASE : Optional[int] = processor.get_labels() SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE : Optional[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase_ ) -> Dict: SCREAMING_SNAKE_CASE : str = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase_ , p.label_ids )} # Data collator SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE : Any = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE : Optional[Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate() SCREAMING_SNAKE_CASE : str = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCamelCase_ , lowerCamelCase_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCamelCase_ ) return results def __A ( lowerCamelCase_ ): """simple docstring""" main() if __name__ == "__main__": main()
323
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : Tuple = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( lowercase_ ): UpperCamelCase__ = '''deberta-v2''' def __init__( self :Any , __magic_name__ :int=12_8100 , __magic_name__ :Optional[int]=1536 , __magic_name__ :int=24 , __magic_name__ :Union[str, Any]=24 , __magic_name__ :Any=6144 , __magic_name__ :List[Any]="gelu" , __magic_name__ :Any=0.1 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]=512 , __magic_name__ :List[str]=0 , __magic_name__ :Dict=0.02 , __magic_name__ :Tuple=1E-7 , __magic_name__ :str=False , __magic_name__ :List[str]=-1 , __magic_name__ :Union[str, Any]=0 , __magic_name__ :List[str]=True , __magic_name__ :List[str]=None , __magic_name__ :Dict=0 , __magic_name__ :int="gelu" , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = initializer_range a = relative_attention a = max_relative_positions a = pad_token_id a = position_biased_input # Backwards compatibility if type(lowerCamelCase_ ) == str: a = [x.strip() for x in pos_att_type.lower().split("""|""" )] a = pos_att_type a = vocab_size a = layer_norm_eps a = kwargs.get("""pooler_hidden_size""" , lowerCamelCase_ ) a = pooler_dropout a = pooler_hidden_act class __lowerCAmelCase ( lowercase_ ): @property def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' if self.task == "multiple-choice": a = {0: """batch""", 1: """choice""", 2: """sequence"""} else: a = {0: """batch""", 1: """sequence"""} if self._config.type_vocab_size > 0: return OrderedDict( [("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] ) else: return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] ) @property def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' return 12 def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __magic_name__ :int = -1 , __magic_name__ :int = -1 , __magic_name__ :int = -1 , __magic_name__ :bool = False , __magic_name__ :Optional["TensorType"] = None , __magic_name__ :int = 3 , __magic_name__ :int = 40 , __magic_name__ :int = 40 , __magic_name__ :"PreTrainedTokenizerBase" = None , ): '''simple docstring''' a = super().generate_dummy_inputs(preprocessor=lowerCamelCase_ , framework=lowerCamelCase_ ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
228
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block SCREAMING_SNAKE_CASE : int = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = output_channel SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i] SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU() SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Tuple = False def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = x SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[Any] ): def custom_forward(*lowerCamelCase_ : List[str] ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ ) # post-process SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = layers_per_block SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] ) SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None # mid SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : List[Any] = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : Dict = nn.SiLU() SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Dict = False def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = z SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[str] ): def custom_forward(*lowerCamelCase_ : str ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Tuple = n_e SCREAMING_SNAKE_CASE : int = vq_embed_dim SCREAMING_SNAKE_CASE : Tuple = beta SCREAMING_SNAKE_CASE : Union[str, Any] = legacy SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE : Optional[Any] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0] SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed SCREAMING_SNAKE_CASE : Any = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: SCREAMING_SNAKE_CASE : Optional[int] = n_e SCREAMING_SNAKE_CASE : Any = sane_index_shape def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 ) SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE : Any = self.unknown_index return new.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : List[str] = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' if self.remap is not None: SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ ) if shape is not None: SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parameters SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE : Dict = deterministic SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample return x def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return self.mean
323
0
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) set_seed(770) A = { '''c_attn''': '''att_proj''', '''c_proj''': '''out_proj''', '''c_fc''': '''in_proj''', '''transformer.''': '''''', '''h.''': '''layers.''', '''ln_1''': '''layernorm_1''', '''ln_2''': '''layernorm_2''', '''ln_f''': '''layernorm_final''', '''wpe''': '''position_embeds_layer''', '''wte''': '''input_embeds_layer''', } A = { '''text_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text.pt''', }, '''coarse_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse.pt''', }, '''fine_small''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine.pt''', }, '''text''': { '''repo_id''': '''suno/bark''', '''file_name''': '''text_2.pt''', }, '''coarse''': { '''repo_id''': '''suno/bark''', '''file_name''': '''coarse_2.pt''', }, '''fine''': { '''repo_id''': '''suno/bark''', '''file_name''': '''fine_2.pt''', }, } A = os.path.dirname(os.path.abspath(__file__)) A = os.path.join(os.path.expanduser('''~'''), '''.cache''') A = os.path.join(os.getenv('''XDG_CACHE_HOME''', default_cache_dir), '''suno''', '''bark_v0''') def __A ( a_ :Dict , a_ :Any=False) -> List[Any]: __a : List[Any] = model_type if use_small: key += "_small" return os.path.join(lowerCamelCase_ , REMOTE_MODEL_PATHS[key]['''file_name''']) def __A ( a_ :List[str] , a_ :Optional[int]) -> Tuple: os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) hf_hub_download(repo_id=lowerCamelCase_ , filename=lowerCamelCase_ , local_dir=lowerCamelCase_) def __A ( a_ :Any , a_ :List[Any] , a_ :Tuple=False , a_ :Dict="text") -> List[Any]: if model_type == "text": __a : Optional[Any] = BarkSemanticModel __a : Dict = BarkSemanticConfig __a : List[Any] = BarkSemanticGenerationConfig elif model_type == "coarse": __a : Any = BarkCoarseModel __a : Tuple = BarkCoarseConfig __a : List[str] = BarkCoarseGenerationConfig elif model_type == "fine": __a : List[Any] = BarkFineModel __a : Dict = BarkFineConfig __a : List[str] = BarkFineGenerationConfig else: raise NotImplementedError() __a : str = F"""{model_type}_small""" if use_small else model_type __a : Tuple = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(lowerCamelCase_): logger.info(F"""{model_type} model not found, downloading into `{CACHE_DIR}`.""") _download(model_info['''repo_id'''] , model_info['''file_name''']) __a : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) # this is a hack __a : List[str] = checkpoint["""model_args"""] if "input_vocab_size" not in model_args: __a : Dict = model_args["""vocab_size"""] __a : Optional[Any] = model_args["""vocab_size"""] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __a : str = model_args.pop('''n_head''') __a : List[str] = model_args.pop('''n_embd''') __a : List[Any] = model_args.pop('''n_layer''') __a : Tuple = ConfigClass(**checkpoint['''model_args''']) __a : Union[str, Any] = ModelClass(config=lowerCamelCase_) __a : Optional[Any] = GenerationConfigClass() __a : List[str] = model_generation_config __a : Any = checkpoint["""model"""] # fixup checkpoint __a : List[str] = """_orig_mod.""" for k, v in list(state_dict.items()): if k.startswith(lowerCamelCase_): # replace part of the key with corresponding layer name in HF implementation __a : Union[str, Any] = k[len(lowerCamelCase_) :] for old_layer_name in new_layer_name_dict: __a : Union[str, Any] = new_k.replace(lowerCamelCase_ , new_layer_name_dict[old_layer_name]) __a : Any = state_dict.pop(lowerCamelCase_) __a : str = set(state_dict.keys()) - set(model.state_dict().keys()) __a : Union[str, Any] = {k for k in extra_keys if not k.endswith('''.attn.bias''')} __a : Any = set(model.state_dict().keys()) - set(state_dict.keys()) __a : Tuple = {k for k in missing_keys if not k.endswith('''.attn.bias''')} if len(lowerCamelCase_) != 0: raise ValueError(F"""extra keys found: {extra_keys}""") if len(lowerCamelCase_) != 0: raise ValueError(F"""missing keys: {missing_keys}""") model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_) __a : Dict = model.num_parameters(exclude_embeddings=lowerCamelCase_) __a : Tuple = checkpoint["""best_val_loss"""].item() logger.info(F"""model loaded: {round(n_params/1e6 , 1)}M params, {round(lowerCamelCase_ , 3)} loss""") model.eval() model.to(lowerCamelCase_) del checkpoint, state_dict return model def __A ( a_ :Tuple , a_ :List[Any]=False , a_ :List[str]="text") -> int: if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __a : str = """cpu""" # do conversion on cpu __a : Optional[int] = _get_ckpt_path(lowerCamelCase_ , use_small=lowerCamelCase_) __a : Dict = _load_model(lowerCamelCase_ , lowerCamelCase_ , model_type=lowerCamelCase_ , use_small=lowerCamelCase_) # load bark initial model __a : List[str] = _bark_load_model(lowerCamelCase_ , '''cpu''' , model_type=lowerCamelCase_ , use_small=lowerCamelCase_) if model_type == "text": __a : Optional[int] = bark_model["""model"""] if model.num_parameters(exclude_embeddings=lowerCamelCase_) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''') # check if same output as the bark model __a : Optional[Any] = 5 __a : Optional[int] = 10 if model_type in ["text", "coarse"]: __a : Union[str, Any] = torch.randint(2_56 , (batch_size, sequence_length) , dtype=torch.int) __a : str = bark_model(lowerCamelCase_)[0] __a : Any = model(lowerCamelCase_) # take last logits __a : List[Any] = output_new_model_total.logits[:, [-1], :] else: __a : str = 3 __a : List[Any] = 8 __a : Any = torch.randint(2_56 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int) __a : Union[str, Any] = model(lowerCamelCase_ , lowerCamelCase_) __a : List[str] = bark_model(lowerCamelCase_ , lowerCamelCase_) __a : int = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''') if (output_new_model - output_old_model).abs().max().item() > 1e-3: raise ValueError('''initial and new outputs are not equal''') Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) model.save_pretrained(lowerCamelCase_) def __A ( a_ :Union[str, Any] , a_ :List[Any] , a_ :Any , a_ :List[str] , a_ :List[Any] , a_ :int , ) -> Optional[Any]: __a : Optional[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_) __a : List[str] = BarkSemanticConfig.from_pretrained(os.path.join(lowerCamelCase_ , '''config.json''')) __a : Optional[int] = BarkCoarseConfig.from_pretrained(os.path.join(lowerCamelCase_ , '''config.json''')) __a : Optional[int] = BarkFineConfig.from_pretrained(os.path.join(lowerCamelCase_ , '''config.json''')) __a : List[str] = EncodecConfig.from_pretrained('''facebook/encodec_24khz''') __a : Optional[int] = BarkSemanticModel.from_pretrained(lowerCamelCase_) __a : Optional[int] = BarkCoarseModel.from_pretrained(lowerCamelCase_) __a : Dict = BarkFineModel.from_pretrained(lowerCamelCase_) __a : Dict = EncodecModel.from_pretrained('''facebook/encodec_24khz''') __a : int = BarkConfig.from_sub_model_configs( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) __a : List[str] = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config) __a : Tuple = BarkModel(lowerCamelCase_) __a : int = semantic __a : List[str] = coarseAcoustic __a : List[Any] = fineAcoustic __a : Tuple = codec __a : Union[str, Any] = bark_generation_config Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) bark.save_pretrained(lowerCamelCase_ , repo_id=lowerCamelCase_ , push_to_hub=lowerCamelCase_) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument('''model_type''', type=str, help='''text, coarse or fine.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--is_small''', action='''store_true''', help='''convert the small version instead of the large.''') A = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
160
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : List[Any] = (32, 32) SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict
323
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def __A ( __lowerCAmelCase )-> int: """simple docstring""" return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def __A ( )-> Dict: """simple docstring""" _UpperCAmelCase = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=lowerCamelCase_ ) _UpperCAmelCase = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowerCamelCase_ ) EnvironmentCommand.register_subcommand(lowerCamelCase_ ) TestCommand.register_subcommand(lowerCamelCase_ ) RunBeamCommand.register_subcommand(lowerCamelCase_ ) DummyDataCommand.register_subcommand(lowerCamelCase_ ) # Parse args _UpperCAmelCase = parser.parse_known_args() if not hasattr(lowerCamelCase_ , 'func' ): parser.print_help() exit(1 ) _UpperCAmelCase = parse_unknown_args(lowerCamelCase_ ) # Run _UpperCAmelCase = args.func(lowerCamelCase_ , **lowerCamelCase_ ) service.run() if __name__ == "__main__": main()
39
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' pass def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ ) import datasets SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) SCREAMING_SNAKE_CASE : Any = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , lowerCamelCase_ , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large""" SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
323
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _lowerCamelCase ( lowercase_ ): UpperCAmelCase_ = "xlm-roberta-xl" def __init__(self , __a=25_08_80 , __a=25_60 , __a=36 , __a=32 , __a=1_02_40 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_14 , __a=1 , __a=0.02 , __a=1e-0_5 , __a=1 , __a=0 , __a=2 , __a="absolute" , __a=True , __a=None , **__a , ) -> Optional[int]: super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class _lowerCamelCase ( lowercase_ ): @property def snake_case_ (self ) -> Optional[int]: if self.task == "multiple-choice": UpperCamelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: UpperCamelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
153
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Dict = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : List[Any] = image_mean SCREAMING_SNAKE_CASE : str = image_std def lowerCamelCase_ ( self : Any ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self ) @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
323
0
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _a = (3, 9, -1_1, 0, 7, 5, 1, -1) _a = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class A_ : _lowercase : Tuple = 4_2 _lowercase : List[str] = 4_2 class A_ : def __init__( self : Tuple , UpperCAmelCase : Iterable[int] ) -> List[Any]: __lowerCAmelCase: Node | None = None for i in sorted(lowerCamelCase_ , reverse=lowerCamelCase_ ): __lowerCAmelCase: Optional[int] = Node(lowerCamelCase_ , self.head ) def __iter__( self : Dict ) -> Union[str, Any]: __lowerCAmelCase: Tuple = self.head while node: yield node.data __lowerCAmelCase: Optional[int] = node.next_node def __len__( self : Dict ) -> List[str]: return sum(1 for _ in self ) def __str__( self : int ) -> Any: return " -> ".join([str(lowerCamelCase_ ) for node in self] ) def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Dict: """simple docstring""" return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() _a = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
322
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCAmelCase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCamelCase__ ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase): SCREAMING_SNAKE_CASE__ = StableUnCLIPImgaImgPipeline SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS SCREAMING_SNAKE_CASE__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE__ = frozenset([]) def __A (self ) -> List[Any]: _lowercase =3_2 _lowercase =embedder_hidden_size # image encoding components _lowercase =CLIPImageProcessor(crop_size=3_2 , size=3_2 ) torch.manual_seed(0 ) _lowercase =CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase_ , projection_dim=lowerCamelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _lowercase =StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase_ ) _lowercase =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _lowercase =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _lowercase =CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase_ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) _lowercase =UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase_ , layers_per_block=1 , upcast_attention=lowerCamelCase_ , use_linear_projection=lowerCamelCase_ , ) torch.manual_seed(0 ) _lowercase =DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=lowerCamelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) _lowercase =AutoencoderKL() _lowercase ={ # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def __A (self , UpperCAmelCase , UpperCAmelCase=0 , UpperCAmelCase=True ) -> Dict: if str(lowerCamelCase_ ).startswith('''mps''' ): _lowercase =torch.manual_seed(lowerCamelCase_ ) else: _lowercase =torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) _lowercase =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if pil_image: _lowercase =input_image * 0.5 + 0.5 _lowercase =input_image.clamp(0 , 1 ) _lowercase =input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowercase =DiffusionPipeline.numpy_to_pil(lowerCamelCase_ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __A (self ) -> Union[str, Any]: _lowercase ="""cpu""" # ensure determinism for the device-dependent torch.Generator _lowercase =self.get_dummy_components() _lowercase =StableUnCLIPImgaImgPipeline(**lowerCamelCase_ ) _lowercase =sd_pipe.to(lowerCamelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase_ ) _lowercase =self.get_dummy_inputs(lowerCamelCase_ ) inputs.update({'''image_embeds''': None} ) _lowercase =sd_pipe(**lowerCamelCase_ ).images _lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _lowercase =np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __A (self ) -> List[str]: _lowercase =torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase_ ) def __A (self ) -> Any: _lowercase =torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase_ ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __A (self ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase_ ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase): def __A (self ) -> Optional[int]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __A (self ) -> Optional[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) _lowercase =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) _lowercase =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase =torch.Generator(device='''cpu''' ).manual_seed(0 ) _lowercase =pipe(lowerCamelCase_ , '''anime turle''' , generator=lowerCamelCase_ , output_type='''np''' ) _lowercase =output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) def __A (self ) -> Tuple: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) _lowercase =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) _lowercase =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase =torch.Generator(device='''cpu''' ).manual_seed(0 ) _lowercase =pipe(lowerCamelCase_ , '''anime turle''' , generator=lowerCamelCase_ , output_type='''np''' ) _lowercase =output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ ) def __A (self ) -> List[Any]: _lowercase =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowercase =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) _lowercase =pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _lowercase =pipe( lowerCamelCase_ , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) _lowercase =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
5
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
323
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
196
'''simple docstring''' def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number | (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number & ~(1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number ^ (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return ((number >> position) & 1) == 1 def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
323
0
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def _a( UpperCamelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =image.size SCREAMING_SNAKE_CASE__ : List[Any] =(x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__ : Dict =image.resize((w, h), resample=PIL_INTERPOLATION['''lanczos'''] ) SCREAMING_SNAKE_CASE__ : int =np.array(lowerCamelCase_ ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =image[None].transpose(0, 3, 1, 2 ) SCREAMING_SNAKE_CASE__ : Optional[int] =torch.from_numpy(lowerCamelCase_ ) return 2.0 * image - 1.0 class __SCREAMING_SNAKE_CASE ( lowercase_ ): def __init__( self : Tuple , __lowercase : VQModel , __lowercase : UNetaDModel , __lowercase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Optional[Any]: super().__init__() self.register_modules(vqvae=lowerCamelCase_ , unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self : Optional[Any] , __lowercase : Union[torch.Tensor, PIL.Image.Image] = None , __lowercase : Optional[int] = 1 , __lowercase : Optional[int] = 1_00 , __lowercase : Optional[float] = 0.0 , __lowercase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowercase : Optional[str] = "pil" , __lowercase : bool = True , ) -> Tuple: if isinstance(lowerCamelCase_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ : List[str] =1 elif isinstance(lowerCamelCase_ , torch.Tensor ): SCREAMING_SNAKE_CASE__ : Optional[int] =image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase_ )}" ) if isinstance(lowerCamelCase_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ : str =preprocess(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Optional[int] =image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image SCREAMING_SNAKE_CASE__ : str =(batch_size, self.unet.config.in_channels // 2, height, width) SCREAMING_SNAKE_CASE__ : Tuple =next(self.unet.parameters() ).dtype SCREAMING_SNAKE_CASE__ : List[Any] =randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : List[Any] =image.to(device=self.device , dtype=lowerCamelCase_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase_ , device=self.device ) SCREAMING_SNAKE_CASE__ : Dict =self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE__ : List[Any] =latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE__ : Any ="""eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE__ : List[str] ={} if accepts_eta: SCREAMING_SNAKE_CASE__ : Any =eta for t in self.progress_bar(lowerCamelCase_ ): # concat latents and low resolution image in the channel dimension. SCREAMING_SNAKE_CASE__ : Tuple =torch.cat([latents, image] , dim=1 ) SCREAMING_SNAKE_CASE__ : int =self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # predict the noise residual SCREAMING_SNAKE_CASE__ : Tuple =self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE__ : List[Any] =self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample # decode the image latents with the VQVAE SCREAMING_SNAKE_CASE__ : Tuple =self.vqvae.decode(lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.clamp(lowerCamelCase_ , -1.0 , 1.0 ) SCREAMING_SNAKE_CASE__ : List[str] =image / 2 + 0.5 SCREAMING_SNAKE_CASE__ : List[str] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ : Optional[Any] =self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
152
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : List[Any] = rotary_dim SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = vocab_size - 1 SCREAMING_SNAKE_CASE : str = vocab_size - 1 SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 20 SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : str = model( input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 20 SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Dict = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @tooslow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id SCREAMING_SNAKE_CASE : str = jax.jit(model.generate ) SCREAMING_SNAKE_CASE : str = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
323
0
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : List[str] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = -1 __SCREAMING_SNAKE_CASE : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __SCREAMING_SNAKE_CASE : Union[str, Any] = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __SCREAMING_SNAKE_CASE : Dict = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __magic_name__( self :List[Any] ) -> str: __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = -1 __SCREAMING_SNAKE_CASE : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Dict = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.decode(greedy_ids[0] ) __SCREAMING_SNAKE_CASE : Tuple = TextIteratorStreamer(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : str = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __SCREAMING_SNAKE_CASE : Optional[Any] = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() __SCREAMING_SNAKE_CASE : int = """""" for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __magic_name__( self :List[str] ) -> Any: __SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Dict = -1 __SCREAMING_SNAKE_CASE : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Tuple = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Dict = greedy_ids[:, input_ids.shape[1] :] __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __SCREAMING_SNAKE_CASE : Any = TextStreamer(lowerCamelCase_ , skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __SCREAMING_SNAKE_CASE : Union[str, Any] = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __magic_name__( self :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''distilgpt2''' ) __SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = -1 __SCREAMING_SNAKE_CASE : Any = torch.ones((1, 5) , device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: __SCREAMING_SNAKE_CASE : Dict = TextStreamer(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __SCREAMING_SNAKE_CASE : List[str] = cs.out[:-1] # Remove the final "\n" __SCREAMING_SNAKE_CASE : List[Any] = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __magic_name__( self :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __SCREAMING_SNAKE_CASE : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = -1 __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = TextIteratorStreamer(lowerCamelCase_ , timeout=0.001 ) __SCREAMING_SNAKE_CASE : List[str] = {"""input_ids""": input_ids, """max_new_tokens""": 10, """do_sample""": False, """streamer""": streamer} __SCREAMING_SNAKE_CASE : Any = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): __SCREAMING_SNAKE_CASE : Optional[Any] = """""" for new_text in streamer: streamer_text += new_text
9
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim SCREAMING_SNAKE_CASE : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : str = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = GPTaConfig( vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Tuple = [] for feature in features: SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam( input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : Dict = input_embeds else: SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : List[Any] = next_tokens else: SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : Tuple = -float(np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : int = scores / seq_lengths SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
323
0
import argparse import copy def __lowercase ( a__ ) -> List[Any]: __SCREAMING_SNAKE_CASE = {} with open(lowerCamelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __SCREAMING_SNAKE_CASE = [] _list.append([line.split()[1], line.split()[2]] ) __SCREAMING_SNAKE_CASE = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __SCREAMING_SNAKE_CASE = [] _list.append([line.split()[0], line.split()[2]] ) __SCREAMING_SNAKE_CASE = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __lowercase ( a__ , a__ ) -> Union[str, Any]: with open(lowerCamelCase_ ) as f: __SCREAMING_SNAKE_CASE = f.read(1 ) __SCREAMING_SNAKE_CASE = start_node __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = start_node __SCREAMING_SNAKE_CASE = 0 while visiting not in first_solution: __SCREAMING_SNAKE_CASE = 1_00_00 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCamelCase_ ) and k[0] not in first_solution: __SCREAMING_SNAKE_CASE = k[1] __SCREAMING_SNAKE_CASE = k[0] first_solution.append(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = distance_of_first_solution + int(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = best_node first_solution.append(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __SCREAMING_SNAKE_CASE = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_00_00 ) return first_solution, distance_of_first_solution def __lowercase ( a__ , a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = [] for n in solution[1:-1]: __SCREAMING_SNAKE_CASE = solution.index(lowerCamelCase_ ) for kn in solution[1:-1]: __SCREAMING_SNAKE_CASE = solution.index(lowerCamelCase_ ) if n == kn: continue __SCREAMING_SNAKE_CASE = copy.deepcopy(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = kn __SCREAMING_SNAKE_CASE = n __SCREAMING_SNAKE_CASE = 0 for k in _tmp[:-1]: __SCREAMING_SNAKE_CASE = _tmp[_tmp.index(lowerCamelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __SCREAMING_SNAKE_CASE = distance + int(i[1] ) _tmp.append(lowerCamelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __SCREAMING_SNAKE_CASE = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda a__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __lowercase ( a__ , a__ , a__ , a__ , a__ ) -> Tuple: __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = first_solution __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = distance_of_first_solution __SCREAMING_SNAKE_CASE = solution while count <= iters: __SCREAMING_SNAKE_CASE = find_neighborhood(lowerCamelCase_ , lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution] __SCREAMING_SNAKE_CASE = len(lowerCamelCase_ ) - 1 __SCREAMING_SNAKE_CASE = False while not found: __SCREAMING_SNAKE_CASE = 0 while i < len(lowerCamelCase_ ): if best_solution[i] != solution[i]: __SCREAMING_SNAKE_CASE = best_solution[i] __SCREAMING_SNAKE_CASE = solution[i] break __SCREAMING_SNAKE_CASE = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = best_solution[:-1] __SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __SCREAMING_SNAKE_CASE = cost __SCREAMING_SNAKE_CASE = solution else: __SCREAMING_SNAKE_CASE = index_of_best_solution + 1 __SCREAMING_SNAKE_CASE = neighborhood[index_of_best_solution] if len(lowerCamelCase_ ) >= size: tabu_list.pop(0 ) __SCREAMING_SNAKE_CASE = count + 1 return best_solution_ever, best_cost def __lowercase ( a__=None ) -> Any: __SCREAMING_SNAKE_CASE = generate_neighbours(args.File ) __SCREAMING_SNAKE_CASE = generate_first_solution( args.File , lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = tabu_search( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": lowerCAmelCase__ : Dict =argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
257
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git_vision_model''' def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git''' def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : str = eos_token_id def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
323
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" return x + 2 class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: __magic_name__ : Dict = """x = 3""" __magic_name__ : str = {} __magic_name__ : Any = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) assert result == 3 self.assertDictEqual(lowerCamelCase_ , {'x': 3} ) __magic_name__ : Union[str, Any] = """x = y""" __magic_name__ : List[str] = {"""y""": 5} __magic_name__ : Any = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase_ , {'x': 5, 'y': 5} ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: __magic_name__ : Tuple = """y = add_two(x)""" __magic_name__ : Optional[int] = {"""x""": 3} __magic_name__ : str = evaluate(lowerCamelCase_ , {'add_two': add_two} , state=lowerCamelCase_ ) assert result == 5 self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: __magic_name__ : Optional[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) assert result is None assert "tried to execute add_two" in out.out def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : List[Any] = """x = 3""" __magic_name__ : List[str] = {} __magic_name__ : Optional[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) assert result == 3 self.assertDictEqual(lowerCamelCase_ , {'x': 3} ) def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : List[str] = """test_dict = {'x': x, 'y': add_two(x)}""" __magic_name__ : Any = {"""x""": 3} __magic_name__ : Any = evaluate(lowerCamelCase_ , {'add_two': add_two} , state=lowerCamelCase_ ) self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'y': 5} ) self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : Optional[Any] = """x = 3\ny = 5""" __magic_name__ : int = {} __magic_name__ : Dict = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'y': 5} ) def __lowerCAmelCase ( self : str ) -> Union[str, Any]: __magic_name__ : Tuple = """text = f'This is x: {x}.'""" __magic_name__ : Dict = {"""x""": 3} __magic_name__ : List[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'text': 'This is x: 3.'} ) def __lowerCAmelCase ( self : Optional[int] ) -> str: __magic_name__ : Union[str, Any] = """if x <= 3:\n y = 2\nelse:\n y = 5""" __magic_name__ : Any = {"""x""": 3} __magic_name__ : List[Any] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'y': 2} ) __magic_name__ : Optional[int] = {"""x""": 8} __magic_name__ : Optional[int] = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(lowerCamelCase_ , {'x': 8, 'y': 5} ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: __magic_name__ : Union[str, Any] = """test_list = [x, add_two(x)]""" __magic_name__ : List[str] = {"""x""": 3} __magic_name__ : Any = evaluate(lowerCamelCase_ , {'add_two': add_two} , state=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , [3, 5] ) self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'test_list': [3, 5]} ) def __lowerCAmelCase ( self : int ) -> int: __magic_name__ : int = """y = x""" __magic_name__ : Any = {"""x""": 3} __magic_name__ : Dict = evaluate(lowerCamelCase_ , {} , state=lowerCamelCase_ ) assert result == 3 self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'y': 3} ) def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ : Union[str, Any] = """test_list = [x, add_two(x)]\ntest_list[1]""" __magic_name__ : int = {"""x""": 3} __magic_name__ : Tuple = evaluate(lowerCamelCase_ , {'add_two': add_two} , state=lowerCamelCase_ ) assert result == 5 self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'test_list': [3, 5]} ) __magic_name__ : List[str] = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" __magic_name__ : str = {"""x""": 3} __magic_name__ : Dict = evaluate(lowerCamelCase_ , {'add_two': add_two} , state=lowerCamelCase_ ) assert result == 5 self.assertDictEqual(lowerCamelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def __lowerCAmelCase ( self : int ) -> List[Any]: __magic_name__ : Any = """x = 0\nfor i in range(3):\n x = i""" __magic_name__ : str = {} __magic_name__ : Tuple = evaluate(lowerCamelCase_ , {'range': range} , state=lowerCamelCase_ ) assert result == 2 self.assertDictEqual(lowerCamelCase_ , {'x': 2, 'i': 2} )
331
'''simple docstring''' from manim import * class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Tuple = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE : List[str] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = fill.copy().set_fill(lowerCamelCase_ , opacity=0.8 ) target.move_to(lowerCamelCase_ ) model_arr.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCamelCase_ ) self.add(*lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Dict = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 ) input.set_fill(lowerCamelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCamelCase_ , buff=0.5 ) self.play(Write(lowerCamelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCamelCase_ , buff=0.02 ) self.play(MoveToTarget(lowerCamelCase_ ) ) self.play(FadeOut(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = Arrow(start=lowerCamelCase_ , end=lowerCamelCase_ , color=lowerCamelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCamelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(lowerCamelCase_ ) , Circumscribe(model_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE : Any = AnimationGroup( FadeOut(lowerCamelCase_ , run_time=0.5 ) , MoveToTarget(lowerCamelCase_ , run_time=0.5 ) , FadeIn(lowerCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCamelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE : Optional[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = a_c SCREAMING_SNAKE_CASE : Optional[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCamelCase_ ) , FadeOut(lowerCamelCase_ , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) , MoveToTarget(lowerCamelCase_ ) ) self.wait()
323
0
