code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from copy import deepcopy
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : list[int] | None = None , lowerCAmelCase__ : int | None = None ) -> None:
'''simple docstring'''
if arr is None and size is not None:
_UpperCamelCase = size
_UpperCamelCase = [0] * size
elif arr is not None:
self.init(lowerCAmelCase__ )
else:
raise ValueError('''Either arr or size must be specified''' )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : list[int] ) -> None:
'''simple docstring'''
_UpperCamelCase = len(lowerCAmelCase__ )
_UpperCamelCase = deepcopy(lowerCAmelCase__ )
for i in range(1 , self.size ):
_UpperCamelCase = self.next_(lowerCAmelCase__ )
if j < self.size:
self.tree[j] += self.tree[i]
def snake_case__ ( self : Union[str, Any] ) -> list[int]:
'''simple docstring'''
_UpperCamelCase = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
_UpperCamelCase = self.next_(lowerCAmelCase__ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def snake_case__ ( lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def snake_case__ ( lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
return index - (index & (-index))
def snake_case__ ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
_UpperCamelCase = self.next_(lowerCAmelCase__ )
def snake_case__ ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
'''simple docstring'''
self.add(lowerCAmelCase__ , value - self.get(lowerCAmelCase__ ) )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
if right == 0:
return 0
_UpperCamelCase = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
_UpperCamelCase = self.prev(lowerCAmelCase__ )
return result
def snake_case__ ( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
return self.prefix(lowerCAmelCase__ ) - self.prefix(lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
return self.query(lowerCAmelCase__ , index + 1 )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
_UpperCamelCase = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
_UpperCamelCase = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 1 |
'''simple docstring'''
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def a__ ( lowercase : dict ) -> tuple:
"""simple docstring"""
return (data["data"], data["target"])
def a__ ( lowercase : np.ndarray, lowercase : np.ndarray, lowercase : np.ndarray ) -> np.ndarray:
"""simple docstring"""
_UpperCamelCase = XGBRegressor(verbosity=0, random_state=42 )
xgb.fit(lowercase, lowercase )
# Predict target for test data
_UpperCamelCase = xgb.predict(lowercase )
_UpperCamelCase = predictions.reshape(len(lowercase ), 1 )
return predictions
def a__ ( ) -> None:
"""simple docstring"""
_UpperCamelCase = fetch_california_housing()
_UpperCamelCase , _UpperCamelCase = data_handling(lowercase )
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = train_test_split(
lowercase, lowercase, test_size=0.2_5, random_state=1 )
_UpperCamelCase = xgboost(lowercase, lowercase, lowercase )
# Error printing
print(F"""Mean Absolute Error : {mean_absolute_error(lowercase, lowercase )}""" )
print(F"""Mean Square Error : {mean_squared_error(lowercase, lowercase )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 324 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 1 |
'''simple docstring'''
lowercase__ : Optional[int] = 8.31_4462 # Unit - J mol-1 K-1
def a__ ( lowercase : float, lowercase : float, lowercase : float ) -> float:
"""simple docstring"""
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError('''Invalid inputs. Enter positive value.''' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def a__ ( lowercase : float, lowercase : float, lowercase : float ) -> float:
"""simple docstring"""
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError('''Invalid inputs. Enter positive value.''' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 324 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
lowercase__ : Any = None
lowercase__ : Dict = logging.get_logger(__name__)
lowercase__ : int = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/spiece.model',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/spiece.model',
},
'tokenizer_file': {
'google/fnet-base': 'https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json',
'google/fnet-large': 'https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json',
},
}
lowercase__ : List[str] = {
'google/fnet-base': 5_12,
'google/fnet-large': 5_12,
}
lowercase__ : int = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Any = VOCAB_FILES_NAMES
_snake_case : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : int = ['input_ids', 'token_type_ids']
_snake_case : Any = FNetTokenizer
def __init__( self : Tuple , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : int=None , lowerCAmelCase__ : int=False , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : int="<pad>" , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : Union[str, Any]="[MASK]" , **lowerCAmelCase__ : Optional[int] , ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = (
AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ , normalized=lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
else mask_token
)
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 1 |
'''simple docstring'''
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels
from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor
from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
| 324 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str]=13 , lowerCAmelCase__ : Any=30 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Union[str, Any]=3 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[Any]=32 , lowerCAmelCase__ : Union[str, Any]=5 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Dict=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Optional[int]=10 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Tuple=2 , ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = image_size
_UpperCamelCase = patch_size
_UpperCamelCase = num_channels
_UpperCamelCase = is_training
_UpperCamelCase = use_labels
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
_UpperCamelCase = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = (image_size // patch_size) ** 2
_UpperCamelCase = num_patches + 1
def snake_case__ ( self : str ) -> Dict:
'''simple docstring'''
_UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def snake_case__ ( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = ViTModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = ViTForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_UpperCamelCase = 1
_UpperCamelCase = ViTForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCamelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def snake_case__ ( self : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.type_sequence_label_size
_UpperCamelCase = ViTForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_UpperCamelCase = 1
_UpperCamelCase = ViTForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCamelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = config_and_inputs
_UpperCamelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : int = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
_snake_case : str = (
{'feature-extraction': ViTModel, 'image-classification': ViTForImageClassification}
if is_torch_available()
else {}
)
_snake_case : Union[str, Any] = True
_snake_case : Optional[int] = False
_snake_case : List[str] = False
_snake_case : Optional[int] = False
def snake_case__ ( self : Dict ) -> str:
'''simple docstring'''
_UpperCamelCase = ViTModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def snake_case__ ( self : int ) -> Dict:
'''simple docstring'''
pass
def snake_case__ ( self : str ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def snake_case__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(lowerCAmelCase__ )
_UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def snake_case__ ( self : Dict ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = ViTModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def a__ ( ) -> int:
"""simple docstring"""
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : str ) -> Any:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(lowerCAmelCase__ )
_UpperCamelCase = self.default_image_processor
_UpperCamelCase = prepare_img()
_UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
_UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
@slow
def snake_case__ ( self : str ) -> int:
'''simple docstring'''
_UpperCamelCase = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(lowerCAmelCase__ )
_UpperCamelCase = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480 )
_UpperCamelCase = prepare_img()
_UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = inputs.pixel_values.to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
_UpperCamelCase = model(lowerCAmelCase__ , interpolate_pos_encoding=lowerCAmelCase__ )
# verify the logits
_UpperCamelCase = torch.Size((1, 3601, 384) )
self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor(
[[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' )
_UpperCamelCase = self.default_image_processor
_UpperCamelCase = prepare_img()
_UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = inputs.pixel_values.to(lowerCAmelCase__ )
# forward pass to make sure inference works in fp16
with torch.no_grad():
_UpperCamelCase = model(lowerCAmelCase__ )
| 324 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 1 |
'''simple docstring'''
def a__ ( lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = abs(lowercase )
_UpperCamelCase = 0
while n > 0:
res += n % 10
n //= 10
return res
def a__ ( lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = abs(lowercase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def a__ ( lowercase : int ) -> int:
"""simple docstring"""
return sum(int(lowercase ) for c in str(abs(lowercase ) ) )
def a__ ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(lowercase : Callable, lowercase : int ) -> None:
_UpperCamelCase = F"""{func.__name__}({value})"""
_UpperCamelCase = timeit(F"""__main__.{call}""", setup='''import __main__''' )
print(F"""{call:56} = {func(lowercase )} -- {timing:.4f} seconds""" )
for value in (262144, 1125899906842624, 1267650600228229401496703205376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(lowercase, lowercase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 324 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowercase__ : int = {
'configuration_conditional_detr': [
'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP',
'ConditionalDetrConfig',
'ConditionalDetrOnnxConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : str = ['ConditionalDetrFeatureExtractor']
lowercase__ : Any = ['ConditionalDetrImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Any = [
'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST',
'ConditionalDetrForObjectDetection',
'ConditionalDetrForSegmentation',
'ConditionalDetrModel',
'ConditionalDetrPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP,
ConditionalDetrConfig,
ConditionalDetrOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor
from .image_processing_conditional_detr import ConditionalDetrImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_conditional_detr import (
CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrModel,
ConditionalDetrPreTrainedModel,
)
else:
import sys
lowercase__ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 1 |
'''simple docstring'''
from itertools import permutations
def a__ ( lowercase : tuple ) -> bool:
"""simple docstring"""
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
_UpperCamelCase = [7, 11, 13, 17]
for i, test in enumerate(lowercase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def a__ ( lowercase : int = 10 ) -> int:
"""simple docstring"""
return sum(
int(''''''.join(map(lowercase, lowercase ) ) )
for num in permutations(range(lowercase ) )
if is_substring_divisible(lowercase ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 324 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
lowercase__ : Tuple = {
'BridgeTower/bridgetower-base': 'https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json',
'BridgeTower/bridgetower-base-itm-mlm': (
'https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[Any] = 'bridgetower_vision_model'
def __init__( self : Union[str, Any] , lowerCAmelCase__ : Union[str, Any]=768 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : Any=3 , lowerCAmelCase__ : Union[str, Any]=16 , lowerCAmelCase__ : int=288 , lowerCAmelCase__ : Union[str, Any]=1 , lowerCAmelCase__ : Optional[Any]=1e-0_5 , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : str=False , **lowerCAmelCase__ : Optional[int] , ) -> List[Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_channels
_UpperCamelCase = patch_size
_UpperCamelCase = image_size
_UpperCamelCase = initializer_factor
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = stop_gradient
_UpperCamelCase = share_layernorm
_UpperCamelCase = remove_last_layer
@classmethod
def snake_case__ ( cls : Dict , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[Any] ) -> "PretrainedConfig":
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ )
if config_dict.get('''model_type''' ) == "bridgetower":
_UpperCamelCase = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'bridgetower_text_model'
def __init__( self : List[str] , lowerCAmelCase__ : Optional[int]=50265 , lowerCAmelCase__ : Optional[Any]=768 , lowerCAmelCase__ : List[Any]=12 , lowerCAmelCase__ : Union[str, Any]=12 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : List[str]=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : int=514 , lowerCAmelCase__ : List[str]=1 , lowerCAmelCase__ : Any=1e-0_5 , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : Tuple=0 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : Any="absolute" , lowerCAmelCase__ : List[Any]=True , **lowerCAmelCase__ : Dict , ) -> int:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = hidden_act
_UpperCamelCase = initializer_factor
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = position_embedding_type
_UpperCamelCase = use_cache
_UpperCamelCase = pad_token_id
_UpperCamelCase = bos_token_id
_UpperCamelCase = eos_token_id
@classmethod
def snake_case__ ( cls : Tuple , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[Any] ) -> "PretrainedConfig":
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ )
if config_dict.get('''model_type''' ) == "bridgetower":
_UpperCamelCase = config_dict['''text_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : List[str] = 'bridgetower'
def __init__( self : int , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Dict=768 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : Optional[int]=1e-0_5 , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Union[str, Any]="add" , lowerCAmelCase__ : Any=12 , lowerCAmelCase__ : Union[str, Any]=6 , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : List[Any] , ) -> int:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''text_config_dict''' , lowerCAmelCase__ )
_UpperCamelCase = kwargs.pop('''vision_config_dict''' , lowerCAmelCase__ )
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = share_cross_modal_transformer_layers
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_size
_UpperCamelCase = initializer_factor
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = share_link_tower_layers
_UpperCamelCase = link_tower_type
_UpperCamelCase = num_attention_heads
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = tie_word_embeddings
_UpperCamelCase = init_layernorm_from_vision_encoder
if text_config is None:
_UpperCamelCase = {}
logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' )
if vision_config is None:
_UpperCamelCase = {}
logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' )
_UpperCamelCase = BridgeTowerTextConfig(**lowerCAmelCase__ )
_UpperCamelCase = BridgeTowerVisionConfig(**lowerCAmelCase__ )
@classmethod
def snake_case__ ( cls : Union[str, Any] , lowerCAmelCase__ : BridgeTowerTextConfig , lowerCAmelCase__ : BridgeTowerVisionConfig , **lowerCAmelCase__ : Any ) -> str:
'''simple docstring'''
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ )
def snake_case__ ( self : Dict ) -> int:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
_UpperCamelCase = self.text_config.to_dict()
_UpperCamelCase = self.vision_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
lowercase__ : List[Any] = None
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : Union[str, Any] = {
'vocab_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model',
},
'tokenizer_file': {
'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'camembert-base': 5_12,
}
lowercase__ : Any = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : Dict = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : Any = CamembertTokenizer
def __init__( self : Optional[int] , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : Any="</s>" , lowerCAmelCase__ : Tuple="</s>" , lowerCAmelCase__ : List[Any]="<s>" , lowerCAmelCase__ : Dict="<unk>" , lowerCAmelCase__ : Optional[int]="<pad>" , lowerCAmelCase__ : Optional[int]="<mask>" , lowerCAmelCase__ : List[Any]=["<s>NOTUSED", "</s>NOTUSED"] , **lowerCAmelCase__ : Tuple , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 1 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
lowercase__ : List[Any] = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = ['input_features', 'is_longer']
def __init__( self : Dict , lowerCAmelCase__ : Tuple=64 , lowerCAmelCase__ : str=48000 , lowerCAmelCase__ : List[Any]=480 , lowerCAmelCase__ : Dict=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=False , lowerCAmelCase__ : float = 0 , lowerCAmelCase__ : float = 14000 , lowerCAmelCase__ : int = None , lowerCAmelCase__ : str = "fusion" , lowerCAmelCase__ : str = "repeatpad" , **lowerCAmelCase__ : Union[str, Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = top_db
_UpperCamelCase = truncation
_UpperCamelCase = padding
_UpperCamelCase = fft_window_size
_UpperCamelCase = (fft_window_size >> 1) + 1
_UpperCamelCase = hop_length
_UpperCamelCase = max_length_s
_UpperCamelCase = max_length_s * sampling_rate
_UpperCamelCase = sampling_rate
_UpperCamelCase = frequency_min
_UpperCamelCase = frequency_max
_UpperCamelCase = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase__ , min_frequency=lowerCAmelCase__ , max_frequency=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , norm=lowerCAmelCase__ , mel_scale='''htk''' , )
_UpperCamelCase = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase__ , min_frequency=lowerCAmelCase__ , max_frequency=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , norm='''slaney''' , mel_scale='''slaney''' , )
def snake_case__ ( self : Tuple ) -> Dict[str, Any]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
_UpperCamelCase = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.array , lowerCAmelCase__ : Optional[np.array] = None ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = spectrogram(
lowerCAmelCase__ , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCAmelCase__ , log_mel='''dB''' , )
return log_mel_spectrogram.T
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
_UpperCamelCase = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
_UpperCamelCase = [0]
# randomly choose index for each part
_UpperCamelCase = np.random.choice(ranges[0] )
_UpperCamelCase = np.random.choice(ranges[1] )
_UpperCamelCase = np.random.choice(ranges[2] )
_UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :]
_UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :]
_UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :]
_UpperCamelCase = torch.tensor(mel[None, None, :] )
_UpperCamelCase = torch.nn.functional.interpolate(
lowerCAmelCase__ , size=[chunk_frames, 64] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = mel_shrink[0][0].numpy()
_UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def snake_case__ ( self : List[str] , lowerCAmelCase__ : np.array , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
_UpperCamelCase = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
_UpperCamelCase = len(lowerCAmelCase__ ) - max_length
_UpperCamelCase = np.random.randint(0 , overflow + 1 )
_UpperCamelCase = waveform[idx : idx + max_length]
_UpperCamelCase = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
_UpperCamelCase = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters )
_UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
_UpperCamelCase = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
_UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0 )
_UpperCamelCase = False
else:
_UpperCamelCase = self._random_mel_fusion(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = True
else:
raise NotImplementedError(f"""data_truncating {truncation} not implemented""" )
else:
_UpperCamelCase = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
_UpperCamelCase = int(max_length / len(lowerCAmelCase__ ) )
_UpperCamelCase = np.stack(np.tile(lowerCAmelCase__ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
_UpperCamelCase = int(max_length / len(lowerCAmelCase__ ) )
_UpperCamelCase = np.stack(np.tile(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCamelCase = np.pad(lowerCAmelCase__ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 )
if truncation == "fusion":
_UpperCamelCase = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters )
_UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
_UpperCamelCase = self._np_extract_fbank_features(lowerCAmelCase__ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : int , lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ : str = None , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> BatchFeature:
'''simple docstring'''
_UpperCamelCase = truncation if truncation is not None else self.truncation
_UpperCamelCase = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
_UpperCamelCase = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
_UpperCamelCase = is_batched_numpy or (
isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_UpperCamelCase = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ):
_UpperCamelCase = np.asarray(lowerCAmelCase__ , dtype=np.floataa )
elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_UpperCamelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_UpperCamelCase = [np.asarray(lowerCAmelCase__ )]