import flax.linen as nn import jax import jax.numpy as jnp class __lowerCAmelCase ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = jnp.floataa def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :List[Any] , __magic_name__ :Union[str, Any] ): '''simple docstring''' a = hidden_states.shape a = jax.image.resize( lowerCamelCase_ , shape=(batch, height * 2, width * 2, channels) , method="""nearest""" , ) a = self.conv(lowerCamelCase_ ) return hidden_states class __lowerCAmelCase ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = jnp.floataa def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :str , __magic_name__ :Tuple ): '''simple docstring''' a = self.conv(lowerCamelCase_ ) return hidden_states class __lowerCAmelCase ( nn.Module ): UpperCamelCase__ = 42 UpperCamelCase__ = None UpperCamelCase__ = 0.0 UpperCamelCase__ = None UpperCamelCase__ = jnp.floataa def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = self.in_channels if self.out_channels is None else self.out_channels a = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) a = nn.Conv( lowerCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a = nn.Dense(lowerCamelCase_ , dtype=self.dtype ) a = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) a = nn.Dropout(self.dropout_prob ) a = nn.Conv( lowerCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) a = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut a = None if use_nin_shortcut: a = nn.Conv( lowerCamelCase_ , kernel_size=(1, 1) , strides=(1, 1) , padding="""VALID""" , dtype=self.dtype , ) def __call__( self :List[Any] , __magic_name__ :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Union[str, Any]=True ): '''simple docstring''' a = hidden_states a = self.norma(lowerCamelCase_ ) a = nn.swish(lowerCamelCase_ ) a = self.conva(lowerCamelCase_ ) a = self.time_emb_proj(nn.swish(lowerCamelCase_ ) ) a = jnp.expand_dims(jnp.expand_dims(lowerCamelCase_ , 1 ) , 1 ) a = hidden_states + temb a = self.norma(lowerCamelCase_ ) a = nn.swish(lowerCamelCase_ ) a = self.dropout(lowerCamelCase_ , lowerCamelCase_ ) a = self.conva(lowerCamelCase_ ) if self.conv_shortcut is not None: a = self.conv_shortcut(lowerCamelCase_ ) return hidden_states + residual
228
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE : dict[str, str | None] = {} SCREAMING_SNAKE_CASE : List[str] = source_vertex def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex} SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vertex queue.append(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE : Tuple = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCamelCase_ ) return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}''' if __name__ == "__main__": __UpperCAmelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
323
0
"""simple docstring""" def __A ( a_ :Dict) -> str: if p < 2: raise ValueError('''p should not be less than 2!''') elif p == 2: return True __a : Optional[Any] = 4 __a : List[str] = (1 << p) - 1 for _ in range(p - 2): __a : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
160
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __UpperCAmelCase = 0 __UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __UpperCAmelCase = tuple[int, int] class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Node | None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = pos_x SCREAMING_SNAKE_CASE : Any = pos_y SCREAMING_SNAKE_CASE : Optional[int] = (pos_y, pos_x) SCREAMING_SNAKE_CASE : Tuple = goal_x SCREAMING_SNAKE_CASE : List[str] = goal_y SCREAMING_SNAKE_CASE : Optional[Any] = g_cost SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = self.calculate_heuristic() SCREAMING_SNAKE_CASE : Tuple = self.g_cost + self.h_cost def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.pos_x - self.goal_x SCREAMING_SNAKE_CASE : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase_ ) + abs(lowerCamelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , lowerCamelCase_ : Node ): '''simple docstring''' return self.f_cost < other.f_cost class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [self.start] SCREAMING_SNAKE_CASE : list[Node] = [] SCREAMING_SNAKE_CASE : str = False def lowerCamelCase_ ( self : Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase_ ) self.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_successors(lowerCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase_ ) else: self.open_nodes.append(lowerCamelCase_ ) return [self.start.pos] def lowerCamelCase_ ( self : int , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] for action in delta: SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase_ , ) ) return successors def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = node SCREAMING_SNAKE_CASE : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Optional[Any] = current_node.parent path.reverse() return path class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() SCREAMING_SNAKE_CASE : List[str] = self.fwd_astar.open_nodes.pop(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase_ , lowerCamelCase_ ) self.fwd_astar.closed_nodes.append(lowerCamelCase_ ) self.bwd_astar.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = current_bwd_node SCREAMING_SNAKE_CASE : Any = current_fwd_node SCREAMING_SNAKE_CASE : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase_ ) else: astar.open_nodes.append(lowerCamelCase_ ) return [self.fwd_astar.start.pos] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Node , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_astar.retrace_path(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.bwd_astar.retrace_path(lowerCamelCase_ ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __UpperCAmelCase = (0, 0) __UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCAmelCase = time.time() __UpperCAmelCase = AStar(init, goal) __UpperCAmelCase = a_star.search() __UpperCAmelCase = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __UpperCAmelCase = time.time() __UpperCAmelCase = BidirectionalAStar(init, goal) __UpperCAmelCase = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
323
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __A ( __lowerCAmelCase , __lowerCAmelCase )-> List[str]: """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCamelCase_ , lowerCamelCase_ ) ) ) def __A ( __lowerCAmelCase , __lowerCAmelCase )-> str: """simple docstring""" if dataset.ndim != value_array.ndim: _UpperCAmelCase = ( """Wrong input data's dimensions... """ F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowerCamelCase_ ) try: if dataset.shape[1] != value_array.shape[1]: _UpperCAmelCase = ( """Wrong input data's shape... """ F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowerCamelCase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('Wrong shape' ) if dataset.dtype != value_array.dtype: _UpperCAmelCase = ( """Input data have different datatype... """ F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowerCamelCase_ ) _UpperCAmelCase = [] for value in value_array: _UpperCAmelCase = euclidean(lowerCamelCase_ , dataset[0] ) _UpperCAmelCase = dataset[0].tolist() for dataset_value in dataset[1:]: _UpperCAmelCase = euclidean(lowerCamelCase_ , lowerCamelCase_ ) if dist > temp_dist: _UpperCAmelCase = temp_dist _UpperCAmelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Tuple: """simple docstring""" return np.dot(lowerCamelCase_ , lowerCamelCase_ ) / (norm(lowerCamelCase_ ) * norm(lowerCamelCase_ )) if __name__ == "__main__": import doctest doctest.testmod()
39
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''efficientnet''' def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : int , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : int = width_coefficient SCREAMING_SNAKE_CASE : List[str] = depth_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = depth_divisor SCREAMING_SNAKE_CASE : List[str] = kernel_sizes SCREAMING_SNAKE_CASE : Dict = in_channels SCREAMING_SNAKE_CASE : List[str] = out_channels SCREAMING_SNAKE_CASE : Any = depthwise_padding SCREAMING_SNAKE_CASE : Dict = strides SCREAMING_SNAKE_CASE : Optional[Any] = num_block_repeats SCREAMING_SNAKE_CASE : Any = expand_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dim SCREAMING_SNAKE_CASE : List[str] = pooling_type SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = batch_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum SCREAMING_SNAKE_CASE : Dict = dropout_rate SCREAMING_SNAKE_CASE : int = drop_connect_rate SCREAMING_SNAKE_CASE : Optional[Any] = sum(lowerCamelCase_ ) * 4 class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return 1e-5
323
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''shi-labs/dinat-mini-in1k-224''': '''https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json''', # See all Dinat models at https://huggingface.co/models?filter=dinat } class _lowerCamelCase ( lowercase_ , lowercase_ ): UpperCAmelCase_ = "dinat" UpperCAmelCase_ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__(self , __a=4 , __a=3 , __a=64 , __a=[3, 4, 6, 5] , __a=[2, 4, 8, 16] , __a=7 , __a=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __a=3.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=0.02 , __a=1e-5 , __a=0.0 , __a=None , __a=None , **__a , ) -> List[Any]: super().__init__(**lowerCamelCase_ ) UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = num_heads UpperCamelCase = kernel_size UpperCamelCase = dilations UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) UpperCamelCase = layer_scale_init_value UpperCamelCase = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
153
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : List[Any] = {} if prompt is not None: SCREAMING_SNAKE_CASE : List[Any] = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE : Optional[Any] = None return model_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): SCREAMING_SNAKE_CASE : List[str] = None if generate_kwargs is None: SCREAMING_SNAKE_CASE : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name ) SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE : List[Any] = { """generated_text""": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
323
0
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str=1_4 , UpperCAmelCase : Optional[Any]=7 , UpperCAmelCase : Dict=True , UpperCAmelCase : str=True , UpperCAmelCase : str=False , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : int=9_9 , UpperCAmelCase : List[str]=3_2 , UpperCAmelCase : int=4 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : int="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : Union[str, Any]=0.02 , ) -> Union[str, Any]: __lowerCAmelCase: Any = parent __lowerCAmelCase: Optional[int] = batch_size __lowerCAmelCase: Any = seq_length __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Optional[int] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Union[str, Any] = use_labels __lowerCAmelCase: str = vocab_size __lowerCAmelCase: str = hidden_size __lowerCAmelCase: List[Any] = rotary_dim __lowerCAmelCase: List[Any] = num_hidden_layers __lowerCAmelCase: Tuple = num_attention_heads __lowerCAmelCase: int = intermediate_size __lowerCAmelCase: Optional[Any] = hidden_act __lowerCAmelCase: Dict = hidden_dropout_prob __lowerCAmelCase: List[str] = attention_probs_dropout_prob __lowerCAmelCase: Optional[Any] = max_position_embeddings __lowerCAmelCase: Tuple = initializer_range __lowerCAmelCase: Optional[int] = None __lowerCAmelCase: Dict = vocab_size - 1 __lowerCAmelCase: str = vocab_size - 1 __lowerCAmelCase: List[Any] = vocab_size - 1 def UpperCAmelCase ( self : str ) -> Optional[Any]: __lowerCAmelCase: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase: Optional[Any] = None if self.use_input_mask: __lowerCAmelCase: Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase: List[str] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self : Dict ) -> List[Any]: __lowerCAmelCase: Optional[int] = self.prepare_config_and_inputs() __lowerCAmelCase: Union[str, Any] = config_and_inputs __lowerCAmelCase: Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Dict ) -> Union[str, Any]: __lowerCAmelCase: Any = 2_0 __lowerCAmelCase: Any = model_class_name(lowerCamelCase_ ) __lowerCAmelCase: List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) __lowerCAmelCase: Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __lowerCAmelCase: Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase: Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) __lowerCAmelCase: Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase: str = model( input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , ) __lowerCAmelCase: Union[str, Any] = model(lowerCamelCase_ ) __lowerCAmelCase: int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Optional[int]: __lowerCAmelCase: List[Any] = 2_0 __lowerCAmelCase: Dict = model_class_name(lowerCamelCase_ ) __lowerCAmelCase: Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __lowerCAmelCase: str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) __lowerCAmelCase: Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __lowerCAmelCase: Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) __lowerCAmelCase: Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __lowerCAmelCase: Dict = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) __lowerCAmelCase: Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) __lowerCAmelCase: List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class A_ ( lowercase_ , lowercase_ , unittest.TestCase ): _lowercase : List[str] = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _lowercase : Union[str, Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self : str ) -> Tuple: __lowerCAmelCase: Union[str, Any] = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self : Any ) -> Dict: for model_class_name in self.all_model_classes: __lowerCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase ( self : Optional[int] ) -> Tuple: for model_class_name in self.all_model_classes: __lowerCAmelCase: int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @tooslow def UpperCAmelCase ( self : List[Any] ) -> List[str]: __lowerCAmelCase: List[Any] = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __lowerCAmelCase: List[Any] = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) __lowerCAmelCase: Optional[Any] = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase: int = False __lowerCAmelCase: Optional[Any] = model.config.eos_token_id __lowerCAmelCase: str = jax.jit(model.generate ) __lowerCAmelCase: str = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __lowerCAmelCase: Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) __lowerCAmelCase: List[Any] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @is_pt_flax_cross_test def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: __lowerCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase: str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) __lowerCAmelCase: List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase: List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase: int = getattr(lowerCamelCase_ , lowerCamelCase_ ) __lowerCAmelCase: str = pt_inputs["""input_ids"""].shape __lowerCAmelCase: int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): __lowerCAmelCase: int = 0 __lowerCAmelCase: Optional[int] = 1 __lowerCAmelCase: List[Any] = 0 __lowerCAmelCase: Union[str, Any] = 1 __lowerCAmelCase: Optional[int] = pt_model_class(lowerCamelCase_ ).eval() __lowerCAmelCase: str = model_class(lowerCamelCase_ , dtype=jnp.floataa ) __lowerCAmelCase: Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ ) __lowerCAmelCase: Any = fx_state with torch.no_grad(): __lowerCAmelCase: Any = pt_model(**lowerCamelCase_ ).to_tuple() __lowerCAmelCase: Any = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) __lowerCAmelCase: List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ ) __lowerCAmelCase: str = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __lowerCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __lowerCAmelCase: Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) __lowerCAmelCase: List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __lowerCAmelCase: Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning __lowerCAmelCase: int = getattr(lowerCamelCase_ , lowerCamelCase_ ) __lowerCAmelCase: Tuple = pt_model_class(lowerCamelCase_ ).eval() __lowerCAmelCase: Any = model_class(lowerCamelCase_ , dtype=jnp.floataa ) __lowerCAmelCase: List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params ) __lowerCAmelCase: str = pt_inputs["""input_ids"""].shape __lowerCAmelCase: Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): __lowerCAmelCase: Union[str, Any] = 0 __lowerCAmelCase: Dict = 1 __lowerCAmelCase: Dict = 0 __lowerCAmelCase: Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __lowerCAmelCase: List[str] = pt_model(**lowerCamelCase_ ).to_tuple() __lowerCAmelCase: Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) __lowerCAmelCase: Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ ) with torch.no_grad(): __lowerCAmelCase: str = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self : Optional[int] ) -> List[str]: for model_class_name in self.all_model_classes: __lowerCAmelCase: Union[str, Any] = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __lowerCAmelCase: Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
322
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCamelCase_ ) return config def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0] SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = 1 scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = scheduler.timesteps SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCamelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Dict = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0] with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
323
0
import math from typing import Callable, List, Optional, Union import numpy as np import PIL import torch from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case=[] ) -> str: """simple docstring""" _lowercase =size[0] - overlap_pixels * 2 _lowercase =size[1] - overlap_pixels * 2 for letter in ["l", "r"]: if letter in remove_borders: size_x += overlap_pixels for letter in ["t", "b"]: if letter in remove_borders: size_y += overlap_pixels _lowercase =np.ones((size_y, size_x) , dtype=np.uinta ) * 255 _lowercase =np.pad(lowerCamelCase_ , mode='''linear_ramp''' , pad_width=lowerCamelCase_ , end_values=0 ) if "l" in remove_borders: _lowercase =mask[:, overlap_pixels : mask.shape[1]] if "r" in remove_borders: _lowercase =mask[:, 0 : mask.shape[1] - overlap_pixels] if "t" in remove_borders: _lowercase =mask[overlap_pixels : mask.shape[0], :] if "b" in remove_borders: _lowercase =mask[0 : mask.shape[0] - overlap_pixels, :] return mask def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> Dict: """simple docstring""" return max(lowerCamelCase_ , min(lowerCamelCase_ , lowerCamelCase_ ) ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> int: """simple docstring""" return ( clamp(rect[0] , min[0] , max[0] ), clamp(rect[1] , min[1] , max[1] ), clamp(rect[2] , min[0] , max[0] ), clamp(rect[3] , min[1] , max[1] ), ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> int: """simple docstring""" _lowercase =list(lowerCamelCase_ ) rect[0] -= overlap rect[1] -= overlap rect[2] += overlap rect[3] += overlap _lowercase =clamp_rect(lowerCamelCase_ , [0, 0] , [image_size[0], image_size[1]] ) return rect def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case ) -> Optional[int]: """simple docstring""" _lowercase =Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) ) result.paste( original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop( (slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , ) result.paste(lowerCamelCase_ , (original_slice, 0) ) return result def UpperCAmelCase_ ( __snake_case , __snake_case ) -> str: """simple docstring""" _lowercase =(original_image_slice * 4, 0, tile.size[0], tile.size[1]) _lowercase =tile.crop(lowerCamelCase_ ) return tile def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" _lowercase =n % d return n - divisor class lowerCamelCase__ ( lowercase_): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 3_5_0 , ) -> List[str]: super().__init__( vae=lowerCamelCase_ , text_encoder=lowerCamelCase_ , tokenizer=lowerCamelCase_ , unet=lowerCamelCase_ , low_res_scheduler=lowerCamelCase_ , scheduler=lowerCamelCase_ , max_noise_level=lowerCamelCase_ , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: torch.manual_seed(0 ) _lowercase =( min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ), min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ), min(image.size[0] , (x + 1) * tile_size ), min(image.size[1] , (y + 1) * tile_size ), ) _lowercase =add_overlap_rect(lowerCamelCase_ , lowerCamelCase_ , image.size ) _lowercase =image.crop(lowerCamelCase_ ) _lowercase =((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0] _lowercase =translated_slice_x - (original_image_slice / 2) _lowercase =max(0 , lowerCamelCase_ ) _lowercase =squeeze_tile(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowercase =to_input.size _lowercase =to_input.resize((tile_size, tile_size) , Image.BICUBIC ) _lowercase =super(lowerCamelCase_ , self ).__call__(image=lowerCamelCase_ , **lowerCamelCase_ ).images[0] _lowercase =upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC ) _lowercase =unsqueeze_tile(lowerCamelCase_ , lowerCamelCase_ ) _lowercase =upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC ) _lowercase =[] if x == 0: remove_borders.append('''l''' ) elif crop_rect[2] == image.size[0]: remove_borders.append('''r''' ) if y == 0: remove_borders.append('''t''' ) elif crop_rect[3] == image.size[1]: remove_borders.append('''b''' ) _lowercase =Image.fromarray( make_transparency_mask( (upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=lowerCamelCase_ ) , mode='''L''' , ) final_image.paste( lowerCamelCase_ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , lowerCamelCase_ ) @torch.no_grad() def __call__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 7_5 , UpperCAmelCase = 9.0 , UpperCAmelCase = 5_0 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 1_2_8 , UpperCAmelCase = 3_2 , UpperCAmelCase = 3_2 , ) -> Optional[int]: _lowercase =Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) ) _lowercase =math.ceil(image.size[0] / tile_size ) _lowercase =math.ceil(image.size[1] / tile_size ) _lowercase =tcx * tcy _lowercase =0 for y in range(lowerCamelCase_ ): for x in range(lowerCamelCase_ ): self._process_tile( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , prompt=lowerCamelCase_ , num_inference_steps=lowerCamelCase_ , guidance_scale=lowerCamelCase_ , noise_level=lowerCamelCase_ , negative_prompt=lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ , eta=lowerCamelCase_ , generator=lowerCamelCase_ , latents=lowerCamelCase_ , ) current_count += 1 if callback is not None: callback({'''progress''': current_count / total_tile_count, '''image''': final_image} ) return final_image def UpperCAmelCase_ ( ) -> Any: """simple docstring""" _lowercase ="""stabilityai/stable-diffusion-x4-upscaler""" _lowercase =StableDiffusionTiledUpscalePipeline.from_pretrained(lowerCamelCase_ , revision='''fp16''' , torch_dtype=torch.floataa ) _lowercase =pipe.to('''cuda''' ) _lowercase =Image.open('''../../docs/source/imgs/diffusers_library.jpg''' ) def callback(__snake_case ): print(F"progress: {obj['progress']:.4f}" ) obj["image"].save('''diffusers_library_progress.jpg''' ) _lowercase =pipe(image=lowerCamelCase_ , prompt='''Black font, white background, vector''' , noise_level=40 , callback=lowerCamelCase_ ) final_image.save('''diffusers_library.jpg''' ) if __name__ == "__main__": main()
5
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE : Optional[int] = Text( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset
323
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) class __a ( lowercase_ ): __lowercase : List[Any] = 'encoder-decoder' __lowercase : Optional[Any] = True def __init__( self , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' super().__init__(**lowerCamelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" lowercase__: List[str] = kwargs.pop('encoder' ) lowercase__: Dict = encoder_config.pop('model_type' ) lowercase__: Union[str, Any] = kwargs.pop('decoder' ) lowercase__: Dict = decoder_config.pop('model_type' ) from ..auto.configuration_auto import AutoConfig lowercase__: str = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) lowercase__: Optional[Any] = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) lowercase__: int = True @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: '''simple docstring''' logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) lowercase__: Tuple = True lowercase__: str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' lowercase__: Any = copy.deepcopy(self.__dict__ ) lowercase__: Any = self.encoder.to_dict() lowercase__: Any = self.decoder.to_dict() lowercase__: Union[str, Any] = self.__class__.model_type return output
196
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = 3_84 SCREAMING_SNAKE_CASE : Union[str, Any] = 7 if "tiny" in model_name: SCREAMING_SNAKE_CASE : List[str] = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif "small" in model_name: SCREAMING_SNAKE_CASE : Any = 96 SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (3, 6, 12, 24) elif "base" in model_name: SCREAMING_SNAKE_CASE : int = 1_28 SCREAMING_SNAKE_CASE : Any = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (4, 8, 16, 32) SCREAMING_SNAKE_CASE : Optional[Any] = 12 SCREAMING_SNAKE_CASE : str = 5_12 elif "large" in model_name: SCREAMING_SNAKE_CASE : Tuple = 1_92 SCREAMING_SNAKE_CASE : Tuple = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : List[str] = (6, 12, 24, 48) SCREAMING_SNAKE_CASE : Tuple = 12 SCREAMING_SNAKE_CASE : Union[str, Any] = 7_68 # set label information SCREAMING_SNAKE_CASE : List[str] = 1_50 SCREAMING_SNAKE_CASE : Optional[Any] = """huggingface/label-files""" SCREAMING_SNAKE_CASE : List[str] = """ade20k-id2label.json""" SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type="""dataset""" ) , """r""" ) ) SCREAMING_SNAKE_CASE : str = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , num_heads=lowerCamelCase_ , window_size=lowerCamelCase_ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) SCREAMING_SNAKE_CASE : List[str] = UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] # fmt: off # stem rename_keys.append(("""backbone.patch_embed.projection.weight""", """backbone.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.patch_embed.projection.bias""", """backbone.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.patch_embed.norm.weight""", """backbone.embeddings.norm.weight""") ) rename_keys.append(("""backbone.patch_embed.norm.bias""", """backbone.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : int = dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = val def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): SCREAMING_SNAKE_CASE : Dict = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE : int = in_proj_weight[:dim, :] SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Any = in_proj_bias[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[ -dim :, : ] SCREAMING_SNAKE_CASE : str = in_proj_bias[-dim :] # fmt: on def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = x.shape SCREAMING_SNAKE_CASE : Any = x.reshape(lowerCamelCase_ , 4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : Any = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = x.shape SCREAMING_SNAKE_CASE : Dict = x.reshape(lowerCamelCase_ , in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(lowerCamelCase_ , lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = x.shape[0] SCREAMING_SNAKE_CASE : List[str] = x.reshape(4 , in_channel // 4 ) SCREAMING_SNAKE_CASE : str = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = x.shape[0] SCREAMING_SNAKE_CASE : Optional[int] = x.reshape(in_channel // 4 , 4 ) SCREAMING_SNAKE_CASE : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(lowerCamelCase_ ) return x def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = { """upernet-swin-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth""", """upernet-swin-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth""", """upernet-swin-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth""", """upernet-swin-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth""", } SCREAMING_SNAKE_CASE : List[str] = model_name_to_url[model_name] SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" , file_name=lowerCamelCase_ )[ """state_dict""" ] for name, param in state_dict.items(): print(lowerCamelCase_ , param.shape ) SCREAMING_SNAKE_CASE : Dict = get_upernet_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = UperNetForSemanticSegmentation(lowerCamelCase_ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(lowerCamelCase_ ) if "bn" in key: SCREAMING_SNAKE_CASE : List[str] = key.replace("""bn""" , """batch_norm""" ) SCREAMING_SNAKE_CASE : Optional[Any] = val # rename keys SCREAMING_SNAKE_CASE : Union[str, Any] = create_rename_keys(lowerCamelCase_ ) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) read_in_q_k_v(lowerCamelCase_ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: SCREAMING_SNAKE_CASE : Tuple = reverse_correct_unfold_reduction_order(lowerCamelCase_ ) if "norm" in key: SCREAMING_SNAKE_CASE : Optional[int] = reverse_correct_unfold_norm_order(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) # verify on image SCREAMING_SNAKE_CASE : Optional[int] = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ).convert("""RGB""" ) SCREAMING_SNAKE_CASE : Optional[int] = SegformerImageProcessor() SCREAMING_SNAKE_CASE : str = processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = outputs.logits print(logits.shape ) print("""First values of logits:""" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": SCREAMING_SNAKE_CASE : str = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[f'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
323
0
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger(__name__) def _a( UpperCamelCase__ : Any ): '''simple docstring''' print('''Loading config file...''' ) def flatten_yaml_as_dict(UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple="", UpperCamelCase__ : Union[str, Any]="." ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =[] for k, v in d.items(): SCREAMING_SNAKE_CASE__ : List[str] =parent_key + sep + k if parent_key else k if isinstance(lowerCamelCase_, collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowerCamelCase_, lowerCamelCase_, sep=lowerCamelCase_ ).items() ) else: items.append((new_key, v) ) return dict(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Any =argparse.Namespace() with open(lowerCamelCase_, '''r''' ) as yaml_file: try: SCREAMING_SNAKE_CASE__ : Dict =yaml.load(lowerCamelCase_, Loader=yaml.FullLoader ) SCREAMING_SNAKE_CASE__ : str =flatten_yaml_as_dict(lowerCamelCase_ ) for k, v in flat_cfg.items(): setattr(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) except yaml.YAMLError as exc: logger.error('''Error while loading config file: {}. Error message: {}'''.format(lowerCamelCase_, str(lowerCamelCase_ ) ) ) return config def _a( UpperCamelCase__ : List[Any], UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =MobileViTVaConfig() SCREAMING_SNAKE_CASE__ : List[str] =False # dataset if task_name.startswith('''imagenet1k_''' ): SCREAMING_SNAKE_CASE__ : Dict =1_0_0_0 if int(task_name.strip().split('''_''' )[-1] ) == 3_8_4: SCREAMING_SNAKE_CASE__ : Any =3_8_4 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =2_5_6 SCREAMING_SNAKE_CASE__ : Union[str, Any] ="""imagenet-1k-id2label.json""" elif task_name.startswith('''imagenet21k_to_1k_''' ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =2_1_0_0_0 if int(task_name.strip().split('''_''' )[-1] ) == 3_8_4: SCREAMING_SNAKE_CASE__ : Dict =3_8_4 else: SCREAMING_SNAKE_CASE__ : Any =2_5_6 SCREAMING_SNAKE_CASE__ : Dict ="""imagenet-22k-id2label.json""" elif task_name.startswith('''ade20k_''' ): SCREAMING_SNAKE_CASE__ : Optional[int] =1_5_1 SCREAMING_SNAKE_CASE__ : int =5_1_2 SCREAMING_SNAKE_CASE__ : Union[str, Any] ="""ade20k-id2label.json""" SCREAMING_SNAKE_CASE__ : Dict =True elif task_name.startswith('''voc_''' ): SCREAMING_SNAKE_CASE__ : str =2_1 SCREAMING_SNAKE_CASE__ : int =5_1_2 SCREAMING_SNAKE_CASE__ : List[str] ="""pascal-voc-id2label.json""" SCREAMING_SNAKE_CASE__ : Any =True # orig_config SCREAMING_SNAKE_CASE__ : Union[str, Any] =load_orig_config_file(lowerCamelCase_ ) assert getattr(lowerCamelCase_, '''model.classification.name''', -1 ) == "mobilevit_v2", "Invalid model" SCREAMING_SNAKE_CASE__ : Union[str, Any] =getattr(lowerCamelCase_, '''model.classification.mitv2.width_multiplier''', 1.0 ) assert ( getattr(lowerCamelCase_, '''model.classification.mitv2.attn_norm_layer''', -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" SCREAMING_SNAKE_CASE__ : Tuple =getattr(lowerCamelCase_, '''model.classification.activation.name''', '''swish''' ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: SCREAMING_SNAKE_CASE__ : Tuple =getattr(lowerCamelCase_, '''model.segmentation.output_stride''', 1_6 ) if "_deeplabv3" in task_name: SCREAMING_SNAKE_CASE__ : Optional[Any] =getattr(lowerCamelCase_, '''model.segmentation.deeplabv3.aspp_rates''', [1_2, 2_4, 3_6] ) SCREAMING_SNAKE_CASE__ : str =getattr(lowerCamelCase_, '''model.segmentation.deeplabv3.aspp_out_channels''', 5_1_2 ) SCREAMING_SNAKE_CASE__ : Optional[int] =getattr(lowerCamelCase_, '''model.segmentation.deeplabv3.aspp_dropout''', 0.1 ) # id2label SCREAMING_SNAKE_CASE__ : str ="""huggingface/label-files""" SCREAMING_SNAKE_CASE__ : List[str] =json.load(open(hf_hub_download(lowerCamelCase_, lowerCamelCase_, repo_type='''dataset''' ), '''r''' ) ) SCREAMING_SNAKE_CASE__ : Tuple ={int(lowerCamelCase_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Tuple =idalabel SCREAMING_SNAKE_CASE__ : Any ={v: k for k, v in idalabel.items()} return config def _a( UpperCamelCase__ : Dict, UpperCamelCase__ : Any, UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =dct.pop(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Any =val def _a( UpperCamelCase__ : str, UpperCamelCase__ : Tuple=False ): '''simple docstring''' if base_model: SCREAMING_SNAKE_CASE__ : int ="""""" else: SCREAMING_SNAKE_CASE__ : Union[str, Any] ="""mobilevitv2.""" SCREAMING_SNAKE_CASE__ : List[Any] =[] for k in state_dict.keys(): if k[:8] == "encoder.": SCREAMING_SNAKE_CASE__ : str =k[8:] else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =k if ".block." in k: SCREAMING_SNAKE_CASE__ : List[Any] =k_new.replace('''.block.''', '''.''' ) if ".conv." in k: SCREAMING_SNAKE_CASE__ : Any =k_new.replace('''.conv.''', '''.convolution.''' ) if ".norm." in k: SCREAMING_SNAKE_CASE__ : str =k_new.replace('''.norm.''', '''.normalization.''' ) if "conv_1." in k: SCREAMING_SNAKE_CASE__ : Any =k_new.replace('''conv_1.''', f"{model_prefix}conv_stem." ) for i in [1, 2]: if f"layer_{i}." in k: SCREAMING_SNAKE_CASE__ : List[Any] =k_new.replace(f"layer_{i}.", f"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: SCREAMING_SNAKE_CASE__ : Tuple =k_new.replace('''.exp_1x1.''', '''.expand_1x1.''' ) if ".red_1x1." in k: SCREAMING_SNAKE_CASE__ : Tuple =k_new.replace('''.red_1x1.''', '''.reduce_1x1.''' ) for i in [3, 4, 5]: if f"layer_{i}.0." in k: SCREAMING_SNAKE_CASE__ : str =k_new.replace(f"layer_{i}.0.", f"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if f"layer_{i}.1.local_rep.0." in k: SCREAMING_SNAKE_CASE__ : List[str] =k_new.replace(f"layer_{i}.1.local_rep.0.", f"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if f"layer_{i}.1.local_rep.1." in k: SCREAMING_SNAKE_CASE__ : Optional[int] =k_new.replace(f"layer_{i}.1.local_rep.1.", f"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: SCREAMING_SNAKE_CASE__ : int =[0, 1] elif i == 4: SCREAMING_SNAKE_CASE__ : Tuple =[0, 1, 2, 3] elif i == 5: SCREAMING_SNAKE_CASE__ : Optional[int] =[0, 1, 2] for j in j_in: if f"layer_{i}.1.global_rep.{j}." in k: SCREAMING_SNAKE_CASE__ : List[str] =k_new.replace( f"layer_{i}.1.global_rep.{j}.", f"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if f"layer_{i}.1.global_rep.{j+1}." in k: SCREAMING_SNAKE_CASE__ : Any =k_new.replace( f"layer_{i}.1.global_rep.{j+1}.", f"{model_prefix}encoder.layer.{i-1}.layernorm." ) if f"layer_{i}.1.conv_proj." in k: SCREAMING_SNAKE_CASE__ : Tuple =k_new.replace(f"layer_{i}.1.conv_proj.", f"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: SCREAMING_SNAKE_CASE__ : Optional[int] =k_new.replace('''pre_norm_attn.0.''', '''layernorm_before.''' ) if "pre_norm_attn.1." in k: SCREAMING_SNAKE_CASE__ : List[str] =k_new.replace('''pre_norm_attn.1.''', '''attention.''' ) if "pre_norm_ffn.0." in k: SCREAMING_SNAKE_CASE__ : List[str] =k_new.replace('''pre_norm_ffn.0.''', '''layernorm_after.''' ) if "pre_norm_ffn.1." in k: SCREAMING_SNAKE_CASE__ : Optional[int] =k_new.replace('''pre_norm_ffn.1.''', '''ffn.conv1.''' ) if "pre_norm_ffn.3." in k: SCREAMING_SNAKE_CASE__ : str =k_new.replace('''pre_norm_ffn.3.''', '''ffn.conv2.''' ) if "classifier.1." in k: SCREAMING_SNAKE_CASE__ : Union[str, Any] =k_new.replace('''classifier.1.''', '''classifier.''' ) if "seg_head." in k: SCREAMING_SNAKE_CASE__ : Optional[int] =k_new.replace('''seg_head.''', '''segmentation_head.''' ) if ".aspp_layer." in k: SCREAMING_SNAKE_CASE__ : Optional[Any] =k_new.replace('''.aspp_layer.''', '''.''' ) if ".aspp_pool." in k: SCREAMING_SNAKE_CASE__ : Union[str, Any] =k_new.replace('''.aspp_pool.''', '''.''' ) rename_keys.append((k, k_new) ) return rename_keys def _a( UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] =[] for k in state_dict.keys(): if k.startswith('''seg_head.aux_head.''' ): keys_to_ignore.append(lowerCamelCase_ ) for k in keys_to_ignore: state_dict.pop(lowerCamelCase_, lowerCamelCase_ ) def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] ="""http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" SCREAMING_SNAKE_CASE__ : Dict =Image.open(requests.get(lowerCamelCase_, stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str =get_mobilevitva_config(lowerCamelCase_, lowerCamelCase_ ) # load original state_dict SCREAMING_SNAKE_CASE__ : Any =torch.load(lowerCamelCase_, map_location='''cpu''' ) # load huggingface model if task_name.startswith('''ade20k_''' ) or task_name.startswith('''voc_''' ): SCREAMING_SNAKE_CASE__ : int =MobileViTVaForSemanticSegmentation(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE__ : List[Any] =False else: SCREAMING_SNAKE_CASE__ : int =MobileViTVaForImageClassification(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] =False # remove and rename some keys of load the original model SCREAMING_SNAKE_CASE__ : List[str] =checkpoint remove_unused_keys(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ : Dict =create_rename_keys(lowerCamelCase_, base_model=lowerCamelCase_ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # load modified state_dict model.load_state_dict(lowerCamelCase_ ) # Check outputs on an image, prepared by MobileViTImageProcessor SCREAMING_SNAKE_CASE__ : Any =MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 3_2 ) SCREAMING_SNAKE_CASE__ : List[Any] =image_processor(images=prepare_img(), return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =model(**lowerCamelCase_ ) # verify classification model if task_name.startswith('''imagenet''' ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =outputs.logits SCREAMING_SNAKE_CASE__ : Dict =logits.argmax(-1 ).item() print('''Predicted class:''', model.config.idalabel[predicted_class_idx] ) if task_name.startswith('''imagenet1k_256''' ) and config.width_multiplier == 1.0: # expected_logits for base variant SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ) assert torch.allclose(logits[0, :3], lowerCamelCase_, atol=1e-4 ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) print(f"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCamelCase_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='imagenet1k_256', type=str, help=( 'Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ' '\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n ' ), choices=[ 'imagenet1k_256', 'imagenet1k_384', 'imagenet21k_to_1k_256', 'imagenet21k_to_1k_384', 'ade20k_deeplabv3', 'voc_deeplabv3', ], ) parser.add_argument( '--orig_checkpoint_path', required=True, type=str, help='Path to the original state dict (.pt file).' ) parser.add_argument('--orig_config_path', required=True, type=str, help='Path to the original config file.') parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) a_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