# convert to mel spectrogram, truncate and pad if needed.
_UpperCamelCase = [
self._get_input_mel(lowerCAmelCase__ , max_length if max_length else self.nb_max_samples , lowerCAmelCase__ , lowerCAmelCase__ )
for waveform in raw_speech
]
_UpperCamelCase = []
_UpperCamelCase = []
for mel, longer in padded_inputs:
input_mel.append(lowerCAmelCase__ )
is_longer.append(lowerCAmelCase__ )
if truncation == "fusion" and sum(lowerCAmelCase__ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
_UpperCamelCase = np.random.randint(0 , len(lowerCAmelCase__ ) )
_UpperCamelCase = True
if isinstance(input_mel[0] , lowerCAmelCase__ ):
_UpperCamelCase = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
_UpperCamelCase = [[longer] for longer in is_longer]
_UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer}
_UpperCamelCase = BatchFeature(lowerCAmelCase__ )
if return_tensors is not None:
_UpperCamelCase = input_features.convert_to_tensors(lowerCAmelCase__ )
return input_features
| 324 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
lowercase__ : List[str] = False
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
pass
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = VersatileDiffusionImageVariationPipeline.from_pretrained('''shi-labs/versatile-diffusion''' )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCamelCase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' )
_UpperCamelCase = torch.manual_seed(0 )
_UpperCamelCase = pipe(
image=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images
_UpperCamelCase = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
_UpperCamelCase = np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 324 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 1 |
'''simple docstring'''
def a__ ( lowercase : int, lowercase : int ) -> str:
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError('''the value of both inputs must be positive''' )
_UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
_UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b"
_UpperCamelCase = max(len(lowercase ), len(lowercase ) )
return "0b" + "".join(
str(int(char_a == '''1''' and char_b == '''1''' ) )
for char_a, char_b in zip(a_binary.zfill(lowercase ), b_binary.zfill(lowercase ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 1 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def a__ ( lowercase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = FileLock(str(tmpdir / '''foo.lock''' ) )
_UpperCamelCase = FileLock(str(tmpdir / '''foo.lock''' ) )
_UpperCamelCase = 0.0_1
with locka.acquire():
with pytest.raises(lowercase ):
_UpperCamelCase = time.time()
locka.acquire(lowercase )
assert time.time() - _start > timeout
def a__ ( lowercase : List[str] ) -> int:
"""simple docstring"""
_UpperCamelCase = '''a''' * 1000 + '''.lock'''
_UpperCamelCase = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('''.lock''' )
assert not locka._lock_file.endswith(lowercase )
assert len(os.path.basename(locka._lock_file ) ) <= 255
_UpperCamelCase = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(lowercase ):
locka.acquire(0 )
| 324 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : int = {
'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[int] = [
'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST',
'Swinv2ForImageClassification',
'Swinv2ForMaskedImageModeling',
'Swinv2Model',
'Swinv2PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swinva import (
SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST,
SwinvaForImageClassification,
SwinvaForMaskedImageModeling,
SwinvaModel,
SwinvaPreTrainedModel,
)
else:
import sys
lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 1 |
'''simple docstring'''
from collections import Counter
from timeit import timeit
def a__ ( lowercase : str = "", ) -> bool:
"""simple docstring"""
return sum(c % 2 for c in Counter(input_str.replace(''' ''', '''''' ).lower() ).values() ) < 2
def a__ ( lowercase : str = "" ) -> bool:
"""simple docstring"""
if len(lowercase ) == 0:
return True
_UpperCamelCase = input_str.replace(''' ''', '''''' ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
_UpperCamelCase = {}
for character in lower_case_input_str:
_UpperCamelCase = character_freq_dict.get(lowercase, 0 ) + 1
_UpperCamelCase = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def a__ ( lowercase : str = "" ) -> None:
"""simple docstring"""
print('''\nFor string = ''', lowercase, ''':''' )
print(
'''> can_string_be_rearranged_as_palindrome_counter()''', '''\tans =''', can_string_be_rearranged_as_palindrome_counter(lowercase ), '''\ttime =''', timeit(
'''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''', setup='''import __main__ as z''', ), '''seconds''', )
print(
'''> can_string_be_rearranged_as_palindrome()''', '''\tans =''', can_string_be_rearranged_as_palindrome(lowercase ), '''\ttime =''', timeit(
'''z.can_string_be_rearranged_as_palindrome(z.check_str)''', setup='''import __main__ as z''', ), '''seconds''', )
if __name__ == "__main__":
lowercase__ : Tuple = input(
'Enter string to determine if it can be rearranged as a palindrome or not: '
).strip()
benchmark(check_str)
lowercase__ : List[str] = can_string_be_rearranged_as_palindrome_counter(check_str)
print(F"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
| 324 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 1 |
'''simple docstring'''
def a__ ( lowercase : str, lowercase : bool = False ) -> str:
"""simple docstring"""
if not isinstance(lowercase, lowercase ):
_UpperCamelCase = F"""Expected string as input, found {type(lowercase )}"""
raise ValueError(lowercase )
if not isinstance(lowercase, lowercase ):
_UpperCamelCase = F"""Expected boolean as use_pascal parameter, found {type(lowercase )}"""
raise ValueError(lowercase )
_UpperCamelCase = input_str.split('''_''' )
_UpperCamelCase = 0 if use_pascal else 1
_UpperCamelCase = words[start_index:]
_UpperCamelCase = [word[0].upper() + word[1:] for word in words_to_capitalize]
_UpperCamelCase = '''''' if use_pascal else words[0]
return "".join([initial_word, *capitalized_words] )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 324 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 1 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ) -> str:
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
_UpperCamelCase = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
@torch.no_grad()
def __call__( self : Tuple , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : int = 50 , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
if isinstance(self.unet.config.sample_size , lowerCAmelCase__ ):
_UpperCamelCase = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
_UpperCamelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size:
raise ValueError(
f"""You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch"""
f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
_UpperCamelCase = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(lowerCAmelCase__ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
_UpperCamelCase = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
_UpperCamelCase = self.scheduler.step(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , eta=lowerCAmelCase__ , use_clipped_model_output=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample
_UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 )
_UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_UpperCamelCase = self.numpy_to_pil(lowerCAmelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase__ )
| 324 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 1 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Any = logging.get_logger()
@dataclass
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : nn.Module
_snake_case : List[nn.Module] = field(default_factory=__magic_name__ )
_snake_case : list = field(default_factory=__magic_name__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Tensor ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(lowerCAmelCase__ )
def __call__( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Optional[int]:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(lowerCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def snake_case__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : nn.Module
_snake_case : nn.Module
_snake_case : int = 0
_snake_case : List = field(default_factory=__magic_name__ )
_snake_case : List = field(default_factory=__magic_name__ )
def __call__( self : List[str] , lowerCAmelCase__ : Tensor ) -> Dict:
'''simple docstring'''
_UpperCamelCase = Tracker(self.dest )(lowerCAmelCase__ ).parametrized
_UpperCamelCase = Tracker(self.src )(lowerCAmelCase__ ).parametrized
_UpperCamelCase = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) )
_UpperCamelCase = list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise Exception(
f"""Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while"""
f""" destination module has {len(lowerCAmelCase__ )}.""" )
for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"""Transfered from={src_m} to={dest_m}""" )
def a__ ( lowercase : str, lowercase : ResNetConfig, lowercase : Path, lowercase : bool = True ) -> int:
"""simple docstring"""
print(F"""Converting {name}...""" )
with torch.no_grad():
_UpperCamelCase = timm.create_model(lowercase, pretrained=lowercase ).eval()
_UpperCamelCase = ResNetForImageClassification(lowercase ).eval()
_UpperCamelCase = ModuleTransfer(src=lowercase, dest=lowercase )
_UpperCamelCase = torch.randn((1, 3, 224, 224) )
module_transfer(lowercase )
assert torch.allclose(from_model(lowercase ), our_model(lowercase ).logits ), "The model logits don't match the original one."
_UpperCamelCase = F"""resnet{'-'.join(name.split('resnet' ) )}"""
print(lowercase )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='''Add model''', use_temp_dir=lowercase, )
# we can use the convnext one
_UpperCamelCase = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name, commit_message='''Add image processor''', use_temp_dir=lowercase, )
print(F"""Pushed {checkpoint_name}""" )
def a__ ( lowercase : Path, lowercase : str = None, lowercase : bool = True ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = '''imagenet-1k-id2label.json'''
_UpperCamelCase = 1000
_UpperCamelCase = (1, num_labels)
_UpperCamelCase = '''huggingface/label-files'''
_UpperCamelCase = num_labels
_UpperCamelCase = json.load(open(hf_hub_download(lowercase, lowercase, repo_type='''dataset''' ), '''r''' ) )
_UpperCamelCase = {int(lowercase ): v for k, v in idalabel.items()}
_UpperCamelCase = idalabel
_UpperCamelCase = {v: k for k, v in idalabel.items()}
_UpperCamelCase = partial(lowercase, num_labels=lowercase, idalabel=lowercase, labelaid=lowercase )
_UpperCamelCase = {
'''resnet18''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[64, 128, 256, 512], layer_type='''basic''' ),
'''resnet26''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2], hidden_sizes=[256, 512, 1024, 2048], layer_type='''bottleneck''' ),
'''resnet34''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[64, 128, 256, 512], layer_type='''basic''' ),
'''resnet50''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='''bottleneck''' ),
'''resnet101''': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='''bottleneck''' ),
'''resnet152''': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3], hidden_sizes=[256, 512, 1024, 2048], layer_type='''bottleneck''' ),
}
if model_name:
convert_weight_and_push(lowercase, names_to_config[model_name], lowercase, lowercase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(lowercase, lowercase, lowercase, lowercase )
return config, expected_shape
if __name__ == "__main__":
lowercase__ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help=(
'The name of the model you wish to convert, it must be one of the supported resnet* architecture,'
' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'
),
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=Path,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
default=True,
type=bool,
required=False,
help='If True, push model and image processor to the hub.',
)
lowercase__ : str = parser.parse_args()
lowercase__ : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 324 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : list[int | str] ) -> None:
"""simple docstring"""
create_state_space_tree(lowercase, [], 0, [0 for i in range(len(lowercase ) )] )
def a__ ( lowercase : list[int | str], lowercase : list[int | str], lowercase : int, lowercase : list[int], ) -> None:
"""simple docstring"""
if index == len(lowercase ):
print(lowercase )
return
for i in range(len(lowercase ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_UpperCamelCase = True
create_state_space_tree(lowercase, lowercase, index + 1, lowercase )
current_sequence.pop()
_UpperCamelCase = False
lowercase__ : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
lowercase__ : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 324 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 1 |
'''simple docstring'''
def a__ ( lowercase : str, lowercase : int ) -> list:
"""simple docstring"""
_UpperCamelCase = word.split()
def justify(lowercase : list, lowercase : int, lowercase : int ) -> str:
_UpperCamelCase = max_width - width
_UpperCamelCase = len(lowercase )
if len(lowercase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_UpperCamelCase = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_UpperCamelCase = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_UpperCamelCase = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(lowercase ):
num_spaces_between_words_list[i] += 1
_UpperCamelCase = []
for i in range(lowercase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(lowercase )
_UpperCamelCase = []
_UpperCamelCase = []
_UpperCamelCase = 0
for word in words:
if width + len(lowercase ) + len(lowercase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(lowercase )
width += len(lowercase )
else:
# justify the line and add it to result
answer.append(justify(lowercase, lowercase, lowercase ) )
# reset new line and new width
_UpperCamelCase , _UpperCamelCase = [word], len(lowercase )
_UpperCamelCase = max_width - width - len(lowercase )
answer.append(''' '''.join(lowercase ) + (remaining_spaces + 1) * ''' ''' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 324 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 1 |
'''simple docstring'''
def a__ ( lowercase : str, lowercase : list[str] ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''
for word_or_phrase in separated:
if not isinstance(lowercase, lowercase ):
raise Exception('''join() accepts only strings to be joined''' )
joined += word_or_phrase + separator
return joined.strip(lowercase )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 324 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 1 |
'''simple docstring'''
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowercase__ : List[Any] = None
try:
import msvcrt
except ImportError:
lowercase__ : List[str] = None
try:
import fcntl
except ImportError:
lowercase__ : Union[str, Any] = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowercase__ : List[str] = OSError
# Data
# ------------------------------------------------
lowercase__ : List[str] = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
lowercase__ : Dict = '3.0.12'
lowercase__ : Optional[int] = None
def a__ ( ) -> Any:
"""simple docstring"""
global _logger
_UpperCamelCase = _logger or logging.getLogger(__name__ )
return _logger
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = lock_file
return None
def __str__( self : str ) -> Dict:
'''simple docstring'''
_UpperCamelCase = f"""The file lock '{self.lock_file}' could not be acquired."""
return temp
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : Any ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = lock
return None
def __enter__( self : Any ) -> Union[str, Any]:
'''simple docstring'''
return self.lock
def __exit__( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str ) -> Union[str, Any]:
'''simple docstring'''
self.lock.release()
return None
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any=-1 , lowerCAmelCase__ : List[Any]=None ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
_UpperCamelCase = self.hash_filename_if_too_long(lowerCAmelCase__ , lowerCAmelCase__ )
# The path to the lock file.
_UpperCamelCase = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
_UpperCamelCase = None
# The default timeout value.
_UpperCamelCase = timeout
# We use this lock primarily for the lock counter.
_UpperCamelCase = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
_UpperCamelCase = 0
return None
@property
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
return self._lock_file
@property
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
return self._timeout
@timeout.setter
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = float(lowerCAmelCase__ )
return None
def snake_case__ ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
raise NotImplementedError()
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
raise NotImplementedError()
@property
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
return self._lock_file_fd is not None
def snake_case__ ( self : Any , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : List[Any]=0.05 ) -> Dict:
'''simple docstring'''
if timeout is None:
_UpperCamelCase = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
_UpperCamelCase = id(self )
_UpperCamelCase = self._lock_file
_UpperCamelCase = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(lowerCAmelCase__ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
_UpperCamelCase = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any]=False ) -> str:
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
_UpperCamelCase = id(self )
_UpperCamelCase = self._lock_file
logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
_UpperCamelCase = 0
logger().debug(f"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
self.acquire()
return self
def __exit__( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ) -> Dict:
'''simple docstring'''
self.release()
return None
def __del__( self : List[str] ) -> Any:
'''simple docstring'''
self.release(force=lowerCAmelCase__ )
return None
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> str:
'''simple docstring'''
_UpperCamelCase = os.path.basename(lowerCAmelCase__ )
if len(lowerCAmelCase__ ) > max_length and max_length > 0:
_UpperCamelCase = os.path.dirname(lowerCAmelCase__ )
_UpperCamelCase = str(hash(lowerCAmelCase__ ) )
_UpperCamelCase = filename[: max_length - len(lowerCAmelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
else:
return path
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int=-1 , lowerCAmelCase__ : int=None ) -> List[str]:
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ )
_UpperCamelCase = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def snake_case__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
_UpperCamelCase = os.open(self._lock_file , lowerCAmelCase__ )
except OSError:
pass
else:
try:
msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(lowerCAmelCase__ )
else:
_UpperCamelCase = fd
return None
def snake_case__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self._lock_file_fd
_UpperCamelCase = None
msvcrt.locking(lowerCAmelCase__ , msvcrt.LK_UNLCK , 1 )
os.close(lowerCAmelCase__ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : str=-1 , lowerCAmelCase__ : int=None ) -> Any:
'''simple docstring'''
_UpperCamelCase = os.statvfs(os.path.dirname(lowerCAmelCase__ ) ).f_namemax
super().__init__(lowerCAmelCase__ , timeout=lowerCAmelCase__ , max_filename_length=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC
_UpperCamelCase = os.open(self._lock_file , lowerCAmelCase__ )
try:
fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(lowerCAmelCase__ )
else:
_UpperCamelCase = fd
return None
def snake_case__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self._lock_file_fd
_UpperCamelCase = None
fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN )
os.close(lowerCAmelCase__ )
return None
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
_UpperCamelCase = os.open(self._lock_file , lowerCAmelCase__ )
except OSError:
pass
else:
_UpperCamelCase = fd
return None
def snake_case__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
os.close(self._lock_file_fd )
_UpperCamelCase = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowercase__ : Union[str, Any] = None
if msvcrt:
lowercase__ : Optional[Any] = WindowsFileLock
elif fcntl:
lowercase__ : Tuple = UnixFileLock
else:
lowercase__ : List[Any] = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 324 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 1 |
'''simple docstring'''
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> str:
'''simple docstring'''
_UpperCamelCase = params
_UpperCamelCase = np.array(lowerCAmelCase__ )
_UpperCamelCase = np.array([len(lowerCAmelCase__ ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self : Optional[Any] , lowerCAmelCase__ : Dict ) -> Optional[Any]:
'''simple docstring'''
return (self.token_ids[index], self.lengths[index])
def __len__( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
return len(self.lengths )
def snake_case__ ( self : Dict ) -> Dict:
'''simple docstring'''
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.params.max_model_input_size
_UpperCamelCase = self.lengths > max_len
logger.info(f"""Splitting {sum(lowerCAmelCase__ )} too long sequences.""" )
def divide_chunks(lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ):
return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )]
_UpperCamelCase = []
_UpperCamelCase = []
if self.params.mlm:
_UpperCamelCase , _UpperCamelCase = self.params.special_tok_ids['''cls_token'''], self.params.special_tok_ids['''sep_token''']
else:
_UpperCamelCase , _UpperCamelCase = self.params.special_tok_ids['''bos_token'''], self.params.special_tok_ids['''eos_token''']
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
_UpperCamelCase = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
_UpperCamelCase = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ )
if sub_s[-1] != sep_id:
_UpperCamelCase = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ )
assert len(lowerCAmelCase__ ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(lowerCAmelCase__ )
new_tok_ids.extend(lowerCAmelCase__ )
new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] )
_UpperCamelCase = np.array(lowerCAmelCase__ )
_UpperCamelCase = np.array(lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = len(self )
_UpperCamelCase = self.lengths > 11
_UpperCamelCase = self.token_ids[indices]
_UpperCamelCase = self.lengths[indices]
_UpperCamelCase = len(self )
logger.info(f"""Remove {init_size - new_size} too short (<=11 tokens) sequences.""" )
def snake_case__ ( self : List[str] ) -> List[Any]:
'''simple docstring'''
if "unk_token" not in self.params.special_tok_ids:
return
else:
_UpperCamelCase = self.params.special_tok_ids['''unk_token''']
_UpperCamelCase = len(self )
_UpperCamelCase = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
_UpperCamelCase = (unk_occs / self.lengths) < 0.5
_UpperCamelCase = self.token_ids[indices]
_UpperCamelCase = self.lengths[indices]
_UpperCamelCase = len(self )
logger.info(f"""Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).""" )
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
if not self.params.is_master:
return
logger.info(f"""{len(self )} sequences""" )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = [t[0] for t in batch]
_UpperCamelCase = [t[1] for t in batch]
assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ )
# Max for paddings
_UpperCamelCase = max(lowerCAmelCase__ )
# Pad token ids
if self.params.mlm:
_UpperCamelCase = self.params.special_tok_ids['''pad_token''']
else:
_UpperCamelCase = self.params.special_tok_ids['''unk_token''']
_UpperCamelCase = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids]
assert len(tk_ ) == len(lowerCAmelCase__ )
assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ )
_UpperCamelCase = torch.tensor(tk_ ) # (bs, max_seq_len_)
_UpperCamelCase = torch.tensor(lowerCAmelCase__ ) # (bs)
return tk_t, lg_t
| 324 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : list[int], lowercase : list[int], lowercase : int ) -> tuple[float, list[float]]:
"""simple docstring"""
_UpperCamelCase = list(range(len(lowercase ) ) )
_UpperCamelCase = [v / w for v, w in zip(lowercase, lowercase )]
index.sort(key=lambda lowercase : ratio[i], reverse=lowercase )
_UpperCamelCase = 0
_UpperCamelCase = [0] * len(lowercase )
for i in index:
if weight[i] <= capacity:
_UpperCamelCase = 1
max_value += value[i]
capacity -= weight[i]
else:
_UpperCamelCase = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
lowercase__ : Optional[Any] = {'configuration_gpt_neox': ['GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXConfig']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[Any] = ['GPTNeoXTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST',
'GPTNeoXForCausalLM',
'GPTNeoXForQuestionAnswering',
'GPTNeoXForSequenceClassification',
'GPTNeoXForTokenClassification',
'GPTNeoXLayer',
'GPTNeoXModel',
'GPTNeoXPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox import (
GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXLayer,
GPTNeoXModel,
GPTNeoXPreTrainedModel,
)
else:
import sys
lowercase__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 1 |
'''simple docstring'''
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def a__ ( lowercase : str=32, lowercase : List[str]=10, lowercase : Tuple=100, lowercase : List[Any]=1026, lowercase : Tuple=True, lowercase : Optional[int]="data/tokenized_stories_train_wikitext103.jbl", lowercase : List[Any]="igf_context_pairs.jbl", ) -> List[Any]:
"""simple docstring"""
set_seed(3 )