152
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class UpperCamelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int = None , lowerCamelCase_ : int = None ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Any = pad_token_id SCREAMING_SNAKE_CASE : List[Any] = max_length SCREAMING_SNAKE_CASE : Optional[int] = vocab SCREAMING_SNAKE_CASE : List[Any] = merges SCREAMING_SNAKE_CASE : Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : Any , lowerCamelCase_ : GPTaTokenizer , *lowerCamelCase_ : str , **lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab() return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : List[Any] , lowerCamelCase_ : Union[str, os.PathLike] , *lowerCamelCase_ : str , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Tuple ): '''simple docstring''' return cls(**lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : int = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tf_tokenizer(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tf.ones_like(lowerCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = pad_model_inputs( lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
323
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) class _lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''timm_backbone''' def __init__( self :Tuple , lowerCAmelCase__ :int=None , lowerCAmelCase__ :int=3 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :Optional[Any]=None , **lowerCAmelCase__ :int , ) -> Tuple: super().__init__(**lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : List[str] = backbone __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : Optional[Any] = features_only __SCREAMING_SNAKE_CASE : Any = use_pretrained_backbone __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : Optional[int] = out_indices if out_indices is not None else (-1,)
9
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train""" SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Union[str, Any] = streaming SCREAMING_SNAKE_CASE : Optional[int] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : int = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Tuple = streaming SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Dict ): '''simple docstring''' pass
323
0
from __future__ import annotations lowerCAmelCase__ : int ={ '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = graph # mapping node to its parent in resulting breadth first tree __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = source_vertex def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {self.source_vertex} __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = [self.source_vertex] # first in first out queue while queue: __SCREAMING_SNAKE_CASE = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE = vertex queue.append(lowerCamelCase_ ) def _A ( self , _A ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex __SCREAMING_SNAKE_CASE = self.parent.get(lowerCamelCase_ ) if target_vertex_parent is None: __SCREAMING_SNAKE_CASE = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(lowerCamelCase_ ) return self.shortest_path(lowerCamelCase_ ) + f"""->{target_vertex}""" if __name__ == "__main__": lowerCAmelCase__ : int =Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
257
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = """ylacombe/bark-small""" SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : str = """en_speaker_1""" SCREAMING_SNAKE_CASE : Optional[int] = """This is a test string""" SCREAMING_SNAKE_CASE : Optional[int] = """speaker_embeddings_path.json""" SCREAMING_SNAKE_CASE : List[Any] = """speaker_embeddings""" def lowerCamelCase_ ( self : int , **lowerCamelCase_ : int ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : List[str] = BarkProcessor(tokenizer=lowerCamelCase_ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) SCREAMING_SNAKE_CASE : int = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) SCREAMING_SNAKE_CASE : List[str] = 35 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : int = 8 SCREAMING_SNAKE_CASE : Optional[int] = { """semantic_prompt""": np.ones(lowerCamelCase_ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset SCREAMING_SNAKE_CASE : Tuple = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file SCREAMING_SNAKE_CASE : List[str] = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = processor(text=self.input_string , voice_preset=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub SCREAMING_SNAKE_CASE : Optional[Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_tokenizer() SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string ) SCREAMING_SNAKE_CASE : Tuple = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
323
0
'''simple docstring''' import requests from bsa import BeautifulSoup def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : List[str] = BeautifulSoup(requests.get(lowerCamelCase_ , params=lowerCamelCase_ ).content , 'html.parser' ) __magic_name__ : Union[str, Any] = soup.find('div' , attrs={'class': 'gs_ri'} ) __magic_name__ : str = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": lowerCAmelCase :Dict = { '''title''': ( '''Precisely geometry controlled microsupercapacitors for ultrahigh areal ''' '''capacitance, volumetric capacitance, and energy density''' ), '''journal''': '''Chem. Mater.''', '''volume''': 3_0, '''pages''': '''3979-3990''', '''year''': 2_0_1_8, '''hl''': '''en''', } print(get_citation('''https://scholar.google.com/scholar_lookup''', params=params))
331
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCAmelCase = logging.getLogger(__name__) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return (preds == labels).mean() @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class UpperCamelCase__ : """simple docstring""" SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) SCREAMING_SNAKE_CASE__ = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) SCREAMING_SNAKE_CASE__ = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) SCREAMING_SNAKE_CASE__ = field( default=lowercase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __A ( ): """simple docstring""" SCREAMING_SNAKE_CASE : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase_ ) # Set seed set_seed(training_args.seed ) try: SCREAMING_SNAKE_CASE : Dict = processors[data_args.task_name]() SCREAMING_SNAKE_CASE : Optional[int] = processor.get_labels() SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets SCREAMING_SNAKE_CASE : Optional[Any] = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=lowerCamelCase_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(lowerCamelCase_ ) -> Dict: SCREAMING_SNAKE_CASE : str = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(lowerCamelCase_ , p.label_ids )} # Data collator SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer SCREAMING_SNAKE_CASE : Any = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=lowerCamelCase_ , eval_dataset=lowerCamelCase_ , compute_metrics=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation SCREAMING_SNAKE_CASE : Optional[Any] = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.evaluate() SCREAMING_SNAKE_CASE : str = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , lowerCamelCase_ , lowerCamelCase_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(lowerCamelCase_ ) return results def __A ( lowerCamelCase_ ): """simple docstring""" main() if __name__ == "__main__": main()
323
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Any = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
228
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 42 class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[str]=3 , lowerCamelCase_ : Any=("DownEncoderBlock2D",) , lowerCamelCase_ : List[Any]=(64,) , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : List[Any]="silu" , lowerCamelCase_ : Optional[int]=True , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = layers_per_block SCREAMING_SNAKE_CASE : int = torch.nn.Convad( lowerCamelCase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList([] ) # down SCREAMING_SNAKE_CASE : Tuple = block_out_channels[0] for i, down_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = output_channel SCREAMING_SNAKE_CASE : List[str] = block_out_channels[i] SCREAMING_SNAKE_CASE : Union[str, Any] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : Optional[Any] = get_down_block( lowerCamelCase_ , num_layers=self.layers_per_block , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) self.down_blocks.append(lowerCamelCase_ ) # mid SCREAMING_SNAKE_CASE : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # out SCREAMING_SNAKE_CASE : List[Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : List[Any] = nn.SiLU() SCREAMING_SNAKE_CASE : Dict = 2 * out_channels if double_z else out_channels SCREAMING_SNAKE_CASE : List[Any] = nn.Convad(block_out_channels[-1] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Tuple = False def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = x SCREAMING_SNAKE_CASE : int = self.conv_in(lowerCamelCase_ ) if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[Any] ): def custom_forward(*lowerCamelCase_ : List[str] ): return module(*lowerCamelCase_ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : str = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : Optional[int] = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowerCamelCase_ ) else: # down for down_block in self.down_blocks: SCREAMING_SNAKE_CASE : Tuple = down_block(lowerCamelCase_ ) # middle SCREAMING_SNAKE_CASE : List[Any] = self.mid_block(lowerCamelCase_ ) # post-process SCREAMING_SNAKE_CASE : Optional[Any] = self.conv_norm_out(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : str=("UpDecoderBlock2D",) , lowerCamelCase_ : Union[str, Any]=(64,) , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Dict="silu" , lowerCamelCase_ : Any="group" , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : int = layers_per_block SCREAMING_SNAKE_CASE : Optional[Any] = nn.Convad( lowerCamelCase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Any = nn.ModuleList([] ) SCREAMING_SNAKE_CASE : str = in_channels if norm_type == """spatial""" else None # mid SCREAMING_SNAKE_CASE : Dict = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowerCamelCase_ , temb_channels=lowerCamelCase_ , ) # up SCREAMING_SNAKE_CASE : Union[str, Any] = list(reversed(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = reversed_block_out_channels[0] for i, up_block_type in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : List[str] = i == len(lowerCamelCase_ ) - 1 SCREAMING_SNAKE_CASE : List[Any] = get_up_block( lowerCamelCase_ , num_layers=self.layers_per_block + 1 , in_channels=lowerCamelCase_ , out_channels=lowerCamelCase_ , prev_output_channel=lowerCamelCase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowerCamelCase_ , resnet_groups=lowerCamelCase_ , attention_head_dim=lowerCamelCase_ , temb_channels=lowerCamelCase_ , resnet_time_scale_shift=lowerCamelCase_ , ) self.up_blocks.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = output_channel # out if norm_type == "spatial": SCREAMING_SNAKE_CASE : List[Any] = SpatialNorm(block_out_channels[0] , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowerCamelCase_ , eps=1e-6 ) SCREAMING_SNAKE_CASE : Dict = nn.SiLU() SCREAMING_SNAKE_CASE : str = nn.Convad(block_out_channels[0] , lowerCamelCase_ , 3 , padding=1 ) SCREAMING_SNAKE_CASE : Dict = False def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = z SCREAMING_SNAKE_CASE : Optional[int] = self.conv_in(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(lowerCamelCase_ : List[str] ): def custom_forward(*lowerCamelCase_ : str ): return module(*lowerCamelCase_ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle SCREAMING_SNAKE_CASE : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ , use_reentrant=lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = torch.utils.checkpoint.checkpoint(create_custom_forward(lowerCamelCase_ ) , lowerCamelCase_ , lowerCamelCase_ ) else: # middle SCREAMING_SNAKE_CASE : Any = self.mid_block(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = sample.to(lowerCamelCase_ ) # up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Any = up_block(lowerCamelCase_ , lowerCamelCase_ ) # post-process if latent_embeds is None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_norm_out(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.conv_act(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.conv_out(lowerCamelCase_ ) return sample class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int=None , lowerCamelCase_ : Any="random" , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[Any]=True ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Tuple = n_e SCREAMING_SNAKE_CASE : int = vq_embed_dim SCREAMING_SNAKE_CASE : Tuple = beta SCREAMING_SNAKE_CASE : Union[str, Any] = legacy SCREAMING_SNAKE_CASE : int = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) SCREAMING_SNAKE_CASE : Optional[Any] = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) SCREAMING_SNAKE_CASE : Tuple = self.used.shape[0] SCREAMING_SNAKE_CASE : Any = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": SCREAMING_SNAKE_CASE : Union[str, Any] = self.re_embed SCREAMING_SNAKE_CASE : Any = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: SCREAMING_SNAKE_CASE : Optional[int] = n_e SCREAMING_SNAKE_CASE : Any = sane_index_shape def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : Tuple = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() SCREAMING_SNAKE_CASE : Union[str, Any] = match.argmax(-1 ) SCREAMING_SNAKE_CASE : Tuple = match.sum(2 ) < 1 if self.unknown_index == "random": SCREAMING_SNAKE_CASE : Tuple = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: SCREAMING_SNAKE_CASE : Any = self.unknown_index return new.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = inds.shape assert len(lowerCamelCase_ ) > 1 SCREAMING_SNAKE_CASE : str = inds.reshape(ishape[0] , -1 ) SCREAMING_SNAKE_CASE : Tuple = self.used.to(lowerCamelCase_ ) if self.re_embed > self.used.shape[0]: # extra token SCREAMING_SNAKE_CASE : List[Any] = 0 # simply set to zero SCREAMING_SNAKE_CASE : Optional[Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowerCamelCase_ ) return back.reshape(lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = z.permute(0 , 2 , 3 , 1 ).contiguous() SCREAMING_SNAKE_CASE : int = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z SCREAMING_SNAKE_CASE : Any = torch.argmin(torch.cdist(lowerCamelCase_ , self.embedding.weight ) , dim=1 ) SCREAMING_SNAKE_CASE : Tuple = self.embedding(lowerCamelCase_ ).view(z.shape ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : List[str] = None # compute loss for embedding if not self.legacy: SCREAMING_SNAKE_CASE : Optional[Any] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients SCREAMING_SNAKE_CASE : Tuple = z + (z_q - z).detach() # reshape back to match original input shape SCREAMING_SNAKE_CASE : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.remap_to_used(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: SCREAMING_SNAKE_CASE : int = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' if self.remap is not None: SCREAMING_SNAKE_CASE : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis SCREAMING_SNAKE_CASE : List[Any] = self.unmap_to_all(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = indices.reshape(-1 ) # flatten again # get quantized latent vectors SCREAMING_SNAKE_CASE : str = self.embedding(lowerCamelCase_ ) if shape is not None: SCREAMING_SNAKE_CASE : List[str] = z_q.view(lowerCamelCase_ ) # reshape back to match original input shape SCREAMING_SNAKE_CASE : int = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : int , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[int]=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parameters SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = torch.chunk(lowerCamelCase_ , 2 , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = torch.clamp(self.logvar , -30.0 , 20.0 ) SCREAMING_SNAKE_CASE : Dict = deterministic SCREAMING_SNAKE_CASE : int = torch.exp(0.5 * self.logvar ) SCREAMING_SNAKE_CASE : Tuple = torch.exp(self.logvar ) if self.deterministic: SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : Optional[torch.Generator] = None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = randn_tensor( self.mean.shape , generator=lowerCamelCase_ , device=self.parameters.device , dtype=self.parameters.dtype ) SCREAMING_SNAKE_CASE : Optional[Any] = self.mean + self.std * sample return x def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : int=None ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int]=[1, 2, 3] ): '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) SCREAMING_SNAKE_CASE : List[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return self.mean
323
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=[10, 20, 30, 40] , _UpperCAmelCase=[2, 2, 3, 2] , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=10 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=["stage2", "stage3", "stage4"] , _UpperCAmelCase=[2, 3, 4] , _UpperCAmelCase=None , ): __a : List[str] = parent __a : List[Any] = batch_size __a : Dict = image_size __a : List[str] = num_channels __a : Optional[Any] = num_stages __a : str = hidden_sizes __a : List[str] = depths __a : Union[str, Any] = is_training __a : Tuple = use_labels __a : List[str] = intermediate_size __a : List[str] = hidden_act __a : List[str] = num_labels __a : Any = initializer_range __a : Union[str, Any] = out_features __a : str = out_indices __a : str = scope def _lowerCamelCase ( self ): __a : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a : Any = None if self.use_labels: __a : int = ids_tensor([self.batch_size] , self.num_labels ) __a : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = ConvNextVaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a : Dict = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : str = ConvNextVaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a : str = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = ConvNextVaBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a : List[Any] = model(lowerCamelCase_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __a : Optional[int] = None __a : int = ConvNextVaBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a : int = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowerCamelCase ( self ): __a : Optional[int] = self.prepare_config_and_inputs() __a : Optional[Any] = config_and_inputs __a : str = {"""pixel_values""": pixel_values} return config, inputs_dict def _lowerCamelCase ( self ): __a : Optional[Any] = self.prepare_config_and_inputs() __a : List[str] = config_and_inputs __a : List[str] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowerCAmelCase = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def _lowerCamelCase ( self ): __a : Optional[Any] = ConvNextVaModelTester(self ) __a : List[str] = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def _lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self ): return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def _lowerCamelCase ( self ): pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: __a : List[str] = self.model_tester.prepare_config_and_inputs_with_labels() __a : int = True if model_class.__name__ in [ *get_values(lowerCamelCase_ ), *get_values(lowerCamelCase_ ), ]: continue __a : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() __a : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) __a : Any = model(**lowerCamelCase_ ).loss loss.backward() def _lowerCamelCase ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: __a : str = self.model_tester.prepare_config_and_inputs_with_labels() __a : Any = False __a : List[str] = True if ( model_class.__name__ in [*get_values(lowerCamelCase_ ), *get_values(lowerCamelCase_ )] or not model_class.supports_gradient_checkpointing ): continue __a : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.gradient_checkpointing_enable() model.train() __a : Any = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ , return_labels=lowerCamelCase_ ) __a : Optional[int] = model(**lowerCamelCase_ ).loss loss.backward() def _lowerCamelCase ( self ): __a : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Tuple = model_class(lowerCamelCase_ ) __a : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a : Union[str, Any] = [*signature.parameters.keys()] __a : Tuple = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def _lowerCamelCase ( self ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def _lowerCamelCase ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): __a : List[Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) __a : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a : int = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a : Union[str, Any] = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a : Tuple = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def _lowerCamelCase ( self ): __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def _lowerCamelCase ( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a : Optional[int] = ConvNextVaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __A ( ) -> Optional[Any]: __a : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def _lowerCamelCase ( self ): return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def _lowerCamelCase ( self ): __a : Optional[int] = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(lowerCamelCase_ ) __a : str = self.default_image_processor __a : Optional[int] = prepare_img() __a : Union[str, Any] = preprocessor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): __a : Any = model(**lowerCamelCase_ ) # verify the logits __a : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) __a : Optional[int] = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) )
160
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = FlaxAutoencoderKL @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : List[Any] = (32, 32) SCREAMING_SNAKE_CASE : Tuple = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Any = jax.random.uniform(lowerCamelCase_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict
323
0
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCamelCase ( lowercase_): """simple docstring""" UpperCamelCase__ = 42 UpperCamelCase__ = 42 def __init__( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self , UpperCAmelCase = 1 , UpperCAmelCase = 2000 , UpperCAmelCase = None , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = self.unet.config.sample_size _UpperCAmelCase = (batch_size, 3, img_size, img_size) _UpperCAmelCase = self.unet _UpperCAmelCase = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ ) * self.scheduler.init_noise_sigma _UpperCAmelCase = sample.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase_ ) self.scheduler.set_sigmas(lowerCamelCase_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): _UpperCAmelCase = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample _UpperCAmelCase = self.scheduler.step_correct(lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample # prediction step _UpperCAmelCase = model(lowerCamelCase_ , lowerCamelCase_ ).sample _UpperCAmelCase = self.scheduler.step_pred(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ) _UpperCAmelCase = output.prev_sample, output.prev_sample_mean _UpperCAmelCase = sample_mean.clamp(0 , 1 ) _UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=lowerCamelCase_ )
39
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' pass def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Any , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , lowerCamelCase_ ) import datasets SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) SCREAMING_SNAKE_CASE : Any = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , lowerCamelCase_ , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @slow @require_torch def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = """Intel/dpt-large""" SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline("""depth-estimation""" , model=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) SCREAMING_SNAKE_CASE : str = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
323
0
"""simple docstring""" from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _lowerCamelCase ( lowercase_ ): def __init__(self , __a , __a = None , __a = None , __a = None , __a = False , __a = False , __a = None , **__a , ) -> Any: super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} UpperCamelCase = Text( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , ) def snake_case_ (self ) -> Tuple: if self.streaming: UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset
153
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Any=3 , lowerCamelCase_ : Dict=2_24 , lowerCamelCase_ : List[Any]=30 , lowerCamelCase_ : Union[str, Any]=4_00 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCamelCase_ : Union[str, Any]=[0.5, 0.5, 0.5] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Dict = min_resolution SCREAMING_SNAKE_CASE : List[str] = max_resolution SCREAMING_SNAKE_CASE : str = do_resize SCREAMING_SNAKE_CASE : Optional[Any] = size SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : List[Any] = image_mean SCREAMING_SNAKE_CASE : str = image_std def lowerCamelCase_ ( self : Any ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class UpperCamelCase__ ( lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ViTImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = EfficientFormerImageProcessorTester(self ) @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase_ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase_ , """size""" ) ) def lowerCamelCase_ ( self : str ): '''simple docstring''' pass def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , numpify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Tuple = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=lowerCamelCase_ , torchify=lowerCamelCase_ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processor(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processor(lowerCamelCase_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
323
0
import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class A_ ( lowercase_ , unittest.TestCase ): _lowercase : str = PriorTransformer _lowercase : Optional[Any] = 'hidden_states' @property def UpperCAmelCase ( self : Any ) -> Tuple: __lowerCAmelCase: str = 4 __lowerCAmelCase: Dict = 8 __lowerCAmelCase: Union[str, Any] = 7 __lowerCAmelCase: Dict = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) __lowerCAmelCase: int = floats_tensor((batch_size, embedding_dim) ).to(lowerCamelCase_ ) __lowerCAmelCase: Any = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase ( self : int , UpperCAmelCase : List[str]=0 ) -> int: torch.manual_seed(lowerCamelCase_ ) __lowerCAmelCase: List[Any] = 4 __lowerCAmelCase: int = 8 __lowerCAmelCase: Optional[Any] = 7 __lowerCAmelCase: Optional[int] = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) __lowerCAmelCase: str = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) __lowerCAmelCase: Tuple = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCAmelCase ( self : Any ) -> str: return (4, 8) @property def UpperCAmelCase ( self : List[Any] ) -> Tuple: return (4, 8) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase: int = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } __lowerCAmelCase: Union[str, Any] = self.dummy_input return init_dict, inputs_dict def UpperCAmelCase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase: str = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(lowerCamelCase_ ) __lowerCAmelCase: List[Any] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_init_args_and_inputs_for_common() __lowerCAmelCase: str = self.model_class(**lowerCamelCase_ ) __lowerCAmelCase: Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase: Any = [*signature.parameters.keys()] __lowerCAmelCase: List[Any] = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , lowerCamelCase_ ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: __lowerCAmelCase: List[Any] = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy' ) __lowerCAmelCase: Optional[Any] = model.to(lowerCamelCase_ ) if hasattr(lowerCamelCase_ , 'set_default_attn_processor' ): model.set_default_attn_processor() __lowerCAmelCase: Dict = self.get_dummy_seed_input() with torch.no_grad(): __lowerCAmelCase: List[str] = model(**lowerCamelCase_ )[0] __lowerCAmelCase: List[Any] = output[0, :5].flatten().cpu() print(lowerCamelCase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. __lowerCAmelCase: Optional[int] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] ) self.assertTrue(torch_all_close(lowerCamelCase_ , lowerCamelCase_ , rtol=1E-2 ) ) @slow class A_ ( unittest.TestCase ): def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Dict=1 , UpperCAmelCase : Tuple=7_6_8 , UpperCAmelCase : Tuple=7_7 , UpperCAmelCase : Dict=0 ) -> str: torch.manual_seed(lowerCamelCase_ ) __lowerCAmelCase: Dict = batch_size __lowerCAmelCase: int = embedding_dim __lowerCAmelCase: List[str] = num_embeddings __lowerCAmelCase: int = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) __lowerCAmelCase: int = torch.randn((batch_size, embedding_dim) ).to(lowerCamelCase_ ) __lowerCAmelCase: str = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowerCamelCase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCAmelCase ( self : Optional[Any] ) -> Tuple: super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [1_3, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [3_7, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ] ) def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ) -> int: __lowerCAmelCase: Tuple = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior' ) model.to(lowerCamelCase_ ) __lowerCAmelCase: Tuple = self.get_dummy_seed_input(seed=lowerCamelCase_ ) with torch.no_grad(): __lowerCAmelCase: List[str] = model(**lowerCamelCase_ )[0] assert list(sample.shape ) == [1, 7_6_8] __lowerCAmelCase: Optional[int] = sample[0, :8].flatten().cpu() print(lowerCamelCase_ ) __lowerCAmelCase: str = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 )
322
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCAmelCase = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCamelCase__ ( lowercase_): def __A (self , UpperCAmelCase ) -> Tuple: with open(lowerCamelCase_ , encoding='''utf-8''' ) as input_file: _lowercase =re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) _lowercase =input_file.read() _lowercase =regexp.search(lowerCamelCase_ ) return match def __A (self , UpperCAmelCase ) -> str: with open(lowerCamelCase_ , encoding='''utf-8''' ) as input_file: _lowercase =re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) _lowercase =input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _lowercase =regexp.finditer(lowerCamelCase_ ) _lowercase =[match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def __A (self ) -> Dict: _lowercase =Path('''./datasets''' ) _lowercase =list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase_ ) ): raise AssertionError(f"open(...) must use utf-8 encoding in {dataset}" ) def __A (self ) -> Dict: _lowercase =Path('''./datasets''' ) _lowercase =list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase_ ) ): raise AssertionError(f"print statement found in {dataset}. Use datasets.logger/logging instead." )
5
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
323
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class __a ( tf.keras.layers.Layer ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> Optional[Any]: '''simple docstring''' super().__init__() lowercase__: Any = pad_token_id lowercase__: List[Any] = max_length lowercase__: Optional[int] = vocab lowercase__: List[Any] = merges lowercase__: Tuple = BytePairTokenizer(lowerCamelCase_ , lowerCamelCase_ , sequence_length=lowerCamelCase_ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' lowercase__: Tuple = [""" """.join(lowerCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] lowercase__: List[str] = tokenizer.get_vocab() return cls(lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Tuple = GPTaTokenizer.from_pretrained(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) return cls.from_tokenizer(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , lowerCAmelCase__ ) -> str: '''simple docstring''' return cls(**lowerCamelCase_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> int: '''simple docstring''' lowercase__: List[str] = self.tf_tokenizer(lowerCamelCase_ ) lowercase__: Optional[int] = tf.ones_like(lowerCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__: Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__: Union[str, Any] = pad_model_inputs( lowerCamelCase_ , max_seq_length=lowerCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
196
'''simple docstring''' def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number | (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number & ~(1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return number ^ (1 << position) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return ((number >> position) & 1) == 1 def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
323
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a_ = ['text', 'image', 'audio'] def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =[] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(lowerCamelCase_, lowerCamelCase_ ): inputs.append(create_inputs(lowerCamelCase_ ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def _a( UpperCamelCase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] =[] for output in outputs: if isinstance(lowerCamelCase_, (str, AgentText) ): output_types.append('''text''' ) elif isinstance(lowerCamelCase_, (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(lowerCamelCase_, (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class __SCREAMING_SNAKE_CASE : def __magic_name__ ( self : Tuple ) -> Optional[int]: self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) SCREAMING_SNAKE_CASE__ : int =self.tool.inputs for _input in inputs: if isinstance(_input , lowerCamelCase_ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE__ : List[Any] =self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __magic_name__ ( self : str ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Dict =self.tool(*lowerCamelCase_ ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE__ : Optional[int] =[outputs] self.assertListEqual(output_types(lowerCamelCase_ ) , self.tool.outputs ) def __magic_name__ ( self : Any ) -> Tuple: self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def __magic_name__ ( self : Tuple ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : List[Any] =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : Any =[outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCamelCase_ , self.tool.outputs ): SCREAMING_SNAKE_CASE__ : Tuple =AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCamelCase_ , lowerCamelCase_ ) ) def __magic_name__ ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ : Dict =create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE__ : Any =[] for _input, input_type in zip(lowerCamelCase_ , self.tool.inputs ): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE__ : List[Any] =self.tool(*lowerCamelCase_ ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =[outputs] self.assertEqual(len(lowerCamelCase_ ) , len(self.tool.outputs ) )
152
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class UpperCamelCase__ : """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=14 , lowerCamelCase_ : Optional[Any]=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : str=True , lowerCamelCase_ : str=False , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : int=99 , lowerCamelCase_ : List[str]=32 , lowerCamelCase_ : int=4 , lowerCamelCase_ : List[Any]=4 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Union[str, Any]=37 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Union[str, Any]=0.1 , lowerCamelCase_ : List[str]=5_12 , lowerCamelCase_ : Union[str, Any]=0.02 , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : Optional[int] = batch_size SCREAMING_SNAKE_CASE : Any = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : Optional[int] = use_input_mask SCREAMING_SNAKE_CASE : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : List[Any] = rotary_dim SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Dict = vocab_size - 1 SCREAMING_SNAKE_CASE : str = vocab_size - 1 SCREAMING_SNAKE_CASE : List[Any] = vocab_size - 1 def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=lowerCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCamelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 20 SCREAMING_SNAKE_CASE : Any = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Optional[int] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : str = model( input_ids[:, -1:] , attention_mask=lowerCamelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 20 SCREAMING_SNAKE_CASE : Dict = model_class_name(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) SCREAMING_SNAKE_CASE : str = model.init_cache(input_ids.shape[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) SCREAMING_SNAKE_CASE : Any = model( input_ids[:, :-1] , attention_mask=lowerCamelCase_ , past_key_values=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) SCREAMING_SNAKE_CASE : Dict = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=lowerCamelCase_ , position_ids=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () SCREAMING_SNAKE_CASE__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxGPTJModelTester(self ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @tooslow def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=lowerCamelCase_ , truncation=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : int = False SCREAMING_SNAKE_CASE : Optional[Any] = model.config.eos_token_id SCREAMING_SNAKE_CASE : str = jax.jit(model.generate ) SCREAMING_SNAKE_CASE : str = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : List[str] = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : Optional[int] = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = fx_state with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Any = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(lowerCamelCase_ , from_pt=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = fx_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs SCREAMING_SNAKE_CASE : Dict = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class SCREAMING_SNAKE_CASE : Dict = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE : int = getattr(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = pt_model_class(lowerCamelCase_ ).eval() SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : List[Any] = load_flax_weights_in_pytorch_model(lowerCamelCase_ , fx_model.params ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = pt_inputs["""input_ids"""].shape SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : Tuple = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = pt_model(**lowerCamelCase_ ).to_tuple() SCREAMING_SNAKE_CASE : Optional[Any] = fx_model(**lowerCamelCase_ ).to_tuple() self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = pt_model_class.from_pretrained(lowerCamelCase_ , from_flax=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = pt_model_loaded(**lowerCamelCase_ ).to_tuple() self.assertEqual( len(lowerCamelCase_ ) , len(lowerCamelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ )
323
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''git_vision_model''' def __init__( self :int , lowerCAmelCase__ :Dict=768 , lowerCAmelCase__ :Tuple=3_072 , lowerCAmelCase__ :List[Any]=12 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :int=3 , lowerCAmelCase__ :List[str]=224 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :Optional[Any]="quick_gelu" , lowerCAmelCase__ :List[Any]=1E-5 , lowerCAmelCase__ :List[Any]=0.0 , lowerCAmelCase__ :Optional[Any]=0.02 , **lowerCAmelCase__ :str , ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : int = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE : int = num_attention_heads __SCREAMING_SNAKE_CASE : int = num_channels __SCREAMING_SNAKE_CASE : Optional[Any] = patch_size __SCREAMING_SNAKE_CASE : Optional[int] = image_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : str = attention_dropout __SCREAMING_SNAKE_CASE : Any = layer_norm_eps __SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def __magic_name__( cls :List[str] , lowerCAmelCase__ :Union[str, os.PathLike] , **lowerCAmelCase__ :int ) -> Tuple: cls._set_token_in_kwargs(lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get('''model_type''' ) == "git": __SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class _lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''git''' def __init__( self :List[str] , lowerCAmelCase__ :Dict=None , lowerCAmelCase__ :Tuple=30_522 , lowerCAmelCase__ :Optional[Any]=768 , lowerCAmelCase__ :Any=6 , lowerCAmelCase__ :List[str]=12 , lowerCAmelCase__ :List[str]=3_072 , lowerCAmelCase__ :Union[str, Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :Optional[int]=1_024 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Optional[int]=1E-1_2 , lowerCAmelCase__ :Union[str, Any]=0 , lowerCAmelCase__ :Optional[Any]="absolute" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Optional[int]=101 , lowerCAmelCase__ :Optional[Any]=102 , lowerCAmelCase__ :List[str]=None , **lowerCAmelCase__ :str , ) -> Optional[int]: super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: __SCREAMING_SNAKE_CASE : Any = {} logger.info('''vision_config is None. initializing the GitVisionConfig with default values.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) __SCREAMING_SNAKE_CASE : List[Any] = vocab_size __SCREAMING_SNAKE_CASE : Tuple = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = hidden_act __SCREAMING_SNAKE_CASE : Dict = intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache __SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings __SCREAMING_SNAKE_CASE : int = num_image_with_embedding __SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id __SCREAMING_SNAKE_CASE : str = eos_token_id def __magic_name__( self :Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() __SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
9
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim SCREAMING_SNAKE_CASE : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : str = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = GPTaConfig( vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Tuple = [] for feature in features: SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam( input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : Dict = input_embeds else: SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : List[Any] = next_tokens else: SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : Tuple = -float(np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : int = scores / seq_lengths SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
323
0
def __lowercase ( a__ ) -> Any: __SCREAMING_SNAKE_CASE = 0 while len(lowerCamelCase_ ) > 1: __SCREAMING_SNAKE_CASE = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): __SCREAMING_SNAKE_CASE = files.index(min(lowerCamelCase_ ) ) temp += files[min_index] files.pop(lowerCamelCase_ ) files.append(lowerCamelCase_ ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
257
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git_vision_model''' def __init__( self : int , lowerCamelCase_ : Dict=7_68 , lowerCamelCase_ : Tuple=30_72 , lowerCamelCase_ : List[Any]=12 , lowerCamelCase_ : Tuple=12 , lowerCamelCase_ : int=3 , lowerCamelCase_ : List[str]=2_24 , lowerCamelCase_ : Optional[Any]=16 , lowerCamelCase_ : Optional[Any]="quick_gelu" , lowerCamelCase_ : List[Any]=1e-5 , lowerCamelCase_ : List[Any]=0.0 , lowerCamelCase_ : Optional[Any]=0.02 , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : Optional[int] = image_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = hidden_act @classmethod def lowerCamelCase_ ( cls : List[str] , lowerCamelCase_ : Union[str, os.PathLike] , **lowerCamelCase_ : int ): '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = cls.get_config_dict(lowerCamelCase_ , **lowerCamelCase_ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE : Optional[Any] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowerCamelCase_ , **lowerCamelCase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''git''' def __init__( self : List[str] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=3_05_22 , lowerCamelCase_ : Optional[Any]=7_68 , lowerCamelCase_ : Any=6 , lowerCamelCase_ : List[str]=12 , lowerCamelCase_ : List[str]=30_72 , lowerCamelCase_ : Union[str, Any]="gelu" , lowerCamelCase_ : List[str]=0.1 , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Optional[int]=10_24 , lowerCamelCase_ : int=0.02 , lowerCamelCase_ : Optional[int]=1e-12 , lowerCamelCase_ : Union[str, Any]=0 , lowerCamelCase_ : Optional[Any]="absolute" , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : Optional[int]=1_01 , lowerCamelCase_ : Optional[Any]=1_02 , lowerCamelCase_ : List[str]=None , **lowerCamelCase_ : str , ): '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = GitVisionConfig(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache SCREAMING_SNAKE_CASE : List[str] = tie_word_embeddings SCREAMING_SNAKE_CASE : int = num_image_with_embedding SCREAMING_SNAKE_CASE : Optional[Any] = bos_token_id SCREAMING_SNAKE_CASE : str = eos_token_id def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
323
0
'''simple docstring''' import math import tensorflow as tf from packaging import version def lowerCamelCase ( lowerCAmelCase : Optional[Any] ): """simple docstring""" __magic_name__ : List[str] = tf.convert_to_tensor(lowerCamelCase_ ) __magic_name__ : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : Union[str, Any] = tf.convert_to_tensor(lowerCamelCase_ ) __magic_name__ : Any = tf.cast(math.pi , x.dtype ) __magic_name__ : Union[str, Any] = tf.cast(0.04_4715 , x.dtype ) __magic_name__ : Tuple = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase_ , 3 )) )) return x * cdf def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : Optional[Any] = tf.convert_to_tensor(lowerCamelCase_ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase_ ) ) def lowerCamelCase ( lowerCAmelCase : Dict ): """simple docstring""" __magic_name__ : Dict = tf.convert_to_tensor(lowerCamelCase_ ) __magic_name__ : Dict = tf.cast(0.04_4715 , x.dtype ) __magic_name__ : Optional[int] = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : str = tf.convert_to_tensor(lowerCamelCase_ ) __magic_name__ : Optional[int] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" return tf.clip_by_value(_gelu(lowerCamelCase_ ) , -10 , 10 ) def lowerCamelCase ( lowerCAmelCase : Dict , lowerCAmelCase : List[str]=-1 ): """simple docstring""" __magic_name__ : int = tf.split(lowerCamelCase_ , 2 , axis=lowerCamelCase_ ) return a * tf.math.sigmoid(lowerCamelCase_ ) if version.parse(tf.version.VERSION) >= version.parse('''2.4'''): def lowerCamelCase ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" return tf.keras.activations.gelu(lowerCamelCase_ , approximate=lowerCamelCase_ ) lowerCAmelCase :List[Any] = tf.keras.activations.gelu lowerCAmelCase :Dict = approximate_gelu_wrap else: lowerCAmelCase :List[Any] = _gelu lowerCAmelCase :int = _gelu_new lowerCAmelCase :Optional[int] = { '''gelu''': gelu, '''gelu_10''': gelu_aa, '''gelu_fast''': gelu_fast, '''gelu_new''': gelu_new, '''glu''': glu, '''mish''': mish, '''quick_gelu''': quick_gelu, '''relu''': tf.keras.activations.relu, '''sigmoid''': tf.keras.activations.sigmoid, '''silu''': tf.keras.activations.swish, '''swish''': tf.keras.activations.swish, '''tanh''': tf.keras.activations.tanh, } def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
331
'''simple docstring''' from manim import * class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.5 , width=0.5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) SCREAMING_SNAKE_CASE : List[str] = Rectangle(height=0.25 , width=0.25 ) SCREAMING_SNAKE_CASE : Optional[int] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : str = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Tuple = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""CPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Any = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [mem.copy() for i in range(4 )] SCREAMING_SNAKE_CASE : Any = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = Text("""GPU""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) gpu.move_to([-1, -1, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : List[Any] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = Text("""Model""" , font_size=24 ) SCREAMING_SNAKE_CASE : List[str] = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) model.move_to([3, -1.0, 0] ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i, rect in enumerate(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = fill.copy().set_fill(lowerCamelCase_ , opacity=0.8 ) target.move_to(lowerCamelCase_ ) model_arr.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(lowerCamelCase_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(lowerCamelCase_ ) self.add(*lowerCamelCase_ , *lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = [meta_mem.copy() for i in range(6 )] SCREAMING_SNAKE_CASE : Tuple = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Optional[int] = VGroup(*lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : Dict = VGroup(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0 ) SCREAMING_SNAKE_CASE : List[Any] = Text("""Disk""" , font_size=24 ) SCREAMING_SNAKE_CASE : Dict = Group(lowerCamelCase_ , lowerCamelCase_ ).arrange(lowerCamelCase_ , buff=0.5 , aligned_edge=lowerCamelCase_ ) disk.move_to([-4, -1.25, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) SCREAMING_SNAKE_CASE : Optional[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(lowerCamelCase_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Square(0.3 ) input.set_fill(lowerCamelCase_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , lowerCamelCase_ , buff=0.5 ) self.play(Write(lowerCamelCase_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=lowerCamelCase_ , buff=0.02 ) self.play(MoveToTarget(lowerCamelCase_ ) ) self.play(FadeOut(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = Arrow(start=lowerCamelCase_ , end=lowerCamelCase_ , color=lowerCamelCase_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , lowerCamelCase_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) SCREAMING_SNAKE_CASE : Optional[int] = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"""run_time""": 1, """fade_in""": True, """fade_out""": True, """buff""": 0.02} self.play( Write(lowerCamelCase_ ) , Circumscribe(model_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_cpu_arr[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) SCREAMING_SNAKE_CASE : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , lowerCamelCase_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) SCREAMING_SNAKE_CASE : Any = AnimationGroup( FadeOut(lowerCamelCase_ , run_time=0.5 ) , MoveToTarget(lowerCamelCase_ , run_time=0.5 ) , FadeIn(lowerCamelCase_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(lowerCamelCase_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: SCREAMING_SNAKE_CASE : Optional[Any] = 0.7 self.play( Circumscribe(model_arr[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i] , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(model_arr[i + 1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(cpu_left_col_base[-1] , color=lowerCamelCase_ , **lowerCamelCase_ ) , Circumscribe(gpu_rect[0] , color=lowerCamelCase_ , **lowerCamelCase_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = a_c SCREAMING_SNAKE_CASE : Optional[Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(lowerCamelCase_ ) , FadeOut(lowerCamelCase_ , run_time=0.5 ) , ) SCREAMING_SNAKE_CASE : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(lowerCamelCase_ , run_time=3 ) , MoveToTarget(lowerCamelCase_ ) ) self.wait()
323
0
def __A ( __lowerCamelCase ) -> Optional[Any]: a = current_set.copy() for row_index, row in enumerate(lowerCamelCase_ ): a = row[0] for column_index, column in enumerate(lowerCamelCase_ ): if magnitude == 0: a = column continue a = column / magnitude # Subtract to cancel term a = current_set[0] a = [first_row] a = current_set[1::] for row in current_set: a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase_ ) continue for column_index in range(len(lowerCamelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: a = final_set[0] a = [] a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) a = simplify(lowerCamelCase_ ) for i in range(len(lowerCamelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCamelCase_ ) a = resultant return final_set def __A ( __lowerCamelCase ) -> Dict: if len(lowerCamelCase_ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) a = len(lowerCamelCase_ ) + 1 if any(len(lowerCamelCase_ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCamelCase_ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCamelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] a = equations.copy() if any(0 in row for row in data_set ): a = data_set.copy() a = [] for row_index, row in enumerate(lowerCamelCase_ ): if 0 not in row: a = data_set.pop(lowerCamelCase_ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCamelCase_ ) a = data_set.copy() a = simplify(lowerCamelCase_ ) a = simplified[::-1] a = [] for row in simplified: a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue a = row.copy()[: len(lowerCamelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase_ ) == 0: solutions.append(0 ) continue a = temp_row[1::] a = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase_ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase_ ) a = [] for item in solutions: final.append(float(round(lowerCamelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Any = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
228
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = graph # mapping node to its parent in resulting breadth first tree SCREAMING_SNAKE_CASE : dict[str, str | None] = {} SCREAMING_SNAKE_CASE : List[str] = source_vertex def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {self.source_vertex} SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Optional[Any] = [self.source_vertex] # first in first out queue while queue: SCREAMING_SNAKE_CASE : str = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vertex queue.append(lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex SCREAMING_SNAKE_CASE : Optional[Any] = self.parent.get(lowerCamelCase_ ) if target_vertex_parent is None: SCREAMING_SNAKE_CASE : Tuple = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(lowerCamelCase_ ) return self.shortest_path(lowerCamelCase_ ) + f'''->{target_vertex}''' if __name__ == "__main__": __UpperCAmelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
323
0
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __A ( a_ :Optional[Any]) -> Union[str, Any]: __a : Dict = os.path.join(args.tf_model_dir , '''parameters.json''') __a : Optional[int] = json.loads(open(lowerCamelCase_).read()) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""") if not args.output.endswith('''.pt'''): __a : str = args.output + """.pt""" __a : int = OrderedDict() with tf.device('''/CPU:0'''): __a : Any = tf.train.load_checkpoint(args.tf_model_dir) __a : Any = reader.get_variable_to_shape_map() for key_name in shapes.keys(): __a : int = reader.get_tensor(lowerCamelCase_).astype(np.floataa) if key_name.endswith('''/adam_m''') or key_name.endswith('''/adam_v'''): continue if key_name.startswith('''pasts/'''): if key_name.startswith('''pasts/mlp'''): __a : Optional[Any] = int(key_name[9]) elif key_name.startswith('''pasts/out'''): __a : Dict = 8 __a : Optional[int] = """model.sqout.%d.weight""" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time __a : List[Any] = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix __a : Any = torch.tensor(lowerCamelCase_) elif key_name.startswith('''model/moe'''): __a : Optional[Any] = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/switch_gating/kernel'''): __a : Union[str, Any] = """model.blocks.%d.feed_forward.mlp.router.classifier.weight""" % player __a : Tuple = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix __a : str = torch.tensor(lowerCamelCase_) elif key_name.endswith('''/softmlp/kernel'''): __a : List[str] = """model.blocks.%d.feed_forward.soft_bypass_mlp.weight""" % player __a : int = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix __a : Optional[Any] = torch.tensor(lowerCamelCase_) elif key_name.endswith('''/wo/kernel''') or key_name.endswith('''/wi/kernel'''): __a : int = key_name[-9:-7] for i in range(16): __a : Optional[Any] = """model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight""" % (player, i, nlayer) __a : Dict = ( vnp[i].transpose([1, 0]).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided __a : Optional[int] = torch.tensor(lowerCamelCase_) elif key_name.startswith('''model/mlp'''): __a : Optional[int] = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/p1/kernel'''): __a : List[Any] = """model.blocks.%d.feed_forward.mlp.wi.weight""" % player __a : Optional[int] = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix __a : Tuple = torch.tensor(lowerCamelCase_) elif key_name.endswith('''/p1/bias'''): __a : Union[str, Any] = """model.blocks.%d.feed_forward.mlp.wi.bias""" % player __a : Tuple = vnp.copy() # same because it is one dimensional __a : Union[str, Any] = torch.tensor(lowerCamelCase_) elif key_name.endswith('''/p2/kernel'''): __a : Any = """model.blocks.%d.feed_forward.mlp.wo.weight""" % player __a : Tuple = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix __a : Tuple = torch.tensor(lowerCamelCase_) elif key_name.endswith('''/p2/bias'''): __a : Tuple = """model.blocks.%d.feed_forward.mlp.wo.bias""" % player __a : Optional[Any] = vnp.copy() # same because it is one dimensional __a : Any = torch.tensor(lowerCamelCase_) elif key_name.startswith('''model/ln'''): __a : Any = int(key_name[8:].split('''/''')[0]) if key_name.endswith('''/b'''): __a : int = """model.blocks.%d.feed_forward.norm.bias""" % player __a : Union[str, Any] = vnp.copy() # same because it is one dimensional __a : List[Any] = torch.tensor(lowerCamelCase_) elif key_name.endswith('''/g'''): __a : List[str] = """model.blocks.%d.feed_forward.norm.weight""" % player __a : Any = vnp.copy() # same because it is one dimensional __a : int = torch.tensor(lowerCamelCase_) elif key_name.startswith('''model/att'''): __a : Optional[int] = int(key_name[9:].split('''/''')[0]) if key_name.endswith('''/qkv/kernel'''): __a : Optional[int] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum __a : Optional[int] = state[:, 0, :, :] __a : str = state[:, 1, :, :] __a : List[Any] = state[:, 2, :, :] __a : Optional[int] = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix __a : Any = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix __a : List[Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]]) .transpose([1, 0]) .copy() ) # Mesh-Tensorflow is a diagonal matrix __a : Any = """model.blocks.%d.self_attn.self_attn.q_proj.weight""" % player __a : Any = torch.tensor(lowerCamelCase_) __a : Optional[Any] = """model.blocks.%d.self_attn.self_attn.k_proj.weight""" % player __a : List[Any] = torch.tensor(lowerCamelCase_) __a : Optional[Any] = """model.blocks.%d.self_attn.self_attn.v_proj.weight""" % player __a : List[str] = torch.tensor(lowerCamelCase_) elif key_name.endswith('''/o/kernel'''): __a : Optional[int] = """model.blocks.%d.self_attn.self_attn.out_proj.weight""" % player __a : Tuple = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy() ) # Mesh-Tensorflow is a diagonal matrix __a : List[str] = torch.tensor(lowerCamelCase_) elif key_name.startswith('''model/an'''): __a : Optional[Any] = int(key_name[8:].split('''/''')[0]) if key_name.endswith('''/b'''): __a : Dict = """model.blocks.%d.self_attn.norm.bias""" % player __a : Any = vnp.copy() # same because it is one dimensional __a : Tuple = torch.tensor(lowerCamelCase_) elif key_name.endswith('''/g'''): __a : List[Any] = """model.blocks.%d.self_attn.norm.weight""" % player __a : int = vnp.copy() # same because it is one dimensional __a : str = torch.tensor(lowerCamelCase_) elif ( key_name.startswith('''model/wte''') or key_name.startswith('''model/wpe''') or key_name.startswith('''model/ete''') ): __a : Tuple = {"""wte""": """embed_tokens""", """wpe""": """position_embeddings""", """ete""": """extra_position_embeddings"""}[ key_name[-3:] ] __a : int = """model.%s.weight""" % nlayer __a : List[Any] = vnp.copy() # same in embedded __a : str = torch.tensor(lowerCamelCase_) if key_name.startswith('''model/wte'''): __a : Dict = """lm_head.weight""" __a : List[Any] = vnp.copy() # same in embedded __a : Union[str, Any] = torch.tensor(lowerCamelCase_) elif key_name.startswith('''model/wob'''): __a : List[str] = """final_logits_bias""" __a : Any = vnp.copy() # same in embedded __a : Optional[int] = state.reshape((1, -1)) __a : List[Any] = torch.tensor(lowerCamelCase_) elif key_name == "model/dense/kernel": __a : Any = """model.last_project.weight""" __a : int = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix __a : int = torch.tensor(lowerCamelCase_) elif key_name == "model/dense_1/bias": __a : Any = """model.last_project.bias""" __a : List[str] = vnp.copy() # same because it is one dimensional __a : List[Any] = torch.tensor(lowerCamelCase_) torch.save(lowerCamelCase_ , args.output) if __name__ == "__main__": A = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') A = parser.parse_args() convert_tf_gptsan_to_pt(args)
160
'''simple docstring''' from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __UpperCAmelCase = 0 __UpperCAmelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __UpperCAmelCase = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __UpperCAmelCase = tuple[int, int] class UpperCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Node | None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = pos_x SCREAMING_SNAKE_CASE : Any = pos_y SCREAMING_SNAKE_CASE : Optional[int] = (pos_y, pos_x) SCREAMING_SNAKE_CASE : Tuple = goal_x SCREAMING_SNAKE_CASE : List[str] = goal_y SCREAMING_SNAKE_CASE : Optional[Any] = g_cost SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : int = self.calculate_heuristic() SCREAMING_SNAKE_CASE : Tuple = self.g_cost + self.h_cost def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.pos_x - self.goal_x SCREAMING_SNAKE_CASE : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCamelCase_ ) + abs(lowerCamelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , lowerCamelCase_ : Node ): '''simple docstring''' return self.f_cost < other.f_cost class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_99_99 , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = [self.start] SCREAMING_SNAKE_CASE : list[Node] = [] SCREAMING_SNAKE_CASE : str = False def lowerCamelCase_ ( self : Any ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCamelCase_ ) self.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_successors(lowerCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = self.open_nodes.pop(self.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCamelCase_ ) else: self.open_nodes.append(lowerCamelCase_ ) return [self.start.pos] def lowerCamelCase_ ( self : int , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [] for action in delta: SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCamelCase_ , lowerCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCamelCase_ , ) ) return successors def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : Node | None ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = node SCREAMING_SNAKE_CASE : List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Optional[Any] = current_node.parent path.reverse() return path class UpperCamelCase__ : """simple docstring""" def __init__( self : int , lowerCamelCase_ : TPosition , lowerCamelCase_ : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = AStar(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = False def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() SCREAMING_SNAKE_CASE : List[str] = self.fwd_astar.open_nodes.pop(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCamelCase_ , lowerCamelCase_ ) self.fwd_astar.closed_nodes.append(lowerCamelCase_ ) self.bwd_astar.closed_nodes.append(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = current_bwd_node SCREAMING_SNAKE_CASE : Any = current_fwd_node SCREAMING_SNAKE_CASE : Dict = { self.fwd_astar: self.fwd_astar.get_successors(lowerCamelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCamelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCamelCase_ ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : int = astar.open_nodes.pop( astar.open_nodes.index(lowerCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCamelCase_ ) else: astar.open_nodes.append(lowerCamelCase_ ) return [self.fwd_astar.start.pos] def lowerCamelCase_ ( self : str , lowerCamelCase_ : Node , lowerCamelCase_ : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.fwd_astar.retrace_path(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.bwd_astar.retrace_path(lowerCamelCase_ ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE : str = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __UpperCAmelCase = (0, 0) __UpperCAmelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __UpperCAmelCase = time.time() __UpperCAmelCase = AStar(init, goal) __UpperCAmelCase = a_star.search() __UpperCAmelCase = time.time() - start_time print(f'''AStar execution time = {end_time:f} seconds''') __UpperCAmelCase = time.time() __UpperCAmelCase = BidirectionalAStar(init, goal) __UpperCAmelCase = time.time() - bd_start_time print(f'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
323
0
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __lowerCamelCase : """simple docstring""" @staticmethod def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ): """simple docstring""" pass def __A ( __lowerCAmelCase )-> Optional[Any]: """simple docstring""" _UpperCAmelCase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCamelCase ( unittest.TestCase): """simple docstring""" UpperCamelCase__ = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = DepthEstimationPipeline(model=lowerCamelCase_ , image_processor=lowerCamelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = depth_estimator('./tests/fixtures/tests_samples/COCO/000000039769.png' ) self.assertEqual({'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )} , lowerCamelCase_ ) import datasets _UpperCAmelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) _UpperCAmelCase = depth_estimator( [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] ) self.assertEqual( [ {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, {'predicted_depth': ANY(torch.Tensor ), 'depth': ANY(Image.Image )}, ] , lowerCamelCase_ , ) @require_tf @unittest.skip('Depth estimation is not implemented in TF' ) def UpperCamelCase ( self ): """simple docstring""" pass @slow @require_torch def UpperCamelCase ( self ): """simple docstring""" _UpperCAmelCase = """Intel/dpt-large""" _UpperCAmelCase = pipeline('depth-estimation' , model=lowerCamelCase_ ) _UpperCAmelCase = depth_estimator('http://images.cocodataset.org/val2017/000000039769.jpg' ) _UpperCAmelCase = hashimage(outputs['depth'] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['predicted_depth'].max().item() ) , 29.3_04 ) self.assertEqual(nested_simplify(outputs['predicted_depth'].min().item() ) , 2.6_62 ) @require_torch def UpperCamelCase ( self ): """simple docstring""" self.skipTest('There is not hf-internal-testing tiny model for either GLPN nor DPT' )
39
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''efficientnet''' def __init__( self : Tuple , lowerCamelCase_ : int = 3 , lowerCamelCase_ : int = 6_00 , lowerCamelCase_ : float = 2.0 , lowerCamelCase_ : float = 3.1 , lowerCamelCase_ : int = 8 , lowerCamelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCamelCase_ : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , lowerCamelCase_ : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , lowerCamelCase_ : List[int] = [] , lowerCamelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCamelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCamelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCamelCase_ : float = 0.25 , lowerCamelCase_ : str = "swish" , lowerCamelCase_ : int = 25_60 , lowerCamelCase_ : str = "mean" , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : float = 0.001 , lowerCamelCase_ : float = 0.99 , lowerCamelCase_ : float = 0.5 , lowerCamelCase_ : float = 0.2 , **lowerCamelCase_ : int , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : int = width_coefficient SCREAMING_SNAKE_CASE : List[str] = depth_coefficient SCREAMING_SNAKE_CASE : Optional[Any] = depth_divisor SCREAMING_SNAKE_CASE : List[str] = kernel_sizes SCREAMING_SNAKE_CASE : Dict = in_channels SCREAMING_SNAKE_CASE : List[str] = out_channels SCREAMING_SNAKE_CASE : Any = depthwise_padding SCREAMING_SNAKE_CASE : Dict = strides SCREAMING_SNAKE_CASE : Optional[Any] = num_block_repeats SCREAMING_SNAKE_CASE : Any = expand_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = squeeze_expansion_ratio SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dim SCREAMING_SNAKE_CASE : List[str] = pooling_type SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = batch_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = batch_norm_momentum SCREAMING_SNAKE_CASE : Dict = dropout_rate SCREAMING_SNAKE_CASE : int = drop_connect_rate SCREAMING_SNAKE_CASE : Optional[Any] = sum(lowerCamelCase_ ) * 4 class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return 1e-5
323
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase__ = ''' Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] ''' class _lowerCamelCase ( unittest.TestCase , lowercase_ ): def snake_case_ (self ) -> Optional[Any]: UpperCamelCase = load_tool("text-question-answering" ) self.tool.setup() UpperCamelCase = load_tool("text-question-answering" , remote=lowerCamelCase_ ) def snake_case_ (self ) -> List[str]: UpperCamelCase = self.tool(lowerCamelCase_ , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase_ , "launched the BigScience Research Workshop" ) def snake_case_ (self ) -> int: UpperCamelCase = self.remote_tool(lowerCamelCase_ , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase_ , "launched the BigScience Research Workshop" ) def snake_case_ (self ) -> Union[str, Any]: UpperCamelCase = self.tool(text=lowerCamelCase_ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase_ , "launched the BigScience Research Workshop" ) def snake_case_ (self ) -> Tuple: UpperCamelCase = self.remote_tool(text=lowerCamelCase_ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowerCamelCase_ , "launched the BigScience Research Workshop" )
153
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[int]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : List[Any] = {} if prompt is not None: SCREAMING_SNAKE_CASE : List[Any] = prompt if generate_kwargs is not None: SCREAMING_SNAKE_CASE : Optional[int] = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: SCREAMING_SNAKE_CASE : Union[str, Any] = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) SCREAMING_SNAKE_CASE : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , lowerCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **lowerCamelCase_ : Any ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : List[str]=None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = load_image(lowerCamelCase_ ) if prompt is not None: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError( f'''Received an invalid text input, got - {type(lowerCamelCase_ )} - but expected a single string. ''' """Note also that one single text can be provided for conditional image to text generation.""" ) SCREAMING_SNAKE_CASE : Optional[int] = self.model.config.model_type if model_type == "git": SCREAMING_SNAKE_CASE : Dict = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : str = self.tokenizer(text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = [self.tokenizer.cls_token_id] + input_ids SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": SCREAMING_SNAKE_CASE : int = self.image_processor(images=lowerCamelCase_ , header_text=lowerCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCamelCase_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: SCREAMING_SNAKE_CASE : Any = self.image_processor(images=lowerCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: SCREAMING_SNAKE_CASE : Optional[Any] = None return model_inputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any]=None ): '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , lowerCamelCase_ ) and all(x is None for x in model_inputs["""input_ids"""] ) ): SCREAMING_SNAKE_CASE : List[str] = None if generate_kwargs is None: SCREAMING_SNAKE_CASE : int = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. SCREAMING_SNAKE_CASE : Tuple = model_inputs.pop(self.model.main_input_name ) SCREAMING_SNAKE_CASE : Any = self.model.generate(lowerCamelCase_ , **lowerCamelCase_ , **lowerCamelCase_ ) return model_outputs def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for output_ids in model_outputs: SCREAMING_SNAKE_CASE : List[Any] = { """generated_text""": self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , ) } records.append(lowerCamelCase_ ) return records
323
0
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class A_ ( lowercase_ , unittest.TestCase ): _lowercase : List[str] = XGLMTokenizer _lowercase : List[str] = XGLMTokenizerFast _lowercase : int = True _lowercase : Union[str, Any] = True def UpperCAmelCase ( self : str ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing __lowerCAmelCase: Dict = XGLMTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self : str ) -> Union[str, Any]: __lowerCAmelCase: Tuple = """<pad>""" __lowerCAmelCase: Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCAmelCase ( self : Tuple ) -> Tuple: __lowerCAmelCase: Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(len(lowerCamelCase_ ) , 1_0_0_8 ) def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 ) def UpperCAmelCase ( self : Tuple ) -> List[Any]: __lowerCAmelCase: Dict = XGLMTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) __lowerCAmelCase: Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __lowerCAmelCase: Union[str, Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __lowerCAmelCase: Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __lowerCAmelCase: Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def UpperCAmelCase ( self : List[Any] ) -> List[Any]: return XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) def UpperCAmelCase ( self : Optional[Any] ) -> Dict: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) __lowerCAmelCase: Any = XGLMTokenizer(f.name , keep_accents=lowerCamelCase_ ) __lowerCAmelCase: List[str] = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def UpperCAmelCase ( self : List[Any] ) -> List[Any]: if not self.test_rust_tokenizer: return __lowerCAmelCase: List[str] = self.get_tokenizer() __lowerCAmelCase: List[str] = self.get_rust_tokenizer() __lowerCAmelCase: List[Any] = """I was born in 92000, and this is falsé.""" __lowerCAmelCase: int = tokenizer.tokenize(lowerCamelCase_ ) __lowerCAmelCase: Optional[Any] = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) __lowerCAmelCase: Dict = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) __lowerCAmelCase: Dict = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) __lowerCAmelCase: int = self.get_rust_tokenizer() __lowerCAmelCase: int = tokenizer.encode(lowerCamelCase_ ) __lowerCAmelCase: List[Any] = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __lowerCAmelCase: List[Any] = """Hello World!""" __lowerCAmelCase: Union[str, Any] = [2, 3_1_2_2_7, 4_4_4_7, 3_5] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCAmelCase ( self : List[str] ) -> List[Any]: __lowerCAmelCase: str = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off __lowerCAmelCase: List[str] = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5] # fmt: on self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCAmelCase ( self : Dict ) -> Dict: __lowerCAmelCase: str = { """input_ids""": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='facebook/xglm-564M' , padding=lowerCamelCase_ , )
322
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def lowerCamelCase_ ( self : List[str] , **lowerCamelCase_ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**lowerCamelCase_ ) return config def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0](**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = scheduler.timesteps[0] SCREAMING_SNAKE_CASE : Dict = scheduler.timesteps[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = 1 scheduler.set_timesteps(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = scheduler.timesteps SCREAMING_SNAKE_CASE : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(lowerCamelCase_ ): # 1. scale model input SCREAMING_SNAKE_CASE : Optional[int] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 192.7_614 ) < 1e-2 assert abs(result_mean.item() - 0.2_510 ) < 1e-3 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [1_06, 0] scheduler.set_timesteps(timesteps=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = scheduler.timesteps SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) # 2. predict noise residual SCREAMING_SNAKE_CASE : Any = model(lowerCamelCase_ , lowerCamelCase_ ) # 3. predict previous sample x_t-1 SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Dict = pred_prev_sample SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_sum.item() - 347.6_357 ) < 1e-2 assert abs(result_mean.item() - 0.4_527 ) < 1e-3 def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = [39, 30, 12, 15, 0] with self.assertRaises(lowerCamelCase_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = [39, 30, 12, 1, 0] SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCamelCase_ , timesteps=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCamelCase_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCamelCase_ )