# generate train_data and objective_set
_UpperCamelCase , _UpperCamelCase = generate_datasets(
lowercase, lowercase, number=lowercase, min_len=1026, trim=lowercase )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
_UpperCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
# load pretrained model
_UpperCamelCase = load_gpta('''gpt2''' ).to(lowercase )
print('''computing perplexity on objective set''' )
_UpperCamelCase = compute_perplexity(lowercase, lowercase, lowercase ).item()
print('''perplexity on objective set:''', lowercase )
# collect igf pairs and save to file demo.jbl
collect_objective_set(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def a__ ( lowercase : List[str], lowercase : int=15, lowercase : Tuple=128, lowercase : Optional[int]=100, lowercase : List[str]="igf_model.pt", ) -> Optional[Any]:
"""simple docstring"""
set_seed(42 )
# Load pre-trained model
_UpperCamelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' )
# Initialize secondary learner to use embedding weights of model
_UpperCamelCase = SecondaryLearner(lowercase )
# Train secondary learner
_UpperCamelCase = train_secondary_learner(
lowercase, lowercase, max_epochs=lowercase, batch_size=lowercase, eval_freq=100, igf_model_path=lowercase, )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def a__ ( lowercase : Any, lowercase : Any, lowercase : int, lowercase : Optional[Any]=32, lowercase : Dict=1000, lowercase : Optional[Any]=16, lowercase : List[Any]=1.0, lowercase : Any=recopy_gpta, lowercase : int=None, lowercase : str=10, lowercase : Optional[Any]="gpt2_finetuned.pt", ) -> int:
"""simple docstring"""
_UpperCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' )
_UpperCamelCase = RandomSampler(lowercase )
_UpperCamelCase = DataLoader(lowercase, sampler=lowercase )
_UpperCamelCase = max_steps // (len(lowercase )) + 1
_UpperCamelCase = 0
_UpperCamelCase = torch.zeros((1, context_len), dtype=torch.long, device=lowercase )
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = recopy_model(lowercase, lowercase, lowercase )
model.train()
if secondary_learner is not None:
secondary_learner.to(lowercase )
secondary_learner.eval()
_UpperCamelCase = []
_UpperCamelCase = 0
_UpperCamelCase = []
_UpperCamelCase = []
# Compute the performance of the transformer model at the beginning
_UpperCamelCase = compute_perplexity(lowercase, lowercase, lowercase )
test_perps.append(lowercase )
print('''Test perplexity, step''', lowercase, ''':''', lowercase )
for epoch in range(int(lowercase ) ):
for step, example in enumerate(lowercase ):
torch.cuda.empty_cache()
_UpperCamelCase = random.randint(0, example.size(2 ) - context_len - 1 )
_UpperCamelCase = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
_UpperCamelCase = model(lowercase, labels=lowercase )
_UpperCamelCase = True
if secondary_learner is not None:
_UpperCamelCase = secondary_learner.forward(
torch.tensor(lowercase, dtype=torch.long, device=lowercase ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(lowercase ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
_UpperCamelCase = -1
if predicted_q < threshold:
_UpperCamelCase = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
_UpperCamelCase = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
_UpperCamelCase = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters(), 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
_UpperCamelCase = compute_perplexity(lowercase, lowercase, lowercase )
test_perps.append(lowercase )
print('''Test perplexity, step''', lowercase, ''':''', lowercase )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict(), lowercase )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser(description='''Fine-tune a transformer model with IGF on a language modeling task''' )
# Required parameters
parser.add_argument(
'''--data_dir''', default=lowercase, type=lowercase, required=lowercase, help='''The input data dir. Should contain data files for WikiText.''', )
parser.add_argument(
'''--model_name_or_path''', default=lowercase, type=lowercase, required=lowercase, help='''Path to pretrained model or model identifier from huggingface.co/models''', )
parser.add_argument(
'''--data_file''', type=lowercase, default=lowercase, help=(
'''A jbl file containing tokenized data which can be split as objective dataset, '''
'''train_dataset and test_dataset.'''
), )
parser.add_argument(
'''--igf_data_file''', type=lowercase, default=lowercase, help='''A jbl file containing the context and information gain pairs to train secondary learner.''', )
parser.add_argument(
'''--output_dir''', default=lowercase, type=lowercase, required=lowercase, help='''The output directory where the final fine-tuned model is stored.''', )
parser.add_argument(
'''--tokenizer_name''', default=lowercase, type=lowercase, help='''Pretrained tokenizer name or path if not the same as model_name''', )
parser.add_argument('''--seed''', type=lowercase, default=lowercase, help='''A seed for reproducible training.''' )
parser.add_argument(
'''--context_len''', default=32, type=lowercase, help=(
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
), )
parser.add_argument(
'''--size_objective_set''', default=100, type=lowercase, help='''number of articles that are long enough to be used as our objective set''', )
parser.add_argument(
'''--eval_freq''', default=100, type=lowercase, help='''secondary model evaluation is triggered at eval_freq''' )
parser.add_argument('''--max_steps''', default=1000, type=lowercase, help='''To calculate training epochs''' )
parser.add_argument(
'''--secondary_learner_batch_size''', default=128, type=lowercase, help='''batch size of training data for secondary learner''', )
parser.add_argument(
'''--batch_size''', default=16, type=lowercase, help='''batch size of training data of language model(gpt2) ''' )
parser.add_argument(
'''--eval_interval''', default=10, type=lowercase, help=(
'''decay the selectivity of our secondary learner filter from'''
'''1 standard deviation above average to 1 below average after 10 batches'''
), )
parser.add_argument(
'''--number''', default=100, type=lowercase, help='''The number of examples split to be used as objective_set/test_data''' )
parser.add_argument(
'''--min_len''', default=1026, type=lowercase, help='''The minimum length of the article to be used as objective set''' )
parser.add_argument(
'''--secondary_learner_max_epochs''', default=15, type=lowercase, help='''number of epochs to train secondary learner''' )
parser.add_argument('''--trim''', default=lowercase, type=lowercase, help='''truncate the example if it exceeds context length''' )
parser.add_argument(
'''--threshold''', default=1.0, type=lowercase, help=(
'''The threshold value used by secondary learner to filter the train_data and allow only'''
''' informative data as input to the model'''
), )
parser.add_argument('''--finetuned_model_name''', default='''gpt2_finetuned.pt''', type=lowercase, help='''finetuned_model_name''' )
parser.add_argument(
'''--recopy_model''', default=lowercase, type=lowercase, help='''Reset the model to the original pretrained GPT-2 weights after each iteration''', )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32, max_steps=10, size_objective_set=100, min_len=1026, trim=lowercase, data_file='''data/tokenized_stories_train_wikitext103.jbl''', igf_data_file='''igf_context_pairs.jbl''', )
# Load train data for secondary learner
_UpperCamelCase = joblib.load('''data/IGF_values.jbl''' )
# Train secondary learner
_UpperCamelCase = training_secondary_learner(
lowercase, secondary_learner_max_epochs=15, secondary_learner_batch_size=128, eval_freq=100, igf_model_path='''igf_model.pt''', )
# load pretrained gpt2 model
_UpperCamelCase = GPTaLMHeadModel.from_pretrained('''gpt2''' )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
_UpperCamelCase , _UpperCamelCase = generate_datasets(
context_len=32, file='''data/tokenized_stories_train_wikitext103.jbl''', number=100, min_len=1026, trim=lowercase )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
lowercase, lowercase, lowercase, context_len=32, max_steps=1000, batch_size=16, threshold=1.0, recopy_model=lowercase, secondary_learner=lowercase, eval_interval=10, finetuned_model_name='''gpt2_finetuned.pt''', )
if __name__ == "__main__":
main()
| 324 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 1 |
'''simple docstring'''
import bza
import gzip
import lzma
import os
import shutil
import struct
import tarfile
import warnings
import zipfile
from abc import ABC, abstractmethod
from pathlib import Path
from typing import Dict, List, Optional, Type, Union
from .. import config
from .filelock import FileLock
from .logging import get_logger
lowercase__ : str = get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Optional[str] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = (
os.path.join(lowerCAmelCase__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH
)
_UpperCamelCase = Extractor
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : str ) -> str:
'''simple docstring'''
from .file_utils import hash_url_to_filename
# Path where we extract compressed archives
# We extract in the cache dir, and get the extracted path name by hashing the original path"
_UpperCamelCase = os.path.abspath(lowerCAmelCase__ )
return os.path.join(self.extract_dir , hash_url_to_filename(lowerCAmelCase__ ) )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : bool ) -> bool:
'''simple docstring'''
return force_extract or (
not os.path.isfile(lowerCAmelCase__ ) and not (os.path.isdir(lowerCAmelCase__ ) and os.listdir(lowerCAmelCase__ ))
)
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : bool = False ) -> str:
'''simple docstring'''
_UpperCamelCase = self.extractor.infer_extractor_format(lowerCAmelCase__ )
if not extractor_format:
return input_path
_UpperCamelCase = self._get_output_path(lowerCAmelCase__ )
if self._do_extract(lowerCAmelCase__ , lowerCAmelCase__ ):
self.extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return output_path
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
@abstractmethod
def snake_case__ ( cls : Any , lowerCAmelCase__ : Union[Path, str] , **lowerCAmelCase__ : int ) -> bool:
'''simple docstring'''
...
@staticmethod
@abstractmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
...
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : List[bytes] = []
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : int ) -> Dict:
'''simple docstring'''
with open(lowerCAmelCase__ , '''rb''' ) as f:
return f.read(lowerCAmelCase__ )
@classmethod
def snake_case__ ( cls : int , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : bytes = b"" ) -> bool:
'''simple docstring'''
if not magic_number:
_UpperCamelCase = max(len(lowerCAmelCase__ ) for cls_magic_number in cls.magic_numbers )
try:
_UpperCamelCase = cls.read_magic_number(lowerCAmelCase__ , lowerCAmelCase__ )
except OSError:
return False
return any(magic_number.startswith(lowerCAmelCase__ ) for cls_magic_number in cls.magic_numbers )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Tuple , lowerCAmelCase__ : Union[Path, str] , **lowerCAmelCase__ : int ) -> bool:
'''simple docstring'''
return tarfile.is_tarfile(lowerCAmelCase__ )
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
def resolved(lowerCAmelCase__ : str ) -> str:
return os.path.realpath(os.path.abspath(lowerCAmelCase__ ) )
def badpath(lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> bool:
# joinpath will ignore base if path is absolute
return not resolved(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ).startswith(lowerCAmelCase__ )
def badlink(lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ) -> bool:
# Links are interpreted relative to the directory containing the link
_UpperCamelCase = resolved(os.path.join(lowerCAmelCase__ , os.path.dirname(info.name ) ) )
return badpath(info.linkname , base=lowerCAmelCase__ )
_UpperCamelCase = resolved(lowerCAmelCase__ )
for finfo in members:
if badpath(finfo.name , lowerCAmelCase__ ):
logger.error(f"""Extraction of {finfo.name} is blocked (illegal path)""" )
elif finfo.issym() and badlink(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.error(f"""Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}""" )
elif finfo.islnk() and badlink(lowerCAmelCase__ , lowerCAmelCase__ ):
logger.error(f"""Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}""" )
else:
yield finfo
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
_UpperCamelCase = tarfile.open(lowerCAmelCase__ )
tar_file.extractall(lowerCAmelCase__ , members=TarExtractor.safemembers(lowerCAmelCase__ , lowerCAmelCase__ ) )
tar_file.close()
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = [b'\x1F\x8B']
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
with gzip.open(lowerCAmelCase__ , '''rb''' ) as gzip_file:
with open(lowerCAmelCase__ , '''wb''' ) as extracted_file:
shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Dict = [
b'PK\x03\x04',
b'PK\x05\x06', # empty archive
b'PK\x07\x08', # spanned archive
]
@classmethod
def snake_case__ ( cls : Optional[int] , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : bytes = b"" ) -> bool:
'''simple docstring'''
if super().is_extractable(lowerCAmelCase__ , magic_number=lowerCAmelCase__ ):
return True
try:
# Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives.
# From: https://github.com/python/cpython/pull/5053
from zipfile import (
_CD_SIGNATURE,
_ECD_DISK_NUMBER,
_ECD_DISK_START,
_ECD_ENTRIES_TOTAL,
_ECD_OFFSET,
_ECD_SIZE,
_EndRecData,
sizeCentralDir,
stringCentralDir,
structCentralDir,
)
with open(lowerCAmelCase__ , '''rb''' ) as fp:
_UpperCamelCase = _EndRecData(lowerCAmelCase__ )
if endrec:
if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0:
return True # Empty zipfiles are still zipfiles
elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]:
fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk
if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir:
_UpperCamelCase = fp.read(lowerCAmelCase__ ) # CD is where we expect it to be
if len(lowerCAmelCase__ ) == sizeCentralDir:
_UpperCamelCase = struct.unpack(lowerCAmelCase__ , lowerCAmelCase__ ) # CD is the right size
if centdir[_CD_SIGNATURE] == stringCentralDir:
return True # First central directory entry has correct magic number
return False
except Exception: # catch all errors in case future python versions change the zipfile internals
return False
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with zipfile.ZipFile(lowerCAmelCase__ , '''r''' ) as zip_file:
zip_file.extractall(lowerCAmelCase__ )
zip_file.close()
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = [b'\xFD\x37\x7A\x58\x5A\x00']
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
with lzma.open(lowerCAmelCase__ ) as compressed_file:
with open(lowerCAmelCase__ , '''wb''' ) as extracted_file:
shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : List[str] = [b'Rar!\x1a\x07\x00', b'Rar!\x1a\x07\x01\x00'] # RAR_ID # RAR5_ID
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
if not config.RARFILE_AVAILABLE:
raise ImportError('''Please pip install rarfile''' )
import rarfile
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
_UpperCamelCase = rarfile.RarFile(lowerCAmelCase__ )
rf.extractall(lowerCAmelCase__ )
rf.close()
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : List[str] = [b'\x28\xb5\x2F\xFD']
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
if not config.ZSTANDARD_AVAILABLE:
raise ImportError('''Please pip install zstandard''' )
import zstandard as zstd
_UpperCamelCase = zstd.ZstdDecompressor()
with open(lowerCAmelCase__ , '''rb''' ) as ifh, open(lowerCAmelCase__ , '''wb''' ) as ofh:
dctx.copy_stream(lowerCAmelCase__ , lowerCAmelCase__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = [b'\x42\x5A\x68']
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
with bza.open(lowerCAmelCase__ , '''rb''' ) as compressed_file:
with open(lowerCAmelCase__ , '''wb''' ) as extracted_file:
shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Any = [b'\x37\x7A\xBC\xAF\x27\x1C']
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
if not config.PY7ZR_AVAILABLE:
raise ImportError('''Please pip install py7zr''' )
import pyazr
os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ )
with pyazr.SevenZipFile(lowerCAmelCase__ , '''r''' ) as archive:
archive.extractall(lowerCAmelCase__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = [b'\x04\x22\x4D\x18']
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] ) -> None:
'''simple docstring'''
if not config.LZ4_AVAILABLE:
raise ImportError('''Please pip install lz4''' )
import lza.frame
with lza.frame.open(lowerCAmelCase__ , '''rb''' ) as compressed_file:
with open(lowerCAmelCase__ , '''wb''' ) as extracted_file:
shutil.copyfileobj(lowerCAmelCase__ , lowerCAmelCase__ )
class __lowerCAmelCase :
"""simple docstring"""
# Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip)
_snake_case : Dict[str, Type[BaseExtractor]] = {
"tar": TarExtractor,
"gzip": GzipExtractor,
"zip": ZipExtractor,
"xz": XzExtractor,
"rar": RarExtractor,
"zstd": ZstdExtractor,
"bz2": BzipaExtractor,
"7z": SevenZipExtractor, # <Added version="2.4.0"/>
"lz4": LzaExtractor, # <Added version="2.4.0"/>
}
@classmethod
def snake_case__ ( cls : str ) -> str:
'''simple docstring'''
return max(
len(lowerCAmelCase__ )
for extractor in cls.extractors.values()
if issubclass(lowerCAmelCase__ , lowerCAmelCase__ )
for extractor_magic_number in extractor.magic_numbers )
@staticmethod
def snake_case__ ( lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
try:
return MagicNumberBaseExtractor.read_magic_number(lowerCAmelCase__ , magic_number_length=lowerCAmelCase__ )
except OSError:
return b""
@classmethod
def snake_case__ ( cls : Tuple , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : bool = False ) -> bool:
'''simple docstring'''
warnings.warn(
'''Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'infer_extractor_format\' instead.''' , category=lowerCAmelCase__ , )
_UpperCamelCase = cls.infer_extractor_format(lowerCAmelCase__ )
if extractor_format:
return True if not return_extractor else (True, cls.extractors[extractor_format])
return False if not return_extractor else (False, None)
@classmethod
def snake_case__ ( cls : Dict , lowerCAmelCase__ : Union[Path, str] ) -> str: # <Added version="2.4.0"/>
'''simple docstring'''
_UpperCamelCase = cls._get_magic_number_max_length()
_UpperCamelCase = cls._read_magic_number(lowerCAmelCase__ , lowerCAmelCase__ )
for extractor_format, extractor in cls.extractors.items():
if extractor.is_extractable(lowerCAmelCase__ , magic_number=lowerCAmelCase__ ):
return extractor_format
@classmethod
def snake_case__ ( cls : Union[str, Any] , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Union[Path, str] , lowerCAmelCase__ : Optional[str] = None , lowerCAmelCase__ : Optional[BaseExtractor] = "deprecated" , ) -> None:
'''simple docstring'''
os.makedirs(os.path.dirname(lowerCAmelCase__ ) , exist_ok=lowerCAmelCase__ )
# Prevent parallel extractions
_UpperCamelCase = str(Path(lowerCAmelCase__ ).with_suffix('''.lock''' ) )
with FileLock(lowerCAmelCase__ ):
shutil.rmtree(lowerCAmelCase__ , ignore_errors=lowerCAmelCase__ )
if extractor_format or extractor != "deprecated":
if extractor != "deprecated" or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # passed as positional arg
warnings.warn(
'''Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. '''
'''Use \'extractor_format\' instead.''' , category=lowerCAmelCase__ , )
_UpperCamelCase = extractor if extractor != '''deprecated''' else extractor_format
else:
_UpperCamelCase = cls.extractors[extractor_format]
return extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ )
else:
warnings.warn(
'''Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an '''
'''exception in 3.0.0.''' , category=lowerCAmelCase__ , )
for extractor in cls.extractors.values():
if extractor.is_extractable(lowerCAmelCase__ ):
return extractor.extract(lowerCAmelCase__ , lowerCAmelCase__ )