323
0
from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase_ ( __snake_case ) -> Any: """simple docstring""" if not sentence: return "" _lowercase =dict(zip(lowerCamelCase_ , lowerCamelCase_ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
5
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE : Optional[int] = Text( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset
323
0
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowercase__ : Optional[Any] = logging.getLogger() def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Dict ) -> int: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(lowercase, '''all_results.json''' ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: _UpperCamelCase = json.load(lowercase ) else: raise ValueError(F"""can't find {path}""" ) return results def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowercase__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod def snake_case__ ( cls : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Tuple ) -> int: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : int ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) ) @slow def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
324
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowercase__ : str = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = ['pixel_values'] def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 256} _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] _UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]: '''simple docstring''' _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase__ ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
324
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def a__ ( lowercase : Any ) -> Any: """simple docstring""" _UpperCamelCase = torch.load(lowercase, map_location='''cpu''' ) if "model" in sd.keys(): _UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )['''model'''] # pop unnecessary weights _UpperCamelCase = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(lowercase ) _UpperCamelCase = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _UpperCamelCase = sd.pop(lowercase ) _UpperCamelCase = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _UpperCamelCase = sd[key] # We split QKV in separate Q,K,V _UpperCamelCase = key.replace('''.qkv_proj.''', '''.q_proj.''' ) _UpperCamelCase = key.replace('''.qkv_proj.''', '''.k_proj.''' ) _UpperCamelCase = key.replace('''.qkv_proj.''', '''.v_proj.''' ) _UpperCamelCase = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = torch.split(lowercase, depth // 3, dim=0 ) _UpperCamelCase = q _UpperCamelCase = k _UpperCamelCase = v del sd[key] return sd @torch.no_grad() def a__ ( lowercase : Dict, lowercase : List[Any], lowercase : Optional[Any]=None ) -> int: """simple docstring""" _UpperCamelCase = load_checkpoint(lowercase ) if config is not None: _UpperCamelCase = OPTConfig.from_pretrained(lowercase ) else: _UpperCamelCase = OPTConfig() _UpperCamelCase = OPTModel(lowercase ).half().eval() model.load_state_dict(lowercase ) # Check results Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') lowercase__ : Any = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
324
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : jnp.ndarray @flax_register_to_config class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ): """simple docstring""" _snake_case : int = 3_2 _snake_case : int = 4 _snake_case : int = 4 _snake_case : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _snake_case : Union[bool, Tuple[bool]] = False _snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _snake_case : int = 2 _snake_case : Union[int, Tuple[int]] = 8 _snake_case : Optional[Union[int, Tuple[int]]] = None _snake_case : int = 1_2_8_0 _snake_case : float = 0.0 _snake_case : bool = False _snake_case : jnp.dtype = jnp.floataa _snake_case : bool = True _snake_case : int = 0 _snake_case : bool = False def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' _UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa ) _UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ ) _UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"] def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.block_out_channels _UpperCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype ) _UpperCamelCase = self.only_cross_attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCamelCase = [] _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = down_blocks # mid _UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _UpperCamelCase = [] _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": _UpperCamelCase = FlaxCrossAttnUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = output_channel _UpperCamelCase = up_blocks # out _UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , jnp.ndarray ): _UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) _UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 ) _UpperCamelCase = self.time_proj(lowerCAmelCase__ ) _UpperCamelCase = self.time_embedding(lowerCAmelCase__ ) # 2. pre-process _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) _UpperCamelCase = self.conv_in(lowerCAmelCase__ ) # 3. down _UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) else: _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _UpperCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( lowerCAmelCase__ , lowerCAmelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase = new_down_block_res_samples # 4. mid _UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = up_block( lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , ) else: _UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train ) # 6. post-process _UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ ) _UpperCamelCase = nn.silu(lowerCAmelCase__ ) _UpperCamelCase = self.conv_out(lowerCAmelCase__ ) _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
324
1
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowercase__ : List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowercase__ : Dict = logging.getLogger() def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int: """simple docstring""" _UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: return json.load(lowercase ) raise ValueError(F"""can't find {path}""" ) lowercase__ : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_flax_glue.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def snake_case__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_clm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def snake_case__ ( self : Tuple ) -> str: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_summarization_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_mlm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_ta_mlm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_flax_ner.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_qa.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
324
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowercase__ : List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowercase__ : Dict = logging.getLogger() def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int: """simple docstring""" _UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: return json.load(lowercase ) raise ValueError(F"""can't find {path}""" ) lowercase__ : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_flax_glue.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def snake_case__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_clm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def snake_case__ ( self : Tuple ) -> str: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_summarization_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_mlm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_ta_mlm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_flax_ner.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_qa.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
324
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : List[str] = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = 'swin' _snake_case : Optional[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : int , lowerCAmelCase__ : str=224 , lowerCAmelCase__ : Tuple=4 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Union[str, Any]=96 , lowerCAmelCase__ : Any=[2, 2, 6, 2] , lowerCAmelCase__ : Tuple=[3, 6, 12, 24] , lowerCAmelCase__ : Tuple=7 , lowerCAmelCase__ : List[str]=4.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.0 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Optional[Any]="gelu" , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Optional[Any]=1e-5 , lowerCAmelCase__ : int=32 , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Optional[Any]=None , **lowerCAmelCase__ : int , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(lowerCAmelCase__ ) _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(lowerCAmelCase__ ) - 1) ) _UpperCamelCase = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(lowerCAmelCase__ ) + 1 )] _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices( out_features=lowerCAmelCase__ , out_indices=lowerCAmelCase__ , stage_names=self.stage_names ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = version.parse('1.11' ) @property def snake_case__ ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__ ( self : str ) -> float: '''simple docstring''' return 1e-4
324
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowercase__ : Optional[Any] = logging.getLogger() def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Dict ) -> int: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(lowercase, '''all_results.json''' ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: _UpperCamelCase = json.load(lowercase ) else: raise ValueError(F"""can't find {path}""" ) return results def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowercase__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod def snake_case__ ( cls : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Tuple ) -> int: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : int ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) ) @slow def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
324
1
'''simple docstring''' import operator as op def a__ ( lowercase : List[str] ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = lambda lowercase, lowercase : int(x / y ) # noqa: E731 integer division operation _UpperCamelCase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ), '''Action'''.center(12 ), '''Stack''', sep=''' | ''' ) print('''-''' * (30 + len(lowercase )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(lowercase ) # append x to stack # output in tabular format print(x.rjust(8 ), ('''push(''' + x + ''')''').ljust(12 ), ''','''.join(lowercase ), sep=''' | ''' ) else: _UpperCamelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ), ('''pop(''' + b + ''')''').ljust(12 ), ''','''.join(lowercase ), sep=''' | ''' ) _UpperCamelCase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ), ('''pop(''' + a + ''')''').ljust(12 ), ''','''.join(lowercase ), sep=''' | ''' ) stack.append( str(opr[x](int(lowercase ), int(lowercase ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ), ('''push(''' + a + x + b + ''')''').ljust(12 ), ''','''.join(lowercase ), sep=''' | ''', ) return int(stack[0] ) if __name__ == "__main__": lowercase__ : Dict = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ') print('\n\tResult = ', solve(Postfix))
324
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _UpperCamelCase = iter(lowercase ) while True: _UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) ) if not chunk: return yield chunk def a__ ( lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCamelCase = '''''' if len(lowercase ) < 2: return dirty for i in range(len(lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase ) & 1: clean += "X" return clean def a__ ( lowercase : str ) -> list[str]: """simple docstring""" _UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCamelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase ) return table def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = prepare_input(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
324
1
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a__ ( ) -> None: """simple docstring""" print('''Making key files...''' ) make_key_files('''rsa''', 1024 ) print('''Key files generation successful.''' ) def a__ ( lowercase : int ) -> tuple[tuple[int, int], tuple[int, int]]: """simple docstring""" print('''Generating prime p...''' ) _UpperCamelCase = rabinMiller.generate_large_prime(lowercase ) print('''Generating prime q...''' ) _UpperCamelCase = rabinMiller.generate_large_prime(lowercase ) _UpperCamelCase = p * q print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' ) while True: _UpperCamelCase = random.randrange(2 ** (key_size - 1), 2 ** (key_size) ) if cryptoMath.gcd(lowercase, (p - 1) * (q - 1) ) == 1: break print('''Calculating d that is mod inverse of e...''' ) _UpperCamelCase = cryptoMath.find_mod_inverse(lowercase, (p - 1) * (q - 1) ) _UpperCamelCase = (n, e) _UpperCamelCase = (n, d) return (public_key, private_key) def a__ ( lowercase : str, lowercase : int ) -> None: """simple docstring""" if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('''\nWARNING:''' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" '''Use a different name or delete these files and re-run this program.''' ) sys.exit() _UpperCamelCase , _UpperCamelCase = generate_key(lowercase ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""", '''w''' ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""", '''w''' ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
324
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : Any = {'vocab_file': 'spiece.model'} lowercase__ : Dict = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } lowercase__ : Optional[Any] = { 'google/bigbird-roberta-base': 40_96, 'google/bigbird-roberta-large': 40_96, 'google/bigbird-base-trivia-itc': 40_96, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : str = ['input_ids', 'attention_mask'] _snake_case : List[int] = [] def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' return self.sp_model.get_piece_size() def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ ) return token def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = '''''' _UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _UpperCamelCase = True _UpperCamelCase = [] else: current_sub_tokens.append(lowerCAmelCase__ ) _UpperCamelCase = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str: '''simple docstring''' _UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ ) _UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCamelCase = [] _UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) _UpperCamelCase = [] sub_texts.append(lowerCAmelCase__ ) else: current_sub_text.append(lowerCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) ) else: _UpperCamelCase = ''''''.join(lowerCAmelCase__ ) _UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ ) return clean_text else: return text def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
324
1
'''simple docstring''' import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): lowercase__ : Any = True from torch.cuda.amp import autocast lowercase__ : List[str] = logging.getLogger(__name__) def a__ ( lowercase : str=None, lowercase : List[str]=None ) -> str: """simple docstring""" return field(default_factory=lambda: default, metadata=lowercase ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) _snake_case : Optional[bool] = field( default=__magic_name__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _snake_case : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for the attention probabilities.'} ) _snake_case : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout ratio for activations inside the fully connected layer.'} ) _snake_case : Optional[float] = field( default=0.1 , metadata={ 'help': 'The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.' } , ) _snake_case : Optional[float] = field( default=0.1 , metadata={'help': 'The dropout probabilitiy for all 1D convolutional layers in feature extractor.'} , ) _snake_case : Optional[float] = field( default=0.05 , metadata={ 'help': ( 'Propability of each feature vector along the time axis to be chosen as the start of the vector' 'span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature' 'vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.' ) } , ) _snake_case : Optional[float] = field(default=0.0 , metadata={'help': 'The LayerDrop probability.'} ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _snake_case : Optional[str] = field( default='train+validation' , metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) _snake_case : Optional[int] = field( default=__magic_name__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , ) _snake_case : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _snake_case : Optional[int] = field( default=__magic_name__ , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of validation examples to this ' 'value if set.' ) } , ) _snake_case : List[str] = list_field( default=[',', '?', '.', '!', '-', ';', ':', '""', '%', '\'', '"', '�'] , metadata={'help': 'A list of characters to remove from the transcripts.'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : WavaVecaProcessor _snake_case : Union[bool, str] = True _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : Optional[int] = None _snake_case : Optional[int] = None def __call__( self : Dict , lowerCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: '''simple docstring''' _UpperCamelCase = [{'''input_values''': feature['''input_values''']} for feature in features] _UpperCamelCase = [{'''input_ids''': feature['''labels''']} for feature in features] _UpperCamelCase = self.processor.pad( lowerCAmelCase__ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='''pt''' , ) _UpperCamelCase = self.processor.pad( labels=lowerCAmelCase__ , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors='''pt''' , ) # replace padding with -100 to ignore loss correctly _UpperCamelCase = labels_batch['''input_ids'''].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) _UpperCamelCase = labels return batch class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def snake_case__ ( self : Tuple , lowerCAmelCase__ : nn.Module , lowerCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: '''simple docstring''' model.train() _UpperCamelCase = self._prepare_inputs(lowerCAmelCase__ ) if self.use_amp: with autocast(): _UpperCamelCase = self.compute_loss(lowerCAmelCase__ , lowerCAmelCase__ ) else: _UpperCamelCase = self.compute_loss(lowerCAmelCase__ , lowerCAmelCase__ ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": _UpperCamelCase = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": _UpperCamelCase = loss.sum() / (inputs['''labels'''] >= 0).sum() else: raise ValueError(f"""{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']""" ) if self.args.gradient_accumulation_steps > 1: _UpperCamelCase = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowerCAmelCase__ ).backward() elif self.use_apex: with amp.scale_loss(lowerCAmelCase__ , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowerCAmelCase__ ) else: loss.backward() return loss.detach() def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: _UpperCamelCase = datasets.load_dataset( '''common_voice''', data_args.dataset_config_name, split=data_args.train_split_name ) _UpperCamelCase = datasets.load_dataset('''common_voice''', data_args.dataset_config_name, split='''test''' ) # Create and save tokenizer _UpperCamelCase = F"""[{''.join(data_args.chars_to_ignore )}]""" def remove_special_characters(lowercase : Dict ): _UpperCamelCase = re.sub(lowercase, '''''', batch['''sentence'''] ).lower() + ''' ''' return batch _UpperCamelCase = train_dataset.map(lowercase, remove_columns=['''sentence'''] ) _UpperCamelCase = eval_dataset.map(lowercase, remove_columns=['''sentence'''] ) def extract_all_chars(lowercase : Optional[Any] ): _UpperCamelCase = ''' '''.join(batch['''text'''] ) _UpperCamelCase = list(set(lowercase ) ) return {"vocab": [vocab], "all_text": [all_text]} _UpperCamelCase = train_dataset.map( lowercase, batched=lowercase, batch_size=-1, keep_in_memory=lowercase, remove_columns=train_dataset.column_names, ) _UpperCamelCase = train_dataset.map( lowercase, batched=lowercase, batch_size=-1, keep_in_memory=lowercase, remove_columns=eval_dataset.column_names, ) _UpperCamelCase = list(set(vocab_train['''vocab'''][0] ) | set(vocab_test['''vocab'''][0] ) ) _UpperCamelCase = {v: k for k, v in enumerate(lowercase )} _UpperCamelCase = vocab_dict[''' '''] del vocab_dict[" "] _UpperCamelCase = len(lowercase ) _UpperCamelCase = len(lowercase ) with open('''vocab.json''', '''w''' ) as vocab_file: json.dump(lowercase, lowercase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCamelCase = WavaVecaCTCTokenizer( '''vocab.json''', unk_token='''[UNK]''', pad_token='''[PAD]''', word_delimiter_token='''|''', ) _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=lowercase, return_attention_mask=lowercase ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase, tokenizer=lowercase ) _UpperCamelCase = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, activation_dropout=model_args.activation_dropout, attention_dropout=model_args.attention_dropout, hidden_dropout=model_args.hidden_dropout, feat_proj_dropout=model_args.feat_proj_dropout, mask_time_prob=model_args.mask_time_prob, gradient_checkpointing=training_args.gradient_checkpointing, layerdrop=model_args.layerdrop, ctc_loss_reduction='''mean''', pad_token_id=processor.tokenizer.pad_token_id, vocab_size=len(processor.tokenizer ), ) if data_args.max_train_samples is not None: _UpperCamelCase = min(len(lowercase ), data_args.max_train_samples ) _UpperCamelCase = train_dataset.select(range(lowercase ) ) if data_args.max_val_samples is not None: _UpperCamelCase = eval_dataset.select(range(data_args.max_val_samples ) ) _UpperCamelCase = torchaudio.transforms.Resample(48000, 16000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowercase : Tuple ): _UpperCamelCase , _UpperCamelCase = torchaudio.load(batch['''path'''] ) _UpperCamelCase = resampler(lowercase ).squeeze().numpy() _UpperCamelCase = 16000 _UpperCamelCase = batch['''text'''] return batch _UpperCamelCase = train_dataset.map( lowercase, remove_columns=train_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) _UpperCamelCase = eval_dataset.map( lowercase, remove_columns=eval_dataset.column_names, num_proc=data_args.preprocessing_num_workers, ) def prepare_dataset(lowercase : Dict ): # check that all files have the correct sampling rate assert ( len(set(batch['''sampling_rate'''] ) ) == 1 ), F"""Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.""" _UpperCamelCase = processor( audio=batch['''speech'''], text=batch['''target_text'''], sampling_rate=batch['''sampling_rate'''][0] ) batch.update(lowercase ) return batch _UpperCamelCase = train_dataset.map( lowercase, remove_columns=train_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowercase, num_proc=data_args.preprocessing_num_workers, ) _UpperCamelCase = eval_dataset.map( lowercase, remove_columns=eval_dataset.column_names, batch_size=training_args.per_device_train_batch_size, batched=lowercase, num_proc=data_args.preprocessing_num_workers, ) # Metric _UpperCamelCase = datasets.load_metric('''wer''' ) def compute_metrics(lowercase : List[Any] ): _UpperCamelCase = pred.predictions _UpperCamelCase = np.argmax(lowercase, axis=-1 ) _UpperCamelCase = processor.tokenizer.pad_token_id _UpperCamelCase = processor.batch_decode(lowercase ) # we do not want to group tokens when computing the metrics _UpperCamelCase = processor.batch_decode(pred.label_ids, group_tokens=lowercase ) _UpperCamelCase = wer_metric.compute(predictions=lowercase, references=lowercase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator _UpperCamelCase = DataCollatorCTCWithPadding(processor=lowercase, padding=lowercase ) # Initialize our Trainer _UpperCamelCase = CTCTrainer( model=lowercase, data_collator=lowercase, args=lowercase, compute_metrics=lowercase, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor.feature_extractor, ) # Training if training_args.do_train: if last_checkpoint is not None: _UpperCamelCase = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): _UpperCamelCase = model_args.model_name_or_path else: _UpperCamelCase = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) _UpperCamelCase = trainer.train(resume_from_checkpoint=lowercase ) trainer.save_model() _UpperCamelCase = train_result.metrics _UpperCamelCase = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowercase ) ) _UpperCamelCase = min(lowercase, len(lowercase ) ) trainer.log_metrics('''train''', lowercase ) trainer.save_metrics('''train''', lowercase ) trainer.save_state() # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowercase ) _UpperCamelCase = min(lowercase, len(lowercase ) ) trainer.log_metrics('''eval''', lowercase ) trainer.save_metrics('''eval''', lowercase ) return results if __name__ == "__main__": main()
324
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[int] = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'audio-spectrogram-transformer' def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = patch_size _UpperCamelCase = qkv_bias _UpperCamelCase = frequency_stride _UpperCamelCase = time_stride _UpperCamelCase = max_length _UpperCamelCase = num_mel_bins
324
1
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a__ ( lowercase : Optional[int], lowercase : int, lowercase : List[Any]=None ) -> List[str]: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" _UpperCamelCase = nn.Parameter(lowercase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" _UpperCamelCase = nn.Parameter(lowercase ) def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Dict ) -> str: """simple docstring""" _UpperCamelCase = np.asarray(weights[0] ) _UpperCamelCase = np.asarray(weights[1] ) _UpperCamelCase = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key, torch.tensor(lowercase ).transpose(1, 2 ).contiguous().view(-1, lowercase ), ) set_param( torch_layer.self_attention.value, torch.tensor(lowercase ).transpose(1, 2 ).contiguous().view(-1, lowercase ), ) set_param( torch_layer.output.dense, torch.tensor(lowercase ).view(-1, lowercase ).contiguous().transpose(0, 1 ), ) def a__ ( lowercase : Tuple, lowercase : Union[str, Any], lowercase : List[str] ) -> Tuple: """simple docstring""" _UpperCamelCase = np.asarray(weights[0] ) _UpperCamelCase = np.asarray(weights[1] ) _UpperCamelCase = np.asarray(weights[2] ) _UpperCamelCase = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query, torch.tensor(lowercase ).transpose(1, 2 ).contiguous().view(-1, lowercase ), ) set_param( torch_layer.self_attention.key, torch.tensor(lowercase ).transpose(1, 2 ).contiguous().view(-1, lowercase ), ) set_param( torch_layer.self_attention.value, torch.tensor(lowercase ).transpose(1, 2 ).contiguous().view(-1, lowercase ), ) set_param( torch_layer.output.dense, torch.tensor(lowercase ).view(-1, lowercase ).contiguous().transpose(0, 1 ), ) def a__ ( lowercase : Any, lowercase : Any, lowercase : Union[str, Any] ) -> List[str]: """simple docstring""" _UpperCamelCase = weights[0][0][0] _UpperCamelCase = np.asarray(layer_norm_a[0] ) _UpperCamelCase = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm, torch.tensor(lowercase ), torch.tensor(lowercase ), ) # lsh weights + output _UpperCamelCase = weights[0][1] if len(lowercase ) < 4: set_layer_weights_in_torch_lsh(lowercase, torch_block.attention, lowercase ) else: set_layer_weights_in_torch_local(lowercase, torch_block.attention, lowercase ) # intermediate weighs _UpperCamelCase = weights[2][0][1][2] # Chunked Feed Forward if len(lowercase ) == 4: _UpperCamelCase = intermediate_weights[2] # layernorm 2 _UpperCamelCase = np.asarray(intermediate_weights[0][0] ) _UpperCamelCase = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm, torch.tensor(lowercase ), torch.tensor(lowercase ), ) # intermediate dense _UpperCamelCase = np.asarray(intermediate_weights[1][0] ) _UpperCamelCase = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense, torch.tensor(lowercase ).transpose(0, 1 ).contiguous(), torch.tensor(lowercase ), ) # intermediate out _UpperCamelCase = np.asarray(intermediate_weights[4][0] ) _UpperCamelCase = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense, torch.tensor(lowercase ).transpose(0, 1 ).contiguous(), torch.tensor(lowercase ), ) def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : List[str] ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = torch_model.reformer # word embeds _UpperCamelCase = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings, torch.tensor(lowercase ), ) if isinstance(weights[3], lowercase ): _UpperCamelCase = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _UpperCamelCase = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" _UpperCamelCase = nn.Parameter(torch.tensor(lowercase ) ) _UpperCamelCase = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowercase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _UpperCamelCase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowercase, lowercase, lowercase ) # output layer norm _UpperCamelCase = np.asarray(weights[7][0] ) _UpperCamelCase = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm, torch.tensor(lowercase ), torch.tensor(lowercase ), ) # output embeddings _UpperCamelCase = np.asarray(weights[9][0] ) _UpperCamelCase = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder, torch.tensor(lowercase ).transpose(0, 1 ).contiguous(), torch.tensor(lowercase ), ) def a__ ( lowercase : List[Any], lowercase : Tuple, lowercase : str ) -> Dict: """simple docstring""" _UpperCamelCase = ReformerConfig.from_json_file(lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCamelCase = ReformerModelWithLMHead(lowercase ) with open(lowercase, '''rb''' ) as f: _UpperCamelCase = pickle.load(lowercase )['''weights'''] set_model_weights_in_torch(lowercase, lowercase, config.hidden_size ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict(), lowercase ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ : Any = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
324
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase__ : Union[str, Any] = logging.get_logger(__name__) # General docstring lowercase__ : Dict = 'ResNetConfig' # Base docstring lowercase__ : str = 'microsoft/resnet-50' lowercase__ : Tuple = [1, 20_48, 7, 7] # Image classification docstring lowercase__ : Optional[Any] = 'microsoft/resnet-50' lowercase__ : List[str] = 'tiger cat' lowercase__ : List[Any] = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad( lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) _UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _UpperCamelCase = config.num_channels def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.pooler(lowerCAmelCase__ ) return embedding class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = out_channels // reduction _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _UpperCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = input for layer in self.layers: _UpperCamelCase = layer(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) _UpperCamelCase = stage_module(lowerCAmelCase__ ) if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = ResNetConfig _snake_case : Union[str, Any] = 'resnet' _snake_case : Optional[int] = 'pixel_values' _snake_case : int = True def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = value lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) _UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = encoder_outputs[0] _UpperCamelCase = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config.num_labels _UpperCamelCase = ResNetModel(lowerCAmelCase__ ) # classification head _UpperCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCamelCase = self.classifier(lowerCAmelCase__ ) _UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCamelCase = '''single_label_classification''' else: _UpperCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": _UpperCamelCase = MSELoss() if self.num_labels == 1: _UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCamelCase = BCEWithLogitsLoss() _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: _UpperCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ ) super()._init_backbone(lowerCAmelCase__ ) _UpperCamelCase = [config.embedding_size] + config.hidden_sizes _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCamelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
324
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : str = PegasusTokenizer _snake_case : int = PegasusTokenizerFast _snake_case : List[Any] = True _snake_case : List[Any] = True def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = PegasusTokenizer(lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def snake_case__ ( self : Any , **lowerCAmelCase__ : Union[str, Any] ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' return ("This is a test", "This is a test") def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = '''</s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(lowerCAmelCase__ ) , 1103 ) def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def snake_case__ ( self : int ) -> int: '''simple docstring''' _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCamelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCamelCase = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) _UpperCamelCase = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] _UpperCamelCase = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _UpperCamelCase = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' _UpperCamelCase = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] _UpperCamelCase = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _UpperCamelCase = '''To ensure a smooth flow of bank resolutions.''' _UpperCamelCase = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] _UpperCamelCase = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def snake_case__ ( self : Tuple ) -> Dict: '''simple docstring''' _UpperCamelCase = ['''This is going to be way too long.''' * 150, '''short example'''] _UpperCamelCase = ['''not super long but more than 5 tokens''', '''tiny'''] _UpperCamelCase = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = self._large_tokenizer( text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask. @slow def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : int = PegasusTokenizer _snake_case : Union[str, Any] = PegasusTokenizerFast _snake_case : List[Any] = True _snake_case : Optional[int] = True def snake_case__ ( self : str ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = PegasusTokenizer(lowerCAmelCase__ , offset=0 , mask_token_sent=lowerCAmelCase__ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : int ) -> Dict: '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def snake_case__ ( self : Union[str, Any] , **lowerCAmelCase__ : int ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' return ("This is a test", "This is a test") def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCamelCase = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCamelCase = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) _UpperCamelCase = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] _UpperCamelCase = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''This is going to be way too long.''' * 1000, '''short example'''] _UpperCamelCase = ['''not super long but more than 5 tokens''', '''tiny'''] _UpperCamelCase = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = self._large_tokenizer( text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask. def snake_case__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) _UpperCamelCase = self._large_tokenizer(lowerCAmelCase__ ).input_ids self.assertListEqual( lowerCAmelCase__ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
324
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def a__ ( lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" if isinstance(lowercase, collections.abc.Iterable ): return x return (x, x) @require_flax class __lowerCAmelCase : """simple docstring""" def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' pass def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str: '''simple docstring''' _UpperCamelCase = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = after_output[0] _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-3 ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) _UpperCamelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = to_atuple(vision_model.config.image_size ) _UpperCamelCase = to_atuple(vision_model.config.patch_size ) _UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCamelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCamelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs _UpperCamelCase = inputs_dict _UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple() _UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) _UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): _UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 ) def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) _UpperCamelCase = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = config_inputs_dict.pop('''vision_config''' ) _UpperCamelCase = config_inputs_dict.pop('''text_config''' ) _UpperCamelCase = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs() _UpperCamelCase = model_a(**lowerCAmelCase__ ) _UpperCamelCase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model_a(**lowerCAmelCase__ ) _UpperCamelCase = after_outputs[0] _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-5 ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) _UpperCamelCase = 13 _UpperCamelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCamelCase = random_attention_mask([batch_size, 4] ) _UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = FlaxViTModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = FlaxViTModelTester(self ) _UpperCamelCase = FlaxBertModelTester(self ) _UpperCamelCase = vit_model_tester.prepare_config_and_inputs() _UpperCamelCase = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase = vision_config_and_inputs _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) _UpperCamelCase = 13 _UpperCamelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCamelCase = random_attention_mask([batch_size, 4] ) _UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxCLIPVisionModelTester(self ) _UpperCamelCase = FlaxBertModelTester(self ) _UpperCamelCase = clip_model_tester.prepare_config_and_inputs() _UpperCamelCase = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase = vision_config_and_inputs _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCamelCase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' ) _UpperCamelCase = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCamelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
324
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = LevitImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
324
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCamelCase = (1, 11, 768) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCamelCase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
324
1
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : List[Any]=18 , lowerCAmelCase__ : int=30 , lowerCAmelCase__ : Union[str, Any]=400 , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : int=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : Dict=False , ) -> List[str]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''height''': 20, '''width''': 20} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_reduce_labels def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) _UpperCamelCase = Image.open(dataset[0]['''file'''] ) _UpperCamelCase = Image.open(dataset[1]['''file'''] ) return image, map def a__ ( ) -> Any: """simple docstring""" _UpperCamelCase = load_dataset('''hf-internal-testing/fixtures_ade20k''', split='''test''' ) _UpperCamelCase = Image.open(ds[0]['''file'''] ) _UpperCamelCase = Image.open(ds[1]['''file'''] ) _UpperCamelCase = Image.open(ds[2]['''file'''] ) _UpperCamelCase = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = BeitImageProcessor if is_vision_available() else None def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' _UpperCamelCase = BeitImageProcessingTester(self ) @property def snake_case__ ( self : int ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) def snake_case__ ( self : str ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase__ ) _UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) _UpperCamelCase = [] for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test not batched input (PIL images) _UpperCamelCase , _UpperCamelCase = prepare_semantic_single_inputs() _UpperCamelCase = image_processing(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) # Test batched input (PIL images) _UpperCamelCase , _UpperCamelCase = prepare_semantic_batch_inputs() _UpperCamelCase = image_processing(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 ) def snake_case__ ( self : int ) -> Dict: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 _UpperCamelCase , _UpperCamelCase = prepare_semantic_single_inputs() _UpperCamelCase = image_processing(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 150 ) _UpperCamelCase = True _UpperCamelCase = image_processing(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 255 )
324
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = LevitImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
324
1
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def a__ ( lowercase : List[str] ) -> str: """simple docstring""" _UpperCamelCase = tmp_path / '''file.csv''' _UpperCamelCase = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(lowercase, '''w''' ) as f: f.write(lowercase ) return str(lowercase ) @pytest.fixture def a__ ( lowercase : Dict ) -> str: """simple docstring""" _UpperCamelCase = tmp_path / '''malformed_file.csv''' _UpperCamelCase = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(lowercase, '''w''' ) as f: f.write(lowercase ) return str(lowercase ) @pytest.fixture def a__ ( lowercase : List[str], lowercase : Any ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tmp_path / '''csv_with_image.csv''' _UpperCamelCase = textwrap.dedent( F"""\ image {image_file} """ ) with open(lowercase, '''w''' ) as f: f.write(lowercase ) return str(lowercase ) @pytest.fixture def a__ ( lowercase : List[Any] ) -> str: """simple docstring""" _UpperCamelCase = tmp_path / '''csv_with_label.csv''' _UpperCamelCase = textwrap.dedent( '''\ label good bad good ''' ) with open(lowercase, '''w''' ) as f: f.write(lowercase ) return str(lowercase ) @pytest.fixture def a__ ( lowercase : Optional[Any] ) -> Tuple: """simple docstring""" _UpperCamelCase = tmp_path / '''csv_with_int_list.csv''' _UpperCamelCase = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(lowercase, '''w''' ) as f: f.write(lowercase ) return str(lowercase ) def a__ ( lowercase : Dict, lowercase : List[str], lowercase : Optional[Any] ) -> Any: """simple docstring""" _UpperCamelCase = Csv() _UpperCamelCase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(lowercase, match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(lowercase ) in record.message for record in caplog.records ) @require_pil def a__ ( lowercase : Any ) -> str: """simple docstring""" with open(lowercase, encoding='''utf-8''' ) as f: _UpperCamelCase = f.read().splitlines()[1] _UpperCamelCase = Csv(encoding='''utf-8''', features=Features({'''image''': Image()} ) ) _UpperCamelCase = csv._generate_tables([[csv_file_with_image]] ) _UpperCamelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() _UpperCamelCase = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def a__ ( lowercase : List[Any] ) -> List[str]: """simple docstring""" with open(lowercase, encoding='''utf-8''' ) as f: _UpperCamelCase = f.read().splitlines()[1:] _UpperCamelCase = Csv(encoding='''utf-8''', features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) _UpperCamelCase = csv._generate_tables([[csv_file_with_label]] ) _UpperCamelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() _UpperCamelCase = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(lowercase ) for label in labels] def a__ ( lowercase : Tuple ) -> str: """simple docstring""" _UpperCamelCase = Csv(encoding='''utf-8''', sep=''',''', converters={'''int_list''': lambda lowercase : [int(lowercase ) for i in x.split()]} ) _UpperCamelCase = csv._generate_tables([[csv_file_with_int_list]] ) _UpperCamelCase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) _UpperCamelCase = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
324
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE lowercase__ : int = 'config.json' lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin' lowercase__ : List[str] = 'diffusion_flax_model.msgpack' lowercase__ : str = 'model.onnx' lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors' lowercase__ : List[str] = 'weights.pb' lowercase__ : str = 'https://huggingface.co' lowercase__ : str = default_cache_path lowercase__ : Optional[int] = 'diffusers_modules' lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) lowercase__ : Tuple = ['fp16', 'non-ema'] lowercase__ : int = '.self_attn'
324
1
'''simple docstring''' import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) lowercase__ : str = logging.getLogger(__name__) lowercase__ : List[str] = 'Hello world! cécé herlolip' lowercase__ : List[Any] = namedtuple( 'BertAbsConfig', [ 'temp_dir', 'large', 'use_bert_emb', 'finetune_bert', 'encoder', 'share_emb', 'max_pos', 'enc_layers', 'enc_hidden_size', 'enc_heads', 'enc_ff_size', 'enc_dropout', 'dec_layers', 'dec_hidden_size', 'dec_heads', 'dec_ff_size', 'dec_dropout', ], ) def a__ ( lowercase : List[str], lowercase : Optional[Any] ) -> Dict: """simple docstring""" _UpperCamelCase = BertAbsConfig( temp_dir='''.''', finetune_bert=lowercase, large=lowercase, share_emb=lowercase, use_bert_emb=lowercase, encoder='''bert''', max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, ) _UpperCamelCase = torch.load(lowercase, lambda lowercase, lowercase : storage ) _UpperCamelCase = AbsSummarizer(lowercase, torch.device('''cpu''' ), lowercase ) original.eval() _UpperCamelCase = BertAbsSummarizer(lowercase, torch.device('''cpu''' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('''convert the model''' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('''Make sure that the models\' outputs are identical''' ) _UpperCamelCase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) # prepare the model inputs _UpperCamelCase = tokenizer.encode('''This is sample éàalj\'-.''' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowercase )) ) _UpperCamelCase = torch.tensor(lowercase ).unsqueeze(0 ) _UpperCamelCase = tokenizer.encode('''This is sample 3 éàalj\'-.''' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(lowercase )) ) _UpperCamelCase = torch.tensor(lowercase ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass _UpperCamelCase = encoder_input_ids _UpperCamelCase = decoder_input_ids _UpperCamelCase = _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = _UpperCamelCase = None _UpperCamelCase = _UpperCamelCase = None _UpperCamelCase = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical _UpperCamelCase = original(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )[0] _UpperCamelCase = original.generator(lowercase ) _UpperCamelCase = new_model( lowercase, lowercase, lowercase, lowercase, lowercase )[0] _UpperCamelCase = new_model.generator(lowercase ) _UpperCamelCase = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(lowercase ) ) _UpperCamelCase = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('''Maximum absolute difference beween weights: {:.2f}'''.format(lowercase ) ) _UpperCamelCase = torch.allclose(lowercase, lowercase, atol=1e-3 ) if are_identical: logging.info('''all weights are equal up to 1e-3''' ) else: raise ValueError('''the weights are different. The new model is likely different from the original one.''' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('''saving the model\'s state dictionary''' ) torch.save( new_model.state_dict(), '''./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin''' ) if __name__ == "__main__": lowercase__ : Any = argparse.ArgumentParser() parser.add_argument( '--bertabs_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.', ) lowercase__ : int = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
324
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : str = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def a__ ( lowercase : str ) -> Dict: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase = k.replace(lowercase, lowercase ) if k.startswith('''encoder''' ): _UpperCamelCase = k.replace('''.attn''', '''.self_attn''' ) _UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' ) elif k.startswith('''decoder''' ): _UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' ) return k def a__ ( lowercase : List[str] ) -> List[Any]: """simple docstring""" _UpperCamelCase = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: _UpperCamelCase = sd.pop(lowercase ) _UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' ) assert new_k not in sd _UpperCamelCase = v lowercase__ : str = ['START'] @torch.no_grad() def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict: """simple docstring""" _UpperCamelCase = torch.load(lowercase, map_location='''cpu''' ) _UpperCamelCase = model['''model'''] _UpperCamelCase = BlenderbotConfig.from_json_file(lowercase ) _UpperCamelCase = BlenderbotForConditionalGeneration(lowercase ) _UpperCamelCase = m.model.state_dict().keys() _UpperCamelCase = [] _UpperCamelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase = rename_state_dict_key(lowercase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowercase ) m.model.load_state_dict(lowercase, strict=lowercase ) m.half() m.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
324
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def a__ ( lowercase : str, lowercase : str ) -> str | Literal[False]: """simple docstring""" _UpperCamelCase = list(lowercase ) _UpperCamelCase = list(lowercase ) _UpperCamelCase = 0 for i in range(len(lowercase ) ): if lista[i] != lista[i]: count += 1 _UpperCamelCase = '''_''' if count > 1: return False else: return "".join(lowercase ) def a__ ( lowercase : list[str] ) -> list[str]: """simple docstring""" _UpperCamelCase = [] while True: _UpperCamelCase = ['''$'''] * len(lowercase ) _UpperCamelCase = [] for i in range(len(lowercase ) ): for j in range(i + 1, len(lowercase ) ): _UpperCamelCase = compare_string(binary[i], binary[j] ) if k is False: _UpperCamelCase = '''*''' _UpperCamelCase = '''*''' temp.append('''X''' ) for i in range(len(lowercase ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowercase ) == 0: return pi _UpperCamelCase = list(set(lowercase ) ) def a__ ( lowercase : int, lowercase : Sequence[float] ) -> list[str]: """simple docstring""" _UpperCamelCase = [] for minterm in minterms: _UpperCamelCase = '''''' for _ in range(lowercase ): _UpperCamelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(lowercase ) return temp def a__ ( lowercase : str, lowercase : str, lowercase : int ) -> bool: """simple docstring""" _UpperCamelCase = list(lowercase ) _UpperCamelCase = list(lowercase ) _UpperCamelCase = 0 for i in range(len(lowercase ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def a__ ( lowercase : list[list[int]], lowercase : list[str] ) -> list[str]: """simple docstring""" _UpperCamelCase = [] _UpperCamelCase = [0] * len(lowercase ) for i in range(len(chart[0] ) ): _UpperCamelCase = 0 _UpperCamelCase = -1 for j in range(len(lowercase ) ): if chart[j][i] == 1: count += 1 _UpperCamelCase = j if count == 1: _UpperCamelCase = 1 for i in range(len(lowercase ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowercase ) ): _UpperCamelCase = 0 temp.append(prime_implicants[i] ) while True: _UpperCamelCase = 0 _UpperCamelCase = -1 _UpperCamelCase = 0 for i in range(len(lowercase ) ): _UpperCamelCase = chart[i].count(1 ) if count_n > max_n: _UpperCamelCase = count_n _UpperCamelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowercase ) ): _UpperCamelCase = 0 def a__ ( lowercase : list[str], lowercase : list[str] ) -> list[list[int]]: """simple docstring""" _UpperCamelCase = [[0 for x in range(len(lowercase ) )] for x in range(len(lowercase ) )] for i in range(len(lowercase ) ): _UpperCamelCase = prime_implicants[i].count('''_''' ) for j in range(len(lowercase ) ): if is_for_table(prime_implicants[i], binary[j], lowercase ): _UpperCamelCase = 1 return chart def a__ ( ) -> None: """simple docstring""" _UpperCamelCase = int(input('''Enter the no. of variables\n''' ) ) _UpperCamelCase = [ float(lowercase ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] _UpperCamelCase = decimal_to_binary(lowercase, lowercase ) _UpperCamelCase = check(lowercase ) print('''Prime Implicants are:''' ) print(lowercase ) _UpperCamelCase = prime_implicant_chart(lowercase, lowercase ) _UpperCamelCase = selection(lowercase, lowercase ) print('''Essential Prime Implicants are:''' ) print(lowercase ) if __name__ == "__main__": import doctest doctest.testmod() main()
324
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'xmod' def __init__( self : Any , lowerCAmelCase__ : Optional[int]=30522 , lowerCAmelCase__ : Optional[int]=768 , lowerCAmelCase__ : Any=12 , lowerCAmelCase__ : Tuple=12 , lowerCAmelCase__ : Dict=3072 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=512 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Any=1e-1_2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : Dict="absolute" , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Any=("en_XX",) , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : List[Any] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = position_embedding_type _UpperCamelCase = use_cache _UpperCamelCase = classifier_dropout _UpperCamelCase = pre_norm _UpperCamelCase = adapter_reduction_factor _UpperCamelCase = adapter_layer_norm _UpperCamelCase = adapter_reuse_layer_norm _UpperCamelCase = ln_before_adapter _UpperCamelCase = list(lowerCAmelCase__ ) _UpperCamelCase = default_language class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def snake_case__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
324
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
1
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any] ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = 1 _UpperCamelCase = 3 _UpperCamelCase = (32, 32) _UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def snake_case__ ( self : int ) -> Any: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(lowerCAmelCase__ ) @property def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' def extract(*lowerCAmelCase__ : Dict , **lowerCAmelCase__ : List[Any] ): class __lowerCAmelCase : """simple docstring""" def __init__( self : Tuple ) -> str: '''simple docstring''' _UpperCamelCase = torch.ones([0] ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def snake_case__ ( self : List[str] ) -> str: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet _UpperCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _UpperCamelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = '''A painting of a squirrel eating a burger''' _UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCamelCase = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) _UpperCamelCase = output.images _UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCAmelCase__ , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.dummy_cond_unet _UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _UpperCamelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = '''A painting of a squirrel eating a burger''' _UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCamelCase = sd_pipe([prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' ) _UpperCamelCase = output.images _UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) _UpperCamelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , return_dict=lowerCAmelCase__ , )[0] _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase = StableDiffusionPipeline.from_pretrained( '''hf-internal-testing/tiny-stable-diffusion-lms-pipe''' , safety_checker=lowerCAmelCase__ ) assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert isinstance(pipe.scheduler , lowerCAmelCase__ ) assert pipe.safety_checker is None _UpperCamelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowerCAmelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCamelCase = pipe('''example prompt''' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def snake_case__ ( self : Dict ) -> int: '''simple docstring''' _UpperCamelCase = self.dummy_cond_unet _UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _UpperCamelCase = self.dummy_vae _UpperCamelCase = self.dummy_text_encoder _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) # put models in fp16 _UpperCamelCase = unet.half() _UpperCamelCase = vae.half() _UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk _UpperCamelCase = StableDiffusionPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) _UpperCamelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = '''A painting of a squirrel eating a burger''' _UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type='''np''' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : int ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase__ ) _UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCamelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = ( '''portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle''' ''' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with''' ''' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and''' ''' children from bahnhof zoo, detailed ''' ) _UpperCamelCase = 4003660346 _UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCamelCase = torch.manual_seed(lowerCAmelCase__ ) _UpperCamelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) _UpperCamelCase = torch.manual_seed(lowerCAmelCase__ ) _UpperCamelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase__ ) _UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCamelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = '''padme amidala taking a bath artwork, safe for work, no nudity''' _UpperCamelCase = 2734971755 _UpperCamelCase = 7 _UpperCamelCase = torch.manual_seed(lowerCAmelCase__ ) _UpperCamelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 _UpperCamelCase = torch.manual_seed(lowerCAmelCase__ ) _UpperCamelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = StableDiffusionPipeline.from_pretrained('''runwayml/stable-diffusion-v1-5''' ) _UpperCamelCase = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = ( '''the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.''' ''' leyendecker''' ) _UpperCamelCase = 1044355234 _UpperCamelCase = 12 _UpperCamelCase = torch.manual_seed(lowerCAmelCase__ ) _UpperCamelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=0 , ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 _UpperCamelCase = torch.manual_seed(lowerCAmelCase__ ) _UpperCamelCase = sd_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=50 , output_type='''np''' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] _UpperCamelCase = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
324
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str: '''simple docstring''' if not batched: _UpperCamelCase = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): _UpperCamelCase , _UpperCamelCase = image.size else: _UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2] if w < h: _UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = self.size['''shortest_edge'''] else: _UpperCamelCase = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) _UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' pass def snake_case__ ( self : int ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''image_id''': 39769, '''annotations''': target} # encode them _UpperCamelCase = DeformableDetrImageProcessor() _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) ) @slow def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} _UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify masks _UpperCamelCase = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
324
1
'''simple docstring''' def a__ ( lowercase : int ) -> bool: """simple docstring""" if not isinstance(lowercase, lowercase ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) _UpperCamelCase = str(lowercase ) _UpperCamelCase = ''''''.join(sorted(lowercase ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def a__ ( lowercase : float = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) _UpperCamelCase = 0 _UpperCamelCase = 1 while True: if check_bouncy(lowercase ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
324
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ : str = None lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } lowercase__ : Optional[int] = { 'google/rembert': 2_56, } lowercase__ : str = '▁' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = RemBertTokenizer def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
324
1
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self : List[Any] , lowerCAmelCase__ : int = 128 , lowerCAmelCase__ : int = 256 , lowerCAmelCase__ : float = 2000.0 , lowerCAmelCase__ : int = 768 , lowerCAmelCase__ : int = 12 , lowerCAmelCase__ : int = 12 , lowerCAmelCase__ : int = 64 , lowerCAmelCase__ : int = 2048 , lowerCAmelCase__ : float = 0.1 , ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Sequential( nn.Linear(lowerCAmelCase__ , d_model * 4 , bias=lowerCAmelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCAmelCase__ ) , nn.SiLU() , ) _UpperCamelCase = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = False _UpperCamelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.Dropout(p=lowerCAmelCase__ ) _UpperCamelCase = nn.ModuleList() for lyr_num in range(lowerCAmelCase__ ): # FiLM conditional T5 decoder _UpperCamelCase = DecoderLayer(d_model=lowerCAmelCase__ , d_kv=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , d_ff=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ ) self.decoders.append(lowerCAmelCase__ ) _UpperCamelCase = TaLayerNorm(lowerCAmelCase__ ) _UpperCamelCase = nn.Dropout(p=lowerCAmelCase__ ) _UpperCamelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def snake_case__ ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _UpperCamelCase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _UpperCamelCase = self.conditioning_emb(lowerCAmelCase__ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _UpperCamelCase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _UpperCamelCase = torch.broadcast_to( torch.arange(lowerCAmelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _UpperCamelCase = self.position_encoding(lowerCAmelCase__ ) _UpperCamelCase = self.continuous_inputs_projection(lowerCAmelCase__ ) inputs += position_encodings _UpperCamelCase = self.dropout(lowerCAmelCase__ ) # decoder: No padding present. _UpperCamelCase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _UpperCamelCase = [(x, self.encoder_decoder_mask(lowerCAmelCase__ , lowerCAmelCase__ )) for x, y in encodings_and_masks] # cross attend style: concat encodings _UpperCamelCase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _UpperCamelCase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _UpperCamelCase = lyr( lowerCAmelCase__ , conditioning_emb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , )[0] _UpperCamelCase = self.decoder_norm(lowerCAmelCase__ ) _UpperCamelCase = self.post_dropout(lowerCAmelCase__ ) _UpperCamelCase = self.spec_out(lowerCAmelCase__ ) return spec_out class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict=1e-6 ) -> List[str]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowerCAmelCase__ , d_kv=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowerCAmelCase__ , d_kv=lowerCAmelCase__ , num_heads=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ , layer_norm_epsilon=lowerCAmelCase__ , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowerCAmelCase__ , d_ff=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ , layer_norm_epsilon=lowerCAmelCase__ ) ) def snake_case__ ( self : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.layer[0]( lowerCAmelCase__ , conditioning_emb=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , ) if encoder_hidden_states is not None: _UpperCamelCase = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) _UpperCamelCase = self.layer[1]( lowerCAmelCase__ , key_value_states=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , ) # Apply Film Conditional Feed Forward layer _UpperCamelCase = self.layer[-1](lowerCAmelCase__ , lowerCAmelCase__ ) return (hidden_states,) class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' super().__init__() _UpperCamelCase = TaLayerNorm(lowerCAmelCase__ ) _UpperCamelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase__ ) _UpperCamelCase = Attention(query_dim=lowerCAmelCase__ , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , out_bias=lowerCAmelCase__ , scale_qk=lowerCAmelCase__ ) _UpperCamelCase = nn.Dropout(lowerCAmelCase__ ) def snake_case__ ( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : str=None , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.layer_norm(lowerCAmelCase__ ) if conditioning_emb is not None: _UpperCamelCase = self.FiLMLayer(lowerCAmelCase__ , lowerCAmelCase__ ) # Self-attention block _UpperCamelCase = self.attention(lowerCAmelCase__ ) _UpperCamelCase = hidden_states + self.dropout(lowerCAmelCase__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' super().__init__() _UpperCamelCase = Attention(query_dim=lowerCAmelCase__ , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , out_bias=lowerCAmelCase__ , scale_qk=lowerCAmelCase__ ) _UpperCamelCase = TaLayerNorm(lowerCAmelCase__ , eps=lowerCAmelCase__ ) _UpperCamelCase = nn.Dropout(lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : List[Any]=None , ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.layer_norm(lowerCAmelCase__ ) _UpperCamelCase = self.attention( lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , attention_mask=attention_mask.squeeze(1 ) , ) _UpperCamelCase = hidden_states + self.dropout(lowerCAmelCase__ ) return layer_output class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple ) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCamelCase = TaDenseGatedActDense(d_model=lowerCAmelCase__ , d_ff=lowerCAmelCase__ , dropout_rate=lowerCAmelCase__ ) _UpperCamelCase = TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCAmelCase__ ) _UpperCamelCase = TaLayerNorm(lowerCAmelCase__ , eps=lowerCAmelCase__ ) _UpperCamelCase = nn.Dropout(lowerCAmelCase__ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int=None ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.layer_norm(lowerCAmelCase__ ) if conditioning_emb is not None: _UpperCamelCase = self.film(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.DenseReluDense(lowerCAmelCase__ ) _UpperCamelCase = hidden_states + self.dropout(lowerCAmelCase__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] ) -> str: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.Dropout(lowerCAmelCase__ ) _UpperCamelCase = NewGELUActivation() def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.act(self.wi_a(lowerCAmelCase__ ) ) _UpperCamelCase = self.wi_a(lowerCAmelCase__ ) _UpperCamelCase = hidden_gelu * hidden_linear _UpperCamelCase = self.dropout(lowerCAmelCase__ ) _UpperCamelCase = self.wo(lowerCAmelCase__ ) return hidden_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=1e-6 ) -> int: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Parameter(torch.ones(lowerCAmelCase__ ) ) _UpperCamelCase = eps def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] ) -> Tuple: '''simple docstring''' _UpperCamelCase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCAmelCase__ ) _UpperCamelCase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _UpperCamelCase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __lowerCAmelCase ( nn.Module ): """simple docstring""" def snake_case__ ( self : Dict , lowerCAmelCase__ : torch.Tensor ) -> torch.Tensor: '''simple docstring''' return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(lowerCAmelCase__ , 3.0 )) )) class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple ) -> Any: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Linear(lowerCAmelCase__ , out_features * 2 , bias=lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.scale_bias(lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = torch.chunk(lowerCAmelCase__ , 2 , -1 ) _UpperCamelCase = x * (1 + scale) + shift return x
324
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : str = logging.get_logger(__name__) lowercase__ : Any = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'deformable_detr' _snake_case : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowerCAmelCase__ ) _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha _UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def snake_case__ ( self : int ) -> int: '''simple docstring''' return self.d_model def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
324
1
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''', type=lowercase, default=1, help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''', type=lowercase, help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ), ) # rest from the training program parser.add_argument('''training_script_args''', nargs=lowercase ) return parser.parse_args() def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = parse_args() # Import training_script as a module. _UpperCamelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCamelCase = script_fpath.stem _UpperCamelCase = importlib.import_module(lowercase ) # Patch sys.argv _UpperCamelCase = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
324
'''simple docstring''' from __future__ import annotations def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]: """simple docstring""" _UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _UpperCamelCase = { '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary _UpperCamelCase = frequencies_dict if not case_sensitive: _UpperCamelCase = ciphertext.lower() # Chi squared statistic values _UpperCamelCase = {} # cycle through all of the shifts for shift in range(len(lowercase ) ): _UpperCamelCase = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _UpperCamelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _UpperCamelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _UpperCamelCase = decrypted_with_shift.lower().count(lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _UpperCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _UpperCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _UpperCamelCase = decrypted_with_shift.count(lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _UpperCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _UpperCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _UpperCamelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] _UpperCamelCase = min( lowercase, key=lowercase, ) # Get all the data from the most likely cipher (key, decoded message) ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
324
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowercase : Dict ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def a__ ( lowercase : List[str], lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" return (-y * np.log(lowercase ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowercase : List[Any], lowercase : Dict, lowercase : int ) -> Dict: """simple docstring""" _UpperCamelCase = np.dot(lowercase, lowercase ) return np.sum(y * scores - np.log(1 + np.exp(lowercase ) ) ) def a__ ( lowercase : Dict, lowercase : List[str], lowercase : List[str], lowercase : int=70000 ) -> List[str]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(lowercase ): _UpperCamelCase = np.dot(lowercase, lowercase ) _UpperCamelCase = sigmoid_function(lowercase ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(lowercase, lowercase ) _UpperCamelCase = sigmoid_function(lowercase ) _UpperCamelCase = cost_function(lowercase, lowercase ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowercase__ : Union[str, Any] = datasets.load_iris() lowercase__ : Optional[int] = iris.data[:, :2] lowercase__ : int = (iris.target != 0) * 1 lowercase__ : Tuple = 0.1 lowercase__ : List[Any] = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a__ ( lowercase : str ) -> List[str]: """simple docstring""" return sigmoid_function( np.dot(lowercase, lowercase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((lowercase__) , (lowercase__)) : str = (x[:, 0].min(), x[:, 0].max()) ((lowercase__) , (lowercase__)) : str = (x[:, 1].min(), x[:, 1].max()) ((lowercase__) , (lowercase__)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowercase__ : Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] lowercase__ : Tuple = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
324
'''simple docstring''' import math def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list: """simple docstring""" _UpperCamelCase = end or len(lowercase ) for i in range(lowercase, lowercase ): _UpperCamelCase = i _UpperCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCamelCase = array[temp_index - 1] temp_index -= 1 _UpperCamelCase = temp_index_value return array def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap """simple docstring""" _UpperCamelCase = index _UpperCamelCase = 2 * index + 1 # Left Node _UpperCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCamelCase = right_index if largest != index: _UpperCamelCase , _UpperCamelCase = array[largest], array[index] heapify(lowercase, lowercase, lowercase ) def a__ ( lowercase : list ) -> list: """simple docstring""" _UpperCamelCase = len(lowercase ) for i in range(n // 2, -1, -1 ): heapify(lowercase, lowercase, lowercase ) for i in range(n - 1, 0, -1 ): _UpperCamelCase , _UpperCamelCase = array[0], array[i] heapify(lowercase, 0, lowercase ) return array def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = low _UpperCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCamelCase , _UpperCamelCase = array[j], array[i] i += 1 def a__ ( lowercase : list ) -> list: """simple docstring""" if len(lowercase ) == 0: return array _UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) ) _UpperCamelCase = 16 return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase ) def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 _UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 ) _UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase ) intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase ) _UpperCamelCase = p return insertion_sort(lowercase, lowercase, lowercase ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Any = input('Enter numbers separated by a comma : ').strip() lowercase__ : Any = [float(item) for item in user_input.split(',')] print(sort(unsorted))
324