| 324 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 1 |
'''simple docstring'''
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = {}
def snake_case__ ( self : List[Any] ) -> None:
'''simple docstring'''
print(self.vertex )
for i in self.vertex:
print(lowerCAmelCase__ , ''' -> ''' , ''' -> '''.join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) )
def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> None:
'''simple docstring'''
if from_vertex in self.vertex:
self.vertex[from_vertex].append(lowerCAmelCase__ )
else:
# else make a new vertex
_UpperCamelCase = [to_vertex]
def snake_case__ ( self : str ) -> None:
'''simple docstring'''
_UpperCamelCase = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : list ) -> None:
'''simple docstring'''
_UpperCamelCase = True
print(lowerCAmelCase__ , end=''' ''' )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
lowercase__ : Optional[int] = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print('DFS:')
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3
| 324 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 1 |
'''simple docstring'''
import os
import sys
lowercase__ : Optional[int] = os.path.join(os.path.dirname(__file__), 'src')
sys.path.append(SRC_DIR)
from transformers import (
AutoConfig,
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForQuestionAnswering,
AutoModelForSequenceClassification,
AutoTokenizer,
add_start_docstrings,
)
lowercase__ : Optional[int] = [
'torch',
'numpy',
'tokenizers',
'filelock',
'requests',
'tqdm',
'regex',
'sentencepiece',
'sacremoses',
'importlib_metadata',
'huggingface_hub',
]
@add_start_docstrings(AutoConfig.__doc__ )
def a__ ( *lowercase : Dict, **lowercase : Union[str, Any] ) -> int:
"""simple docstring"""
return AutoConfig.from_pretrained(*lowercase, **lowercase )
@add_start_docstrings(AutoTokenizer.__doc__ )
def a__ ( *lowercase : Optional[Any], **lowercase : List[str] ) -> Any:
"""simple docstring"""
return AutoTokenizer.from_pretrained(*lowercase, **lowercase )
@add_start_docstrings(AutoModel.__doc__ )
def a__ ( *lowercase : Dict, **lowercase : str ) -> int:
"""simple docstring"""
return AutoModel.from_pretrained(*lowercase, **lowercase )
@add_start_docstrings(AutoModelForCausalLM.__doc__ )
def a__ ( *lowercase : Any, **lowercase : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return AutoModelForCausalLM.from_pretrained(*lowercase, **lowercase )
@add_start_docstrings(AutoModelForMaskedLM.__doc__ )
def a__ ( *lowercase : str, **lowercase : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return AutoModelForMaskedLM.from_pretrained(*lowercase, **lowercase )
@add_start_docstrings(AutoModelForSequenceClassification.__doc__ )
def a__ ( *lowercase : Any, **lowercase : Tuple ) -> int:
"""simple docstring"""
return AutoModelForSequenceClassification.from_pretrained(*lowercase, **lowercase )
@add_start_docstrings(AutoModelForQuestionAnswering.__doc__ )
def a__ ( *lowercase : List[Any], **lowercase : Dict ) -> int:
"""simple docstring"""
return AutoModelForQuestionAnswering.from_pretrained(*lowercase, **lowercase )
| 324 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'gpt_neo'
_snake_case : List[str] = ['past_key_values']
_snake_case : List[Any] = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=50257 , lowerCAmelCase__ : List[str]=2048 , lowerCAmelCase__ : List[str]=2048 , lowerCAmelCase__ : Any=24 , lowerCAmelCase__ : List[str]=[[["global", "local"], 12]] , lowerCAmelCase__ : Dict=16 , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Optional[Any]=256 , lowerCAmelCase__ : str="gelu_new" , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : List[str]=0.0 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : Optional[int]=1e-5 , lowerCAmelCase__ : List[Any]=0.02 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[Any]=50256 , lowerCAmelCase__ : List[str]=50256 , **lowerCAmelCase__ : str , ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = vocab_size
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = hidden_size
_UpperCamelCase = num_layers
_UpperCamelCase = num_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = window_size
_UpperCamelCase = activation_function
_UpperCamelCase = resid_dropout
_UpperCamelCase = embed_dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = classifier_dropout
_UpperCamelCase = layer_norm_epsilon
_UpperCamelCase = initializer_range
_UpperCamelCase = use_cache
_UpperCamelCase = bos_token_id
_UpperCamelCase = eos_token_id
_UpperCamelCase = attention_types
_UpperCamelCase = self.expand_attention_types_params(lowerCAmelCase__ )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.attention_layers)` == `config.num_layers` '''
f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """
f"""`config.num_layers = {self.num_layers}`. """
'''`config.attention_layers` is prepared using `config.attention_types`. '''
'''Please verify the value of `config.attention_types` argument.''' )
super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
@staticmethod
def snake_case__ ( lowerCAmelCase__ : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def a__ ( lowercase : Union[str, Any], lowercase : List[Any], lowercase : Optional[int], lowercase : Tuple ) -> Optional[Any]:
"""simple docstring"""
import torch
_UpperCamelCase = input.size()
_UpperCamelCase = len(lowercase )
_UpperCamelCase = shape[dimension]
_UpperCamelCase = torch.arange(0, lowercase, lowercase )
_UpperCamelCase = torch.div(sizedim - size, lowercase, rounding_mode='''floor''' ) + 1
_UpperCamelCase = torch.arange(lowercase ) + low_indices[:min_length][:, None]
_UpperCamelCase = [slice(lowercase )] * rank
_UpperCamelCase = indices
_UpperCamelCase = input[s]
_UpperCamelCase = list(range(0, rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(lowercase )
def a__ ( lowercase : int, lowercase : int ) -> Optional[int]:
"""simple docstring"""
import torch
_UpperCamelCase = torch.arange(1, lowercase )
_UpperCamelCase = torch.remainder(lowercase, lowercase )
_UpperCamelCase = remainders == 0
_UpperCamelCase = candidates[divisor_indices]
_UpperCamelCase = torch.max(lowercase )
return largest_divisor, torch.div(lowercase, lowercase, rounding_mode='''floor''' )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@property
def snake_case__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
_UpperCamelCase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} )
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase__ , direction='''inputs''' )
_UpperCamelCase = {0: '''batch''', 1: '''past_sequence + sequence'''}
else:
_UpperCamelCase = {0: '''batch''', 1: '''sequence'''}
return common_inputs
@property
def snake_case__ ( self : Optional[int] ) -> int:
'''simple docstring'''
return self._config.num_heads
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : PreTrainedTokenizer , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : int = -1 , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[TensorType] = None , ) -> Mapping[str, Any]:
'''simple docstring'''
_UpperCamelCase = super(lowerCAmelCase__ , self ).generate_dummy_inputs(
lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ )
# We need to order the input in the way they appears in the forward()
_UpperCamelCase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' )
else:
import torch
_UpperCamelCase , _UpperCamelCase = common_inputs['''input_ids'''].shape
# Not using the same length for past_key_values
_UpperCamelCase = seqlen + 2
_UpperCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_UpperCamelCase = [
(torch.zeros(lowerCAmelCase__ ), torch.zeros(lowerCAmelCase__ )) for _ in range(self.num_layers )
]
_UpperCamelCase = common_inputs['''attention_mask''']
if self.use_past:
_UpperCamelCase = ordered_inputs['''attention_mask'''].dtype
_UpperCamelCase = torch.cat(
[ordered_inputs['''attention_mask'''], torch.ones(lowerCAmelCase__ , lowerCAmelCase__ , dtype=lowerCAmelCase__ )] , dim=1 )
return ordered_inputs
@property
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
return 13
| 324 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 1 |
'''simple docstring'''
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : List[Any]=0.01 , lowerCAmelCase__ : Dict=1000 ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = p_stop
_UpperCamelCase = max_length
def __iter__( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = 0
_UpperCamelCase = False
while not stop and count < self.max_length:
yield count
count += 1
_UpperCamelCase = random.random() < self.p_stop
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any]=False , lowerCAmelCase__ : Any=True ) -> Dict:
'''simple docstring'''
_UpperCamelCase = [
BatchSamplerShard(lowerCAmelCase__ , 2 , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
for i in range(2 )
]
_UpperCamelCase = [list(lowerCAmelCase__ ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(lowerCAmelCase__ ) for shard in batch_sampler_shards] , [len(lowerCAmelCase__ ) for e in expected] )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Optional[int] ) -> str:
'''simple docstring'''
_UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
_UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
_UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
_UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
# Check the shards when the dataset is very small.
_UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [[], []]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
# Check the shards when the dataset is not a round multiple of batch size.
_UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
_UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
# Check the shards when the dataset is very small.
_UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [[], []]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
_UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
_UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
_UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
# Check the shards when the dataset is very small.
_UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [[], []]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
# Expected shouldn't change
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
# Check the shards when the dataset is not a round multiple of batch size.
_UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
_UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
# Check the shards when the dataset is very small.
_UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [[[0, 1]], []]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
_UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = [[], []]
self.check_batch_sampler_shards(lowerCAmelCase__ , lowerCAmelCase__ , split_batches=lowerCAmelCase__ , even_batches=lowerCAmelCase__ )
def snake_case__ ( self : str ) -> Dict:
'''simple docstring'''
_UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
_UpperCamelCase = [BatchSamplerShard(lowerCAmelCase__ , 2 , lowerCAmelCase__ , even_batches=lowerCAmelCase__ ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def snake_case__ ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Optional[int]=False ) -> Tuple:
'''simple docstring'''
random.seed(lowerCAmelCase__ )
_UpperCamelCase = list(lowerCAmelCase__ )
_UpperCamelCase = [
IterableDatasetShard(
lowerCAmelCase__ , batch_size=lowerCAmelCase__ , drop_last=lowerCAmelCase__ , num_processes=lowerCAmelCase__ , process_index=lowerCAmelCase__ , split_batches=lowerCAmelCase__ , )
for i in range(lowerCAmelCase__ )
]
_UpperCamelCase = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(lowerCAmelCase__ )
iterable_dataset_lists.append(list(lowerCAmelCase__ ) )
_UpperCamelCase = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
_UpperCamelCase = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
self.assertTrue(len(lowerCAmelCase__ ) % shard_batch_size == 0 )
_UpperCamelCase = []
for idx in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(lowerCAmelCase__ ) < len(lowerCAmelCase__ ):
reference += reference
self.assertListEqual(lowerCAmelCase__ , reference[: len(lowerCAmelCase__ )] )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = 42
_UpperCamelCase = RandomIterableDataset()
self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
# Edge case with a very small dataset
_UpperCamelCase = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
self.check_iterable_dataset_shards(lowerCAmelCase__ , lowerCAmelCase__ , batch_size=4 , drop_last=lowerCAmelCase__ , split_batches=lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCAmelCase__ )
_UpperCamelCase = SkipBatchSampler(lowerCAmelCase__ , 2 )
self.assertListEqual(list(lowerCAmelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def snake_case__ ( self : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 )
_UpperCamelCase = skip_first_batches(lowerCAmelCase__ , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(lowerCAmelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowerCAmelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def snake_case__ ( self : int ) -> Dict:
'''simple docstring'''
Accelerator()
_UpperCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(lowerCAmelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(lowerCAmelCase__ ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 324 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
import bisect
def a__ ( lowercase : list[int], lowercase : int, lowercase : int = 0, lowercase : int = -1 ) -> int:
"""simple docstring"""
if hi < 0:
_UpperCamelCase = len(lowercase )
while lo < hi:
_UpperCamelCase = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
_UpperCamelCase = mid + 1
else:
_UpperCamelCase = mid
return lo
def a__ ( lowercase : list[int], lowercase : int, lowercase : int = 0, lowercase : int = -1 ) -> int:
"""simple docstring"""
if hi < 0:
_UpperCamelCase = len(lowercase )
while lo < hi:
_UpperCamelCase = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
_UpperCamelCase = mid + 1
else:
_UpperCamelCase = mid
return lo
def a__ ( lowercase : list[int], lowercase : int, lowercase : int = 0, lowercase : int = -1 ) -> None:
"""simple docstring"""
sorted_collection.insert(bisect_left(lowercase, lowercase, lowercase, lowercase ), lowercase )
def a__ ( lowercase : list[int], lowercase : int, lowercase : int = 0, lowercase : int = -1 ) -> None:
"""simple docstring"""
sorted_collection.insert(bisect_right(lowercase, lowercase, lowercase, lowercase ), lowercase )
def a__ ( lowercase : list[int], lowercase : int ) -> int | None:
"""simple docstring"""
_UpperCamelCase = 0
_UpperCamelCase = len(lowercase ) - 1
while left <= right:
_UpperCamelCase = left + (right - left) // 2
_UpperCamelCase = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
_UpperCamelCase = midpoint - 1
else:
_UpperCamelCase = midpoint + 1
return None
def a__ ( lowercase : list[int], lowercase : int ) -> int | None:
"""simple docstring"""
_UpperCamelCase = bisect.bisect_left(lowercase, lowercase )
if index != len(lowercase ) and sorted_collection[index] == item:
return index
return None
def a__ ( lowercase : list[int], lowercase : int, lowercase : int, lowercase : int ) -> int | None:
"""simple docstring"""
if right < left:
return None
_UpperCamelCase = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(lowercase, lowercase, lowercase, midpoint - 1 )
else:
return binary_search_by_recursion(lowercase, lowercase, midpoint + 1, lowercase )
if __name__ == "__main__":
lowercase__ : Union[str, Any] = input('Enter numbers separated by comma:\n').strip()
lowercase__ : List[Any] = sorted(int(item) for item in user_input.split(','))
lowercase__ : List[Any] = int(input('Enter a single number to be found in the list:\n'))
lowercase__ : List[str] = binary_search(collection, target)
if result is None:
print(F"""{target} was not found in {collection}.""")
else:
print(F"""{target} was found at position {result} in {collection}.""")
| 324 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 1 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import ViTMSNConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTMSNForImageClassification, ViTMSNModel
from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any]=13 , lowerCAmelCase__ : Dict=30 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : str=3 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Tuple=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : Any=4 , lowerCAmelCase__ : int=37 , lowerCAmelCase__ : str="gelu" , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Union[str, Any]=0.02 , lowerCAmelCase__ : Any=None , ) -> Dict:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = image_size
_UpperCamelCase = patch_size
_UpperCamelCase = num_channels
_UpperCamelCase = is_training
_UpperCamelCase = use_labels
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = scope
# in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = (image_size // patch_size) ** 2
_UpperCamelCase = num_patches + 1
def snake_case__ ( self : str ) -> str:
'''simple docstring'''
_UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCamelCase = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
return ViTMSNConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> Dict:
'''simple docstring'''
_UpperCamelCase = ViTMSNModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.type_sequence_label_size
_UpperCamelCase = ViTMSNForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
print('''Pixel and labels shape: {pixel_values.shape}, {labels.shape}''' )
print('''Labels: {labels}''' )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_UpperCamelCase = 1
_UpperCamelCase = ViTMSNForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
_UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_UpperCamelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def snake_case__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __magic_name__ , __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : List[str] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else ()
_snake_case : List[Any] = (
{'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification}
if is_torch_available()
else {}
)
_snake_case : Optional[int] = False
_snake_case : Optional[Any] = False
_snake_case : Tuple = False
_snake_case : List[str] = False
def snake_case__ ( self : List[str] ) -> str:
'''simple docstring'''
_UpperCamelCase = ViTMSNModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViTMSN does not use inputs_embeds''' )
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(lowerCAmelCase__ )
_UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = ViTMSNModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def a__ ( ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : str ) -> str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('''facebook/vit-msn-small''' ) if is_vision_available() else None
@slow
def snake_case__ ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(2 )
_UpperCamelCase = ViTMSNForImageClassification.from_pretrained('''facebook/vit-msn-small''' ).to(lowerCAmelCase__ )
_UpperCamelCase = self.default_image_processor
_UpperCamelCase = prepare_img()
_UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
_UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Image
from .base import TaskTemplate
@dataclass(frozen=__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = field(default='image-classification' , metadata={'include_in_asdict_even_if_is_default': True} )
_snake_case : ClassVar[Features] = Features({'image': Image()} )
_snake_case : ClassVar[Features] = Features({'labels': ClassLabel} )
_snake_case : str = "image"
_snake_case : str = "labels"
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> Optional[int]:
'''simple docstring'''
if self.label_column not in features:
raise ValueError(f"""Column {self.label_column} is not present in features.""" )
if not isinstance(features[self.label_column] , lowerCAmelCase__ ):
raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" )
_UpperCamelCase = copy.deepcopy(self )
_UpperCamelCase = self.label_schema.copy()
_UpperCamelCase = features[self.label_column]
_UpperCamelCase = label_schema
return task_template
@property
def snake_case__ ( self : Union[str, Any] ) -> Dict[str, str]:
'''simple docstring'''
return {
self.image_column: "image",
self.label_column: "labels",
}
| 324 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
def a__ ( lowercase : Optional[Any] ) -> Dict:
"""simple docstring"""
if "resnet-50" in model_name:
_UpperCamelCase = ResNetConfig.from_pretrained('''microsoft/resnet-50''' )
elif "resnet-101" in model_name:
_UpperCamelCase = ResNetConfig.from_pretrained('''microsoft/resnet-101''' )
else:
raise ValueError('''Model name should include either resnet50 or resnet101''' )
_UpperCamelCase = DetrConfig(use_timm_backbone=lowercase, backbone_config=lowercase )
# set label attributes
_UpperCamelCase = '''panoptic''' in model_name
if is_panoptic:
_UpperCamelCase = 250
else:
_UpperCamelCase = 91
_UpperCamelCase = '''huggingface/label-files'''
_UpperCamelCase = '''coco-detection-id2label.json'''
_UpperCamelCase = json.load(open(hf_hub_download(lowercase, lowercase, repo_type='''dataset''' ), '''r''' ) )
_UpperCamelCase = {int(lowercase ): v for k, v