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : int = CanineTokenizer _snake_case : List[Any] = False def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' super().setUp() _UpperCamelCase = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' return CanineTokenizer.from_pretrained('''google/canine-s''' ) def snake_case__ ( self : Union[str, Any] , **lowerCAmelCase__ : List[str] ) -> CanineTokenizer: '''simple docstring''' _UpperCamelCase = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) _UpperCamelCase = 1024 return tokenizer @require_torch def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' _UpperCamelCase = self.canine_tokenizer _UpperCamelCase = ['''Life is like a box of chocolates.''', '''You never know what you\'re gonna get.'''] # fmt: off _UpperCamelCase = [57344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57345, 0, 0, 0, 0] # fmt: on _UpperCamelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''pt''' ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase = self.canine_tokenizer _UpperCamelCase = ['''Once there was a man.''', '''He wrote a test in HuggingFace Tranformers.'''] _UpperCamelCase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''pt''' ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn('''input_ids''' , lowerCAmelCase__ ) self.assertIn('''attention_mask''' , lowerCAmelCase__ ) self.assertIn('''token_type_ids''' , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : int ) -> str: '''simple docstring''' _UpperCamelCase = self.canine_tokenizer _UpperCamelCase = [ '''What\'s the weater?''', '''It\'s about 25 degrees.''', ] _UpperCamelCase = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding='''max_length''' , truncation=lowerCAmelCase__ , return_tensors='''pt''' ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def snake_case__ ( self : Dict ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = ''' He is very happy, UNwant\u00E9d,running''' _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) _UpperCamelCase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = ''' He is very happy, UNwant\u00E9d,running''' _UpperCamelCase = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _UpperCamelCase = chr(0Xe0_07 ) additional_special_tokens.append(lowerCAmelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn(lowerCAmelCase__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _UpperCamelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _UpperCamelCase , _UpperCamelCase = self.get_clean_sequence(lowerCAmelCase__ ) # a special token for Canine can be defined as follows: _UpperCamelCase = 0Xe0_05 _UpperCamelCase = chr(lowerCAmelCase__ ) tokenizer.add_special_tokens({'''cls_token''': special_token} ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) _UpperCamelCase = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , input_encoded + special_token_id ) _UpperCamelCase = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _UpperCamelCase = chr(0Xe0_05 ) _UpperCamelCase = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({'''additional_special_tokens''': [SPECIAL_TOKEN_2]} ) _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase__ ) self.assertEqual(token_a[0] , lowerCAmelCase__ ) @require_tokenizers def snake_case__ ( self : int ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: _UpperCamelCase = 0Xe0_06 _UpperCamelCase = chr(lowerCAmelCase__ ) _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase__ ) tokenizer.from_pretrained(lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: _UpperCamelCase = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: _UpperCamelCase = json.load(lowerCAmelCase__ ) # a special token for Canine can be defined as follows: _UpperCamelCase = 0Xe0_06 _UpperCamelCase = chr(lowerCAmelCase__ ) _UpperCamelCase = [new_token_a] _UpperCamelCase = [new_token_a] with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _UpperCamelCase = tokenizer_class.from_pretrained(lowerCAmelCase__ , extra_ids=0 ) self.assertIn(lowerCAmelCase__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _UpperCamelCase = 0Xe0_07 _UpperCamelCase = chr(lowerCAmelCase__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _UpperCamelCase = [AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ )] _UpperCamelCase = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , extra_ids=0 ) self.assertIn(lowerCAmelCase__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def snake_case__ ( self : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _UpperCamelCase = '''hello world''' if self.space_between_special_tokens: _UpperCamelCase = '''[CLS] hello world [SEP]''' else: _UpperCamelCase = input _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.decode(lowerCAmelCase__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase__ , [output, output.lower()] ) def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): _UpperCamelCase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] _UpperCamelCase = '''a''' _UpperCamelCase = ord(lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [] ) _UpperCamelCase = 0Xe0_06 _UpperCamelCase = chr(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [additional_special_token_id] ) def snake_case__ ( self : Optional[Any] ) -> Tuple: '''simple docstring''' pass def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' pass def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' pass
324
'''simple docstring''' import os import numpy import onnx def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]: """simple docstring""" _UpperCamelCase = a.name _UpperCamelCase = b.name _UpperCamelCase = '''''' _UpperCamelCase = '''''' _UpperCamelCase = a == b _UpperCamelCase = name_a _UpperCamelCase = name_b return res def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowercase, lowercase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase ) _graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase ) def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowercase, lowercase, lowercase ) def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple: """simple docstring""" _UpperCamelCase = list(model.graph.initializer ) _UpperCamelCase = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _UpperCamelCase = inits[i].name _UpperCamelCase = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph, lowercase, lowercase ) def a__ ( lowercase : Dict ) -> Dict: """simple docstring""" _UpperCamelCase = os.path.dirname(lowercase ) _UpperCamelCase = os.path.basename(lowercase ) _UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) ) _UpperCamelCase = list(model.graph.initializer ) _UpperCamelCase = set() _UpperCamelCase = {} _UpperCamelCase = [] _UpperCamelCase = 0 for i in range(len(lowercase ) ): if i in dup_set: continue for j in range(i + 1, len(lowercase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i], inits[j] ): dup_set.add(lowercase ) dup_set.add(lowercase ) _UpperCamelCase = inits[j].data_type _UpperCamelCase = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''', lowercase ) total_reduced_size += mem_size _UpperCamelCase = inits[i].name _UpperCamelCase = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowercase ) else: _UpperCamelCase = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' ) _UpperCamelCase = sorted(lowercase ) _remove_dup_initializers_from_model(lowercase, lowercase, lowercase ) _UpperCamelCase = '''optimized_''' + model_file_name _UpperCamelCase = os.path.join(lowercase, lowercase ) onnx.save(lowercase, lowercase ) return new_model
324
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : str = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def a__ ( lowercase : str ) -> Dict: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase = k.replace(lowercase, lowercase ) if k.startswith('''encoder''' ): _UpperCamelCase = k.replace('''.attn''', '''.self_attn''' ) _UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' ) elif k.startswith('''decoder''' ): _UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' ) return k def a__ ( lowercase : List[str] ) -> List[Any]: """simple docstring""" _UpperCamelCase = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: _UpperCamelCase = sd.pop(lowercase ) _UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' ) assert new_k not in sd _UpperCamelCase = v lowercase__ : str = ['START'] @torch.no_grad() def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict: """simple docstring""" _UpperCamelCase = torch.load(lowercase, map_location='''cpu''' ) _UpperCamelCase = model['''model'''] _UpperCamelCase = BlenderbotConfig.from_json_file(lowercase ) _UpperCamelCase = BlenderbotForConditionalGeneration(lowercase ) _UpperCamelCase = m.model.state_dict().keys() _UpperCamelCase = [] _UpperCamelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase = rename_state_dict_key(lowercase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowercase ) m.model.load_state_dict(lowercase, strict=lowercase ) m.half() m.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
324
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : List[Any] = 25_00_04 lowercase__ : str = 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = MBartTokenizer _snake_case : Tuple = MBartTokenizerFast _snake_case : List[str] = True _snake_case : Optional[Any] = True def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Dict = 'facebook/mbart-large-en-ro' _snake_case : Dict = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _snake_case : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case__ ( cls : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _UpperCamelCase = 1 return cls def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) _UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) _UpperCamelCase = 10 _UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) _UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) _UpperCamelCase = targets['''input_ids'''] _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
324
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowercase__ : Optional[int] = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowercase__ : Union[str, Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowercase__ : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowercase__ : Optional[Any] = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowercase__ : List[str] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowercase__ : int = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowercase__ : Optional[int] = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def a__ ( ) -> Dict: """simple docstring""" _UpperCamelCase , _UpperCamelCase = randrange(len(lowercase ) ), randrange(len(lowercase ) ) _UpperCamelCase = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] _UpperCamelCase , _UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def a__ ( lowercase : int = 100 ) -> Optional[Any]: """simple docstring""" return (generate_random_hand() for _ in range(lowercase )) @pytest.mark.parametrize('''hand, expected''', lowercase ) def a__ ( lowercase : Union[str, Any], lowercase : Tuple ) -> Optional[Any]: """simple docstring""" assert PokerHand(lowercase )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''', lowercase ) def a__ ( lowercase : Optional[int], lowercase : Optional[int] ) -> Any: """simple docstring""" assert PokerHand(lowercase )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''', lowercase ) def a__ ( lowercase : Dict, lowercase : Optional[Any], lowercase : int ) -> Tuple: """simple docstring""" _UpperCamelCase = PokerHand(lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''', lowercase ) def a__ ( lowercase : Tuple, lowercase : List[str] ) -> int: """simple docstring""" assert PokerHand(lowercase )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''', lowercase ) def a__ ( lowercase : Union[str, Any], lowercase : List[str] ) -> Tuple: """simple docstring""" assert PokerHand(lowercase )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''', lowercase ) def a__ ( lowercase : List[str], lowercase : Union[str, Any], lowercase : Dict ) -> List[Any]: """simple docstring""" assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected @pytest.mark.parametrize('''hand, other, expected''', generate_random_hands() ) def a__ ( lowercase : str, lowercase : Any, lowercase : int ) -> Tuple: """simple docstring""" assert PokerHand(lowercase ).compare_with(PokerHand(lowercase ) ) == expected def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = [PokerHand(lowercase ) for hand in SORTED_HANDS] _UpperCamelCase = poker_hands.copy() shuffle(lowercase ) _UpperCamelCase = chain(sorted(lowercase ) ) for index, hand in enumerate(lowercase ): assert hand == poker_hands[index] def a__ ( ) -> Dict: """simple docstring""" _UpperCamelCase = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = PokerHand('''2C 4S AS 3D 5C''' ) _UpperCamelCase = True _UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def a__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = os.path.abspath(os.path.dirname(lowercase ) ) _UpperCamelCase = os.path.join(lowercase, '''poker_hands.txt''' ) with open(lowercase ) as file_hand: for line in file_hand: _UpperCamelCase = line[:14].strip() _UpperCamelCase = line[15:].strip() _UpperCamelCase , _UpperCamelCase = PokerHand(lowercase ), PokerHand(lowercase ) _UpperCamelCase = player.compare_with(lowercase ) if output == "Win": answer += 1 assert answer == 376
324
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowercase__ : str = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Union[str, Any] = ['pixel_values'] def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = size if size is not None else {'''shortest_edge''': 256} _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} _UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = resample _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray: '''simple docstring''' return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray: '''simple docstring''' return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase = crop_size if crop_size is not None else self.crop_size _UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' ) _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: _UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] _UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] _UpperCamelCase = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]: '''simple docstring''' _UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(lowerCAmelCase__ ): _UpperCamelCase = target_sizes.numpy() _UpperCamelCase = [] for idx in range(len(lowerCAmelCase__ ) ): _UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ ) _UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: _UpperCamelCase = logits.argmax(dim=1 ) _UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
324
1
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig lowercase__ : int = logging.getLogger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Any = 'masked_bert' def __init__( self : str , lowerCAmelCase__ : str=30522 , lowerCAmelCase__ : int=768 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : Union[str, Any]=3072 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[Any]=512 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : int=1e-1_2 , lowerCAmelCase__ : Optional[int]=0 , lowerCAmelCase__ : Union[str, Any]="topK" , lowerCAmelCase__ : int="constant" , lowerCAmelCase__ : int=0.0 , **lowerCAmelCase__ : Optional[Any] , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = hidden_act _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = pruning_method _UpperCamelCase = mask_init _UpperCamelCase = mask_scale
324
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : jnp.ndarray @flax_register_to_config class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ): """simple docstring""" _snake_case : int = 3_2 _snake_case : int = 4 _snake_case : int = 4 _snake_case : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") _snake_case : Union[bool, Tuple[bool]] = False _snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) _snake_case : int = 2 _snake_case : Union[int, Tuple[int]] = 8 _snake_case : Optional[Union[int, Tuple[int]]] = None _snake_case : int = 1_2_8_0 _snake_case : float = 0.0 _snake_case : bool = False _snake_case : jnp.dtype = jnp.floataa _snake_case : bool = True _snake_case : int = 0 _snake_case : bool = False def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict: '''simple docstring''' _UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) _UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa ) _UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) _UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ ) _UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"] def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.block_out_channels _UpperCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input _UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype ) _UpperCamelCase = self.only_cross_attention if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down _UpperCamelCase = [] _UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = block_out_channels[i] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxDownBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = down_blocks # mid _UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _UpperCamelCase = [] _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = list(reversed(lowerCAmelCase__ ) ) _UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _UpperCamelCase = output_channel _UpperCamelCase = reversed_block_out_channels[i] _UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )] _UpperCamelCase = i == len(lowerCAmelCase__ ) - 1 if up_block_type == "CrossAttnUpBlock2D": _UpperCamelCase = FlaxCrossAttnUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _UpperCamelCase = FlaxUpBlockaD( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(lowerCAmelCase__ ) _UpperCamelCase = output_channel _UpperCamelCase = up_blocks # out _UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: '''simple docstring''' if not isinstance(lowerCAmelCase__ , jnp.ndarray ): _UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0: _UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) _UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 ) _UpperCamelCase = self.time_proj(lowerCAmelCase__ ) _UpperCamelCase = self.time_embedding(lowerCAmelCase__ ) # 2. pre-process _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) ) _UpperCamelCase = self.conv_in(lowerCAmelCase__ ) # 3. down _UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) else: _UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _UpperCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( lowerCAmelCase__ , lowerCAmelCase__ ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _UpperCamelCase = new_down_block_res_samples # 4. mid _UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] _UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = up_block( lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , ) else: _UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train ) # 6. post-process _UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ ) _UpperCamelCase = nn.silu(lowerCAmelCase__ ) _UpperCamelCase = self.conv_out(lowerCAmelCase__ ) _UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
324
1
'''simple docstring''' import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowercase__ : int = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'vision-encoder-decoder' _snake_case : Union[str, Any] = True def __init__( self : str , **lowerCAmelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"""A configuraton of type {self.model_type} cannot be instantiated because """ f"""not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}""" ) _UpperCamelCase = kwargs.pop('''encoder''' ) _UpperCamelCase = encoder_config.pop('''model_type''' ) _UpperCamelCase = kwargs.pop('''decoder''' ) _UpperCamelCase = decoder_config.pop('''model_type''' ) _UpperCamelCase = AutoConfig.for_model(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = AutoConfig.for_model(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = True @classmethod def snake_case__ ( cls : Any , lowerCAmelCase__ : PretrainedConfig , lowerCAmelCase__ : PretrainedConfig , **lowerCAmelCase__ : Optional[int] ) -> PretrainedConfig: '''simple docstring''' logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) _UpperCamelCase = True _UpperCamelCase = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) _UpperCamelCase = self.encoder.to_dict() _UpperCamelCase = self.decoder.to_dict() _UpperCamelCase = self.__class__.model_type return output class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Any = version.parse('1.11' ) @property def snake_case__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case__ ( self : int ) -> float: '''simple docstring''' return 1e-4 @property def snake_case__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def snake_case__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _UpperCamelCase = OrderedDict() _UpperCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCamelCase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} _UpperCamelCase = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def snake_case__ ( self : Dict , lowerCAmelCase__ : "PreTrainedTokenizerBase" , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch _UpperCamelCase = OrderedDict() _UpperCamelCase = super().generate_dummy_inputs( lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = dummy_input['''input_ids'''].shape _UpperCamelCase = (batch, encoder_sequence, self._config.encoder_hidden_size) _UpperCamelCase = dummy_input.pop('''input_ids''' ) _UpperCamelCase = dummy_input.pop('''attention_mask''' ) _UpperCamelCase = torch.zeros(lowerCAmelCase__ ) return common_inputs class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def snake_case__ ( self : Optional[Any] ) -> None: '''simple docstring''' pass def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : PretrainedConfig ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : PretrainedConfig , lowerCAmelCase__ : PretrainedConfig , lowerCAmelCase__ : str = "default" ) -> OnnxConfig: '''simple docstring''' _UpperCamelCase = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCAmelCase__ , lowerCAmelCase__ )
324
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowercase__ : List[str] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowercase__ : Dict = logging.getLogger() def a__ ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int: """simple docstring""" _UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: return json.load(lowercase ) raise ValueError(F"""can't find {path}""" ) lowercase__ : int = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_flax_glue.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def snake_case__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_clm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def snake_case__ ( self : Tuple ) -> str: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_summarization_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_mlm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_ta_mlm_flax.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_flax_ner.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ): run_qa.main() _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
324
1
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowercase__ : Optional[Any] = logging.getLogger() def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Dict ) -> int: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(lowercase, '''all_results.json''' ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: _UpperCamelCase = json.load(lowercase ) else: raise ValueError(F"""can't find {path}""" ) return results def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowercase__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod def snake_case__ ( cls : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Tuple ) -> int: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : int ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) ) @slow def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
324
1
'''simple docstring''' def a__ ( lowercase : list ) -> float: """simple docstring""" _UpperCamelCase = 0 while len(lowercase ) > 1: _UpperCamelCase = 0 # Consider two files with minimum cost to be merged for _ in range(2 ): _UpperCamelCase = files.index(min(lowercase ) ) temp += files[min_index] files.pop(lowercase ) files.append(lowercase ) optimal_merge_cost += temp return optimal_merge_cost if __name__ == "__main__": import doctest doctest.testmod()
324
'''simple docstring''' import itertools import string from collections.abc import Generator, Iterable def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" _UpperCamelCase = iter(lowercase ) while True: _UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) ) if not chunk: return yield chunk def a__ ( lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _UpperCamelCase = '''''' if len(lowercase ) < 2: return dirty for i in range(len(lowercase ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase ) & 1: clean += "X" return clean def a__ ( lowercase : str ) -> list[str]: """simple docstring""" _UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _UpperCamelCase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase ) return table def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = prepare_input(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a__ ( lowercase : str, lowercase : str ) -> str: """simple docstring""" _UpperCamelCase = generate_table(lowercase ) _UpperCamelCase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase, 2 ): _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) _UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
324
1
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging lowercase__ : Optional[int] = logging.get_logger(__name__) logging.set_verbosity_info() def a__ ( lowercase : str, lowercase : str ) -> int: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: _UpperCamelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCamelCase , _UpperCamelCase = XLMProphetNetForConditionalGeneration.from_pretrained( lowercase, output_loading_info=lowercase ) else: _UpperCamelCase = ProphetNetForConditionalGenerationOld.from_pretrained(lowercase ) _UpperCamelCase , _UpperCamelCase = ProphetNetForConditionalGeneration.from_pretrained( lowercase, output_loading_info=lowercase ) _UpperCamelCase = ['''key_proj''', '''value_proj''', '''query_proj'''] _UpperCamelCase = { '''self_attn''': '''ngram_self_attn''', '''cross_attn''': '''encoder_attn''', '''cross_attn_layer_norm''': '''encoder_attn_layer_norm''', '''feed_forward_layer_norm''': '''final_layer_norm''', '''feed_forward''': '''''', '''intermediate''': '''fc1''', '''output''': '''fc2''', '''key_proj''': '''k_proj''', '''query_proj''': '''q_proj''', '''value_proj''': '''v_proj''', '''word_embeddings''': '''embed_tokens''', '''embeddings_layer_norm''': '''emb_layer_norm''', '''relative_pos_embeddings''': '''relative_linear''', '''ngram_embeddings''': '''ngram_input_embed''', '''position_embeddings''': '''embed_positions''', } for key in loading_info["missing_keys"]: _UpperCamelCase = key.split('''.''' ) if attributes[0] == "lm_head": _UpperCamelCase = prophet _UpperCamelCase = prophet_old else: _UpperCamelCase = prophet.prophetnet _UpperCamelCase = prophet_old.model _UpperCamelCase = False for attribute in attributes: if attribute in mapping: _UpperCamelCase = mapping[attribute] if not hasattr(lowercase, lowercase ) and len(lowercase ) > 0: _UpperCamelCase = attribute elif hasattr(lowercase, lowercase ): _UpperCamelCase = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _UpperCamelCase = old_model.weight logger.info(F"""{attribute} is initialized.""" ) _UpperCamelCase = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _UpperCamelCase = old_model.bias logger.info(F"""{attribute} is initialized""" ) _UpperCamelCase = True break elif attribute in special_keys and hasattr(lowercase, '''in_proj_weight''' ): _UpperCamelCase = old_model.in_proj_weight.shape[0] // 3 _UpperCamelCase = getattr(lowercase, lowercase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _UpperCamelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _UpperCamelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _UpperCamelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _UpperCamelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _UpperCamelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _UpperCamelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _UpperCamelCase = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _UpperCamelCase = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _UpperCamelCase = True break if attribute.isdigit(): _UpperCamelCase = model[int(lowercase )] _UpperCamelCase = old_model[int(lowercase )] else: _UpperCamelCase = getattr(lowercase, lowercase ) if old_attribute == "": _UpperCamelCase = old_model else: if not hasattr(lowercase, lowercase ): raise ValueError(F"""{old_model} does not have {old_attribute}""" ) _UpperCamelCase = getattr(lowercase, lowercase ) if not is_key_init: raise ValueError(F"""{key} was not correctly initialized!""" ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) prophet.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ : Union[str, Any] = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
324
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : Any = {'vocab_file': 'spiece.model'} lowercase__ : Dict = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } lowercase__ : Optional[Any] = { 'google/bigbird-roberta-base': 40_96, 'google/bigbird-roberta-large': 40_96, 'google/bigbird-base-trivia-itc': 40_96, } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : str = ['input_ids', 'attention_mask'] _snake_case : List[int] = [] def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) _UpperCamelCase = vocab_file _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase__ ) @property def snake_case__ ( self : List[str] ) -> Tuple: '''simple docstring''' return self.sp_model.get_piece_size() def snake_case__ ( self : Any ) -> int: '''simple docstring''' _UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None return state def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ ) return token def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [] _UpperCamelCase = '''''' _UpperCamelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase__ ) + token _UpperCamelCase = True _UpperCamelCase = [] else: current_sub_tokens.append(lowerCAmelCase__ ) _UpperCamelCase = False out_string += self.sp_model.decode(lowerCAmelCase__ ) return out_string.strip() def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str: '''simple docstring''' _UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ ) _UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCamelCase = [] _UpperCamelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) _UpperCamelCase = [] sub_texts.append(lowerCAmelCase__ ) else: current_sub_text.append(lowerCAmelCase__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: _UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) ) else: _UpperCamelCase = ''''''.join(lowerCAmelCase__ ) _UpperCamelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ ) return clean_text else: return text def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] _UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
324
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def a__ ( lowercase : str, lowercase : str ) -> List[str]: """simple docstring""" _UpperCamelCase = checkpoint _UpperCamelCase = {} _UpperCamelCase = vae_state_dict['''encoder.conv_in.weight'''] _UpperCamelCase = vae_state_dict['''encoder.conv_in.bias'''] _UpperCamelCase = vae_state_dict['''encoder.conv_out.weight'''] _UpperCamelCase = vae_state_dict['''encoder.conv_out.bias'''] _UpperCamelCase = vae_state_dict['''encoder.norm_out.weight'''] _UpperCamelCase = vae_state_dict['''encoder.norm_out.bias'''] _UpperCamelCase = vae_state_dict['''decoder.conv_in.weight'''] _UpperCamelCase = vae_state_dict['''decoder.conv_in.bias'''] _UpperCamelCase = vae_state_dict['''decoder.conv_out.weight'''] _UpperCamelCase = vae_state_dict['''decoder.conv_out.bias'''] _UpperCamelCase = vae_state_dict['''decoder.norm_out.weight'''] _UpperCamelCase = vae_state_dict['''decoder.norm_out.bias'''] _UpperCamelCase = vae_state_dict['''quant_conv.weight'''] _UpperCamelCase = vae_state_dict['''quant_conv.bias'''] _UpperCamelCase = vae_state_dict['''post_quant_conv.weight'''] _UpperCamelCase = vae_state_dict['''post_quant_conv.bias'''] # Retrieves the keys for the encoder down blocks only _UpperCamelCase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''encoder.down''' in layer} ) _UpperCamelCase = { layer_id: [key for key in vae_state_dict if F"""down.{layer_id}""" in key] for layer_id in range(lowercase ) } # Retrieves the keys for the decoder up blocks only _UpperCamelCase = len({'''.'''.join(layer.split('''.''' )[:3] ) for layer in vae_state_dict if '''decoder.up''' in layer} ) _UpperCamelCase = { layer_id: [key for key in vae_state_dict if F"""up.{layer_id}""" in key] for layer_id in range(lowercase ) } for i in range(lowercase ): _UpperCamelCase = [key for key in down_blocks[i] if F"""down.{i}""" in key and F"""down.{i}.downsample""" not in key] if F"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: _UpperCamelCase = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.weight""" ) _UpperCamelCase = vae_state_dict.pop( F"""encoder.down.{i}.downsample.conv.bias""" ) _UpperCamelCase = renew_vae_resnet_paths(lowercase ) _UpperCamelCase = {'''old''': F"""down.{i}.block""", '''new''': F"""down_blocks.{i}.resnets"""} assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase ) _UpperCamelCase = [key for key in vae_state_dict if '''encoder.mid.block''' in key] _UpperCamelCase = 2 for i in range(1, num_mid_res_blocks + 1 ): _UpperCamelCase = [key for key in mid_resnets if F"""encoder.mid.block_{i}""" in key] _UpperCamelCase = renew_vae_resnet_paths(lowercase ) _UpperCamelCase = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase ) _UpperCamelCase = [key for key in vae_state_dict if '''encoder.mid.attn''' in key] _UpperCamelCase = renew_vae_attention_paths(lowercase ) _UpperCamelCase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase ) conv_attn_to_linear(lowercase ) for i in range(lowercase ): _UpperCamelCase = num_up_blocks - 1 - i _UpperCamelCase = [ key for key in up_blocks[block_id] if F"""up.{block_id}""" in key and F"""up.{block_id}.upsample""" not in key ] if F"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: _UpperCamelCase = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.weight""" ] _UpperCamelCase = vae_state_dict[ F"""decoder.up.{block_id}.upsample.conv.bias""" ] _UpperCamelCase = renew_vae_resnet_paths(lowercase ) _UpperCamelCase = {'''old''': F"""up.{block_id}.block""", '''new''': F"""up_blocks.{i}.resnets"""} assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase ) _UpperCamelCase = [key for key in vae_state_dict if '''decoder.mid.block''' in key] _UpperCamelCase = 2 for i in range(1, num_mid_res_blocks + 1 ): _UpperCamelCase = [key for key in mid_resnets if F"""decoder.mid.block_{i}""" in key] _UpperCamelCase = renew_vae_resnet_paths(lowercase ) _UpperCamelCase = {'''old''': F"""mid.block_{i}""", '''new''': F"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase ) _UpperCamelCase = [key for key in vae_state_dict if '''decoder.mid.attn''' in key] _UpperCamelCase = renew_vae_attention_paths(lowercase ) _UpperCamelCase = {'''old''': '''mid.attn_1''', '''new''': '''mid_block.attentions.0'''} assign_to_checkpoint(lowercase, lowercase, lowercase, additional_replacements=[meta_path], config=lowercase ) conv_attn_to_linear(lowercase ) return new_checkpoint def a__ ( lowercase : str, lowercase : str, ) -> List[str]: """simple docstring""" _UpperCamelCase = requests.get( ''' https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml''' ) _UpperCamelCase = io.BytesIO(r.content ) _UpperCamelCase = OmegaConf.load(lowercase ) _UpperCamelCase = 512 _UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu''' if checkpoint_path.endswith('''safetensors''' ): from safetensors import safe_open _UpperCamelCase = {} with safe_open(lowercase, framework='''pt''', device='''cpu''' ) as f: for key in f.keys(): _UpperCamelCase = f.get_tensor(lowercase ) else: _UpperCamelCase = torch.load(lowercase, map_location=lowercase )['''state_dict'''] # Convert the VAE model. _UpperCamelCase = create_vae_diffusers_config(lowercase, image_size=lowercase ) _UpperCamelCase = custom_convert_ldm_vae_checkpoint(lowercase, lowercase ) _UpperCamelCase = AutoencoderKL(**lowercase ) vae.load_state_dict(lowercase ) vae.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') lowercase__ : Any = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
324
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[int] = { 'MIT/ast-finetuned-audioset-10-10-0.4593': ( 'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json' ), } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'audio-spectrogram-transformer' def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = patch_size _UpperCamelCase = qkv_bias _UpperCamelCase = frequency_stride _UpperCamelCase = time_stride _UpperCamelCase = max_length _UpperCamelCase = num_mel_bins
324
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase__ : Union[str, Any] = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : str = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowercase__ : Union[str, Any] = logging.get_logger(__name__) # General docstring lowercase__ : Dict = 'ResNetConfig' # Base docstring lowercase__ : str = 'microsoft/resnet-50' lowercase__ : Tuple = [1, 20_48, 7, 7] # Image classification docstring lowercase__ : Optional[Any] = 'microsoft/resnet-50' lowercase__ : List[str] = 'tiger cat' lowercase__ : List[Any] = [ 'microsoft/resnet-50', # See all resnet models at https://huggingface.co/models?filter=resnet ] class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad( lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) _UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) _UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) _UpperCamelCase = config.num_channels def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.pooler(lowerCAmelCase__ ) return embedding class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ ) _UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = self.convolution(lowerCAmelCase__ ) _UpperCamelCase = self.normalization(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = in_channels != out_channels or stride != 1 _UpperCamelCase = out_channels // reduction _UpperCamelCase = ( ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity() ) _UpperCamelCase = nn.Sequential( ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , ) _UpperCamelCase = ACTaFN[activation] def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = hidden_state _UpperCamelCase = self.layer(lowerCAmelCase__ ) _UpperCamelCase = self.shortcut(lowerCAmelCase__ ) hidden_state += residual _UpperCamelCase = self.activation(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int: '''simple docstring''' super().__init__() _UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer _UpperCamelCase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor: '''simple docstring''' _UpperCamelCase = input for layer in self.layers: _UpperCamelCase = layer(lowerCAmelCase__ ) return hidden_state class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]: '''simple docstring''' super().__init__() _UpperCamelCase = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) _UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ): self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) _UpperCamelCase = stage_module(lowerCAmelCase__ ) if output_hidden_states: _UpperCamelCase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Optional[int] = ResNetConfig _snake_case : Union[str, Any] = 'resnet' _snake_case : Optional[int] = 'pixel_values' _snake_case : int = True def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = value lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) _UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder( lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = encoder_outputs[0] _UpperCamelCase = self.pooler(lowerCAmelCase__ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' super().__init__(lowerCAmelCase__ ) _UpperCamelCase = config.num_labels _UpperCamelCase = ResNetModel(lowerCAmelCase__ ) # classification head _UpperCamelCase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.pooler_output if return_dict else outputs[1] _UpperCamelCase = self.classifier(lowerCAmelCase__ ) _UpperCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _UpperCamelCase = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _UpperCamelCase = '''single_label_classification''' else: _UpperCamelCase = '''multi_label_classification''' if self.config.problem_type == "regression": _UpperCamelCase = MSELoss() if self.num_labels == 1: _UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": _UpperCamelCase = CrossEntropyLoss() _UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _UpperCamelCase = BCEWithLogitsLoss() _UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: _UpperCamelCase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict: '''simple docstring''' super().__init__(lowerCAmelCase__ ) super()._init_backbone(lowerCAmelCase__ ) _UpperCamelCase = [config.embedding_size] + config.hidden_sizes _UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ ) _UpperCamelCase = ResNetEncoder(lowerCAmelCase__ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput: '''simple docstring''' _UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict _UpperCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _UpperCamelCase = self.embedder(lowerCAmelCase__ ) _UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: _UpperCamelCase = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
324
1
'''simple docstring''' def a__ ( lowercase : list[list[int]], lowercase : int, lowercase : int, lowercase : set ) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase = len(lowercase ), len(grid[0] ) if ( min(lowercase, lowercase ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _UpperCamelCase = 0 count += depth_first_search(lowercase, row + 1, lowercase, lowercase ) count += depth_first_search(lowercase, row - 1, lowercase, lowercase ) count += depth_first_search(lowercase, lowercase, col + 1, lowercase ) count += depth_first_search(lowercase, lowercase, col - 1, lowercase ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
324
'''simple docstring''' import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def a__ ( lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" if isinstance(lowercase, collections.abc.Iterable ): return x return (x, x) @require_flax class __lowerCAmelCase : """simple docstring""" def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]: '''simple docstring''' pass def snake_case__ ( self : Tuple ) -> int: '''simple docstring''' pass def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' pass def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str: '''simple docstring''' _UpperCamelCase = np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) _UpperCamelCase = after_output[0] _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-3 ) def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model} _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ ) _UpperCamelCase = model( input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ ) _UpperCamelCase = output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase = to_atuple(vision_model.config.image_size ) _UpperCamelCase = to_atuple(vision_model.config.patch_size ) _UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _UpperCamelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _UpperCamelCase = output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' pt_model.to(lowerCAmelCase__ ) pt_model.eval() # prepare inputs _UpperCamelCase = inputs_dict _UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): _UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple() _UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ ) _UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ ) pt_model_loaded.to(lowerCAmelCase__ ) pt_model_loaded.eval() with torch.no_grad(): _UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 ) def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ ) _UpperCamelCase = fx_state self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str: '''simple docstring''' _UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ ) _UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params ) self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase__ ) @is_pt_flax_cross_test def snake_case__ ( self : int ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase = config_inputs_dict.pop('''vision_config''' ) _UpperCamelCase = config_inputs_dict.pop('''text_config''' ) _UpperCamelCase = config_inputs_dict self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs() _UpperCamelCase = model_a(**lowerCAmelCase__ ) _UpperCamelCase = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = model_a(**lowerCAmelCase__ ) _UpperCamelCase = after_outputs[0] _UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase__ , 1e-5 ) @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Tuple ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) _UpperCamelCase = 13 _UpperCamelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCamelCase = random_attention_mask([batch_size, 4] ) _UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = FlaxViTModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' _UpperCamelCase = FlaxViTModelTester(self ) _UpperCamelCase = FlaxBertModelTester(self ) _UpperCamelCase = vit_model_tester.prepare_config_and_inputs() _UpperCamelCase = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase = vision_config_and_inputs _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , ) _UpperCamelCase = 13 _UpperCamelCase = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) _UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) _UpperCamelCase = random_attention_mask([batch_size, 4] ) _UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ ) _UpperCamelCase = FlaxBertModel(lowerCAmelCase__ ) return vision_model, text_model def snake_case__ ( self : List[str] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxCLIPVisionModelTester(self ) _UpperCamelCase = FlaxBertModelTester(self ) _UpperCamelCase = clip_model_tester.prepare_config_and_inputs() _UpperCamelCase = bert_model_tester.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase = vision_config_and_inputs _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) _UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) _UpperCamelCase = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' ) _UpperCamelCase = model(**lowerCAmelCase__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _UpperCamelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
324
1
'''simple docstring''' import math class __lowerCAmelCase : """simple docstring""" def snake_case__ ( self : List[str] , lowerCAmelCase__ : list[list[float]] , lowerCAmelCase__ : list[int] ) -> int: '''simple docstring''' _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(lowerCAmelCase__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : list[list[int | float]] , lowerCAmelCase__ : list[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : float ) -> list[list[int | float]]: '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def a__ ( ) -> None: """simple docstring""" _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(lowercase ): for j in range(len(lowercase ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(lowercase, lowercase ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(lowercase, lowercase, lowercase, lowercase ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(lowercase, lowercase ) # results print(F"""Clusters that the test sample belongs to : {winner}""" ) print(F"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
324
'''simple docstring''' import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_attention_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_choices def snake_case__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_attention_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCamelCase = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self : Union[str, Any] ) -> str: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Dict = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' _UpperCamelCase = FlaxAlbertModelTester(self ) @slow def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] _UpperCamelCase = (1, 11, 768) self.assertEqual(output.shape , lowerCAmelCase__ ) _UpperCamelCase = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
324
1
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy lowercase__ : int = logging.getLogger(__name__) lowercase__ : List[Any] = 'pytorch_model.bin' @dataclasses.dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _snake_case : Optional[str] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _snake_case : str = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _snake_case : Optional[str] = dataclasses.field( default=__magic_name__ , metadata={'help': 'A csv or a json file containing the validation data.'} ) _snake_case : Optional[str] = dataclasses.field( default=__magic_name__ , metadata={'help': 'The name of the task to train on.'} , ) _snake_case : Optional[List[str]] = dataclasses.field( default=__magic_name__ , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : str = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _snake_case : Optional[str] = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _snake_case : Optional[str] = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _snake_case : Optional[int] = dataclasses.field( default=1_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _snake_case : Optional[bool] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _snake_case : Optional[bool] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _snake_case : Optional[bool] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _snake_case : Optional[float] = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _snake_case : Optional[int] = dataclasses.field( default=1_0_0 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _snake_case : Optional[int] = dataclasses.field( default=__magic_name__ , metadata={'help': 'Random seed for initialization.'} , ) def a__ ( lowercase : Any, lowercase : Optional[int], lowercase : Dict, lowercase : Dict, lowercase : List[Any], lowercase : List[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = datasets.concatenate_datasets([infer_input, infer_output], axis=1 ) if args.do_filter_by_confidence: _UpperCamelCase = dataset.filter(lambda lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _UpperCamelCase = int(eval_result * len(lowercase ) ) print(lowercase ) _UpperCamelCase = dataset.sort('''probability''', reverse=lowercase ) _UpperCamelCase = dataset.select(range(lowercase ) ) _UpperCamelCase = dataset.remove_columns(['''label''', '''probability'''] ) _UpperCamelCase = dataset.rename_column('''prediction''', '''label''' ) _UpperCamelCase = dataset.map(lambda lowercase : {"label": idalabel[example["label"]]} ) _UpperCamelCase = dataset.shuffle(seed=args.seed ) _UpperCamelCase = os.path.join(lowercase, F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(lowercase, index=lowercase ) else: dataset.to_json(lowercase ) def a__ ( lowercase : List[Any], lowercase : Any, lowercase : Union[str, Any], lowercase : Optional[int], **lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _UpperCamelCase = STModelArguments(model_name_or_path=lowercase ) _UpperCamelCase = STDataArguments(train_file=lowercase, infer_file=lowercase ) _UpperCamelCase = STTrainingArguments(output_dir=lowercase ) _UpperCamelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase ).items(): setattr(lowercase, lowercase, lowercase ) for key, value in kwargs.items(): if hasattr(lowercase, lowercase ): setattr(lowercase, lowercase, lowercase ) # Sanity checks _UpperCamelCase = {} _UpperCamelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _UpperCamelCase = args.train_file _UpperCamelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _UpperCamelCase = args.eval_file for key in data_files: _UpperCamelCase = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _UpperCamelCase = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) _UpperCamelCase = F"""{args.output_dir}/self-train_iter-{{}}""".format _UpperCamelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=lowercase ) os.makedirs(lowercase, exist_ok=lowercase ) accelerator.wait_for_everyone() _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = 0 _UpperCamelCase = False # Show the progress bar _UpperCamelCase = tqdm(range(args.max_selftrain_iterations ), disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0, int(args.max_selftrain_iterations ) ): _UpperCamelCase = data_dir_format(lowercase ) assert os.path.exists(lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _UpperCamelCase = os.path.join(lowercase, '''stage-1''' ) _UpperCamelCase = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase, lowercase ): arguments_dict.update({key: value} ) _UpperCamelCase = os.path.join(lowercase, '''best-checkpoint''', lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''', lowercase, lowercase, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''', lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''', lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _UpperCamelCase = os.path.join(lowercase, '''best-checkpoint''' ) _UpperCamelCase = os.path.join(lowercase, '''stage-2''' ) # Update arguments_dict _UpperCamelCase = model_path _UpperCamelCase = data_files['''train'''] _UpperCamelCase = current_output_dir _UpperCamelCase = os.path.join(lowercase, '''best-checkpoint''', lowercase ) if os.path.exists(lowercase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''', lowercase, lowercase, ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''', lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''', lowercase ) _UpperCamelCase = iteration _UpperCamelCase = data_dir_format(iteration + 1 ) _UpperCamelCase = AutoConfig.from_pretrained(os.path.join(lowercase, '''best-checkpoint''' ) ) _UpperCamelCase = config.idalabel _UpperCamelCase = os.path.join(lowercase, '''eval_results_best-checkpoint.json''' ) _UpperCamelCase = os.path.join(lowercase, '''test_results_best-checkpoint.json''' ) assert os.path.exists(lowercase ) with open(lowercase, '''r''' ) as f: _UpperCamelCase = float(json.load(lowercase )[args.eval_metric] ) _UpperCamelCase = os.path.join(lowercase, '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(lowercase ) # Loading the dataset from local csv or json files. _UpperCamelCase = load_dataset(args.data_file_extension, data_files={'''data''': data_files['''infer''']} )['''data'''] _UpperCamelCase = load_dataset('''csv''', data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(lowercase, exist_ok=lowercase ) shutil.copy(lowercase, os.path.join(lowercase, F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(lowercase ): shutil.copy(lowercase, os.path.join(lowercase, F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) accelerator.wait_for_everyone() _UpperCamelCase = os.path.join(lowercase, F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _UpperCamelCase = eval_result if best_iteration is None: _UpperCamelCase = new_iteration _UpperCamelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _UpperCamelCase = new_iteration _UpperCamelCase = new_eval_result _UpperCamelCase = 0 else: if new_eval_result == best_eval_result: _UpperCamelCase = new_iteration _UpperCamelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _UpperCamelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''', lowercase ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase, F"""eval_results_iter-{iteration}.json""" ), os.path.join(lowercase, '''eval_results_best-iteration.json''' ), ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''', args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''', args.eval_metric, lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase, F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ), os.path.join(lowercase, '''eval_results_best-iteration.json''' ), )
324
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18} _UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_center_crop _UpperCamelCase = crop_size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def snake_case__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = LevitImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = LevitImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def snake_case__ ( self : Dict ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
324
1
'''simple docstring''' from __future__ import annotations def a__ ( lowercase : list[int], lowercase : int ) -> list[int]: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = len(lowercase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _UpperCamelCase = i + 1 else: _UpperCamelCase = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
324
'''simple docstring''' import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE lowercase__ : int = 'config.json' lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin' lowercase__ : List[str] = 'diffusion_flax_model.msgpack' lowercase__ : str = 'model.onnx' lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors' lowercase__ : List[str] = 'weights.pb' lowercase__ : str = 'https://huggingface.co' lowercase__ : str = default_cache_path lowercase__ : Optional[int] = 'diffusers_modules' lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules')) lowercase__ : Tuple = ['fp16', 'non-ema'] lowercase__ : int = '.self_attn'
324
1
'''simple docstring''' import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : List[str] = '▁' lowercase__ : str = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Tuple = BigBirdTokenizer _snake_case : Tuple = BigBirdTokenizerFast _snake_case : Optional[int] = True _snake_case : List[str] = True def snake_case__ ( self : Tuple ) -> List[str]: '''simple docstring''' super().setUp() _UpperCamelCase = self.tokenizer_class(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = '''<s>''' _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> Any: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(lowerCAmelCase__ ) , 1004 ) def snake_case__ ( self : str ) -> Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = '''I was born in 92000, and this is falsé.''' _UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(lowerCAmelCase__ ) _UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BigBirdTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [285, 46, 10, 170, 382] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def snake_case__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def snake_case__ ( self : List[Any] ) -> Any: '''simple docstring''' _UpperCamelCase = '''Hello World!''' _UpperCamelCase = [65, 18536, 2260, 101, 66] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off _UpperCamelCase = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @require_torch @slow def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _UpperCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] _UpperCamelCase = ''' '''.join(lowerCAmelCase__ ) _UpperCamelCase = self.big_tokenizer.encode_plus(lowerCAmelCase__ , return_tensors='''pt''' , return_token_type_ids=lowerCAmelCase__ ) _UpperCamelCase = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=lowerCAmelCase__ ) _UpperCamelCase = BigBirdConfig(attention_type='''original_full''' ) _UpperCamelCase = BigBirdModel(lowerCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase__ ) model(**lowerCAmelCase__ ) @slow def snake_case__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) _UpperCamelCase = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
324
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : str = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def a__ ( lowercase : str ) -> Dict: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase = k.replace(lowercase, lowercase ) if k.startswith('''encoder''' ): _UpperCamelCase = k.replace('''.attn''', '''.self_attn''' ) _UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' ) elif k.startswith('''decoder''' ): _UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' ) _UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' ) return k def a__ ( lowercase : List[str] ) -> List[Any]: """simple docstring""" _UpperCamelCase = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: _UpperCamelCase = sd.pop(lowercase ) _UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' ) assert new_k not in sd _UpperCamelCase = v lowercase__ : str = ['START'] @torch.no_grad() def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict: """simple docstring""" _UpperCamelCase = torch.load(lowercase, map_location='''cpu''' ) _UpperCamelCase = model['''model'''] _UpperCamelCase = BlenderbotConfig.from_json_file(lowercase ) _UpperCamelCase = BlenderbotForConditionalGeneration(lowercase ) _UpperCamelCase = m.model.state_dict().keys() _UpperCamelCase = [] _UpperCamelCase = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase = rename_state_dict_key(lowercase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(lowercase ) m.model.load_state_dict(lowercase, strict=lowercase ) m.half() m.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
324
1
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase__ : List[Any] = logging.getLogger(__name__) lowercase__ : int = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowercase__ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__magic_name__ )} , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCAmelCase : """simple docstring""" _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'The input training data file (a text file).'} ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) _snake_case : Optional[str] = field( default=__magic_name__ , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) _snake_case : bool = field(default=__magic_name__ , metadata={'help': 'Whether ot not to use whole word mask.'} ) _snake_case : float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) _snake_case : float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) _snake_case : int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) _snake_case : int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) _snake_case : bool = field( default=__magic_name__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a__ ( lowercase : DataTrainingArguments, lowercase : PreTrainedTokenizer, lowercase : bool = False, lowercase : Optional[str] = None, ) -> List[str]: """simple docstring""" def _dataset(lowercase : Dict, lowercase : List[Any]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=lowercase, file_path=lowercase, block_size=args.block_size, ref_path=lowercase, ) return LineByLineTextDataset(tokenizer=lowercase, file_path=lowercase, block_size=args.block_size ) else: return TextDataset( tokenizer=lowercase, file_path=lowercase, block_size=args.block_size, overwrite_cache=args.overwrite_cache, cache_dir=lowercase, ) if evaluate: return _dataset(args.eval_data_file, args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowercase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file, args.train_ref_file ) def a__ ( ) -> int: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''', training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1 ), training_args.fpaa, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''', lowercase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCamelCase = AutoConfig.from_pretrained(model_args.config_name, cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir ) else: _UpperCamelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: _UpperCamelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: _UpperCamelCase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=lowercase, cache_dir=model_args.cache_dir, ) else: logger.info('''Training new model from scratch''' ) _UpperCamelCase = AutoModelWithLMHead.from_config(lowercase ) model.resize_token_embeddings(len(lowercase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: _UpperCamelCase = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCamelCase = min(data_args.block_size, tokenizer.max_len ) # Get datasets _UpperCamelCase = ( get_dataset(lowercase, tokenizer=lowercase, cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCamelCase = ( get_dataset(lowercase, tokenizer=lowercase, evaluate=lowercase, cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCamelCase = DataCollatorForPermutationLanguageModeling( tokenizer=lowercase, plm_probability=data_args.plm_probability, max_span_length=data_args.max_span_length, ) else: if data_args.mlm and data_args.whole_word_mask: _UpperCamelCase = DataCollatorForWholeWordMask( tokenizer=lowercase, mlm_probability=data_args.mlm_probability ) else: _UpperCamelCase = DataCollatorForLanguageModeling( tokenizer=lowercase, mlm=data_args.mlm, mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCamelCase = Trainer( model=lowercase, args=lowercase, data_collator=lowercase, train_dataset=lowercase, eval_dataset=lowercase, prediction_loss_only=lowercase, ) # Training if training_args.do_train: _UpperCamelCase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowercase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _UpperCamelCase = trainer.evaluate() _UpperCamelCase = math.exp(eval_output['''eval_loss'''] ) _UpperCamelCase = {'''perplexity''': perplexity} _UpperCamelCase = os.path.join(training_args.output_dir, '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(lowercase, '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''', lowercase, str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(lowercase ) return results def a__ ( lowercase : Dict ) -> Any: """simple docstring""" main() if __name__ == "__main__": main()
324
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
1
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Union[str, Any] = 'hf-internal-testing/tiny-random-bert' lowercase__ : Union[str, Any] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert') lowercase__ : List[str] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6' class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = cached_file(lowerCAmelCase__ , lowerCAmelCase__ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(lowerCAmelCase__ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) ) with open(os.path.join(lowerCAmelCase__ , '''refs''' , '''main''' ) ) as f: _UpperCamelCase = f.read() self.assertEqual(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , '''snapshots''' , lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) # File is cached at the same place the second time. _UpperCamelCase = cached_file(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Using a specific revision to test the full commit hash. _UpperCamelCase = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , revision='''9b8c223''' ) self.assertEqual(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , '''snapshots''' , lowerCAmelCase__ , lowerCAmelCase__ ) ) def snake_case__ ( self : str ) -> str: '''simple docstring''' with self.assertRaisesRegex(lowerCAmelCase__ , '''is not a valid model identifier''' ): _UpperCamelCase = cached_file('''tiny-random-bert''' , lowerCAmelCase__ ) with self.assertRaisesRegex(lowerCAmelCase__ , '''is not a valid git identifier''' ): _UpperCamelCase = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , revision='''aaaa''' ) with self.assertRaisesRegex(lowerCAmelCase__ , '''does not appear to have a file named''' ): _UpperCamelCase = cached_file(lowerCAmelCase__ , '''conf''' ) def snake_case__ ( self : Dict ) -> str: '''simple docstring''' with self.assertRaisesRegex(lowerCAmelCase__ , '''does not appear to have a file named''' ): _UpperCamelCase = cached_file(lowerCAmelCase__ , '''conf''' ) with open(os.path.join(lowerCAmelCase__ , '''refs''' , '''main''' ) ) as f: _UpperCamelCase = f.read() self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase__ , '''.no_exist''' , lowerCAmelCase__ , '''conf''' ) ) ) _UpperCamelCase = cached_file(lowerCAmelCase__ , '''conf''' , _raise_exceptions_for_missing_entries=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) _UpperCamelCase = cached_file(lowerCAmelCase__ , '''conf''' , local_files_only=lowerCAmelCase__ , _raise_exceptions_for_missing_entries=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) _UpperCamelCase = mock.Mock() _UpperCamelCase = 500 _UpperCamelCase = {} _UpperCamelCase = HTTPError _UpperCamelCase = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: _UpperCamelCase = cached_file(lowerCAmelCase__ , '''conf''' , _raise_exceptions_for_connection_errors=lowerCAmelCase__ ) self.assertIsNone(lowerCAmelCase__ ) # This check we did call the fake head request mock_head.assert_called() def snake_case__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowerCAmelCase__ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowerCAmelCase__ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , lowerCAmelCase__ ) ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(lowerCAmelCase__ , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , lowerCAmelCase__ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(lowerCAmelCase__ , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , lowerCAmelCase__ , revision='''ahaha''' ) _UpperCamelCase = get_file_from_repo('''bert-base-cased''' , lowerCAmelCase__ ) # The name is the cached name which is not very easy to test, so instead we load the content. _UpperCamelCase = json.loads(open(lowerCAmelCase__ , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase = Path(lowerCAmelCase__ ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(lowerCAmelCase__ , '''a.txt''' ) , str(lowerCAmelCase__ ) ) self.assertIsNone(get_file_from_repo(lowerCAmelCase__ , '''b.txt''' ) )
324
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Tuple = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
324
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str: '''simple docstring''' if not batched: _UpperCamelCase = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): _UpperCamelCase , _UpperCamelCase = image.size else: _UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2] if w < h: _UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = self.size['''shortest_edge'''] else: _UpperCamelCase = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] _UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self : int ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def snake_case__ ( self : Optional[int] ) -> Dict: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) _UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , lowerCAmelCase__ ) def snake_case__ ( self : Tuple ) -> Any: '''simple docstring''' pass def snake_case__ ( self : int ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : str ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''image_id''': 39769, '''annotations''': target} # encode them _UpperCamelCase = DeformableDetrImageProcessor() _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) ) @slow def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} _UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ ) _UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) ) # verify class_labels _UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) ) # verify masks _UpperCamelCase = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
324
1
'''simple docstring''' import csv import tweepy # Twitter API credentials lowercase__ : str = '' lowercase__ : int = '' lowercase__ : List[str] = '' lowercase__ : Union[str, Any] = '' def a__ ( lowercase : str ) -> None: """simple docstring""" _UpperCamelCase = tweepy.OAuthHandler(lowercase, lowercase ) auth.set_access_token(lowercase, lowercase ) _UpperCamelCase = tweepy.API(lowercase ) # initialize a list to hold all the tweepy Tweets _UpperCamelCase = [] # make initial request for most recent tweets (200 is the maximum allowed count) _UpperCamelCase = api.user_timeline(screen_name=lowercase, count=200 ) # save most recent tweets alltweets.extend(lowercase ) # save the id of the oldest tweet less one _UpperCamelCase = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(lowercase ) > 0: print(F"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates _UpperCamelCase = api.user_timeline( screen_name=lowercase, count=200, max_id=lowercase ) # save most recent tweets alltweets.extend(lowercase ) # update the id of the oldest tweet less one _UpperCamelCase = alltweets[-1].id - 1 print(F"""...{len(lowercase )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv _UpperCamelCase = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"""new_{screen_name}_tweets.csv""", '''w''' ) as f: _UpperCamelCase = csv.writer(lowercase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(lowercase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
324
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ : str = None lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ : int = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } lowercase__ : Optional[int] = { 'google/rembert': 2_56, } lowercase__ : str = '▁' class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : str = VOCAB_FILES_NAMES _snake_case : str = PRETRAINED_VOCAB_FILES_MAP _snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Dict = RemBertTokenizer def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = do_lower_case _UpperCamelCase = remove_space _UpperCamelCase = keep_accents _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1] def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
324
1
'''simple docstring''' from __future__ import annotations import time lowercase__ : Tuple = list[tuple[int, int]] lowercase__ : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase__ : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : Node | None ) -> int: '''simple docstring''' _UpperCamelCase = pos_x _UpperCamelCase = pos_y _UpperCamelCase = (pos_y, pos_x) _UpperCamelCase = goal_x _UpperCamelCase = goal_y _UpperCamelCase = parent class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : tuple[int, int] , lowerCAmelCase__ : tuple[int, int] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCAmelCase__ ) _UpperCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCAmelCase__ ) _UpperCamelCase = [self.start] _UpperCamelCase = False def snake_case__ ( self : List[Any] ) -> Path | None: '''simple docstring''' while self.node_queue: _UpperCamelCase = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: _UpperCamelCase = True return self.retrace_path(lowerCAmelCase__ ) _UpperCamelCase = self.get_successors(lowerCAmelCase__ ) for node in successors: self.node_queue.append(lowerCAmelCase__ ) if not self.reached: return [self.start.pos] return None def snake_case__ ( self : Tuple , lowerCAmelCase__ : Node ) -> list[Node]: '''simple docstring''' _UpperCamelCase = [] for action in delta: _UpperCamelCase = parent.pos_x + action[1] _UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCAmelCase__ , lowerCAmelCase__ , self.target.pos_y , self.target.pos_x , lowerCAmelCase__ ) ) return successors def snake_case__ ( self : Any , lowerCAmelCase__ : Node | None ) -> Path: '''simple docstring''' _UpperCamelCase = node _UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCamelCase = current_node.parent path.reverse() return path class __lowerCAmelCase : """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = BreadthFirstSearch(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = BreadthFirstSearch(lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = False def snake_case__ ( self : Dict ) -> Path | None: '''simple docstring''' while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: _UpperCamelCase = self.fwd_bfs.node_queue.pop(0 ) _UpperCamelCase = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: _UpperCamelCase = True return self.retrace_bidirectional_path( lowerCAmelCase__ , lowerCAmelCase__ ) _UpperCamelCase = current_bwd_node _UpperCamelCase = current_fwd_node _UpperCamelCase = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCAmelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCAmelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCAmelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def snake_case__ ( self : Dict , lowerCAmelCase__ : Node , lowerCAmelCase__ : Node ) -> Path: '''simple docstring''' _UpperCamelCase = self.fwd_bfs.retrace_path(lowerCAmelCase__ ) _UpperCamelCase = self.bwd_bfs.retrace_path(lowerCAmelCase__ ) bwd_path.pop() bwd_path.reverse() _UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowercase__ : Any = (0, 0) lowercase__ : Optional[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowercase__ : Optional[Any] = time.time() lowercase__ : Dict = BreadthFirstSearch(init, goal) lowercase__ : Tuple = bfs.search() lowercase__ : Union[str, Any] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) lowercase__ : List[Any] = time.time() lowercase__ : int = BidirectionalBreadthFirstSearch(init, goal) lowercase__ : Dict = bd_bfs.search() lowercase__ : Optional[int] = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
324
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : str = logging.get_logger(__name__) lowercase__ : Any = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Tuple = 'deformable_detr' _snake_case : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(lowerCAmelCase__ ) _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = max_position_embeddings _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # deformable attributes _UpperCamelCase = num_feature_levels _UpperCamelCase = encoder_n_points _UpperCamelCase = decoder_n_points _UpperCamelCase = two_stage _UpperCamelCase = two_stage_num_proposals _UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient _UpperCamelCase = focal_alpha _UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def snake_case__ ( self : int ) -> int: '''simple docstring''' return self.d_model def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
324
1
'''simple docstring''' from math import sqrt def a__ ( lowercase : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(sqrt(lowercase ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( lowercase : int = 10001 ) -> int: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = 1 while count != nth and number < 3: number += 1 if is_prime(lowercase ): count += 1 while count != nth: number += 2 if is_prime(lowercase ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
324
'''simple docstring''' from __future__ import annotations def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]: """simple docstring""" _UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) _UpperCamelCase = { '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary _UpperCamelCase = frequencies_dict if not case_sensitive: _UpperCamelCase = ciphertext.lower() # Chi squared statistic values _UpperCamelCase = {} # cycle through all of the shifts for shift in range(len(lowercase ) ): _UpperCamelCase = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet _UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len( lowercase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter _UpperCamelCase = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: _UpperCamelCase = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message _UpperCamelCase = decrypted_with_shift.lower().count(lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _UpperCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _UpperCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message _UpperCamelCase = decrypted_with_shift.count(lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies _UpperCamelCase = frequencies[letter] * occurrences # Complete the chi squared statistic formula _UpperCamelCase = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary _UpperCamelCase = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] _UpperCamelCase = min( lowercase, key=lowercase, ) # Get all the data from the most likely cipher (key, decoded message) ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
324
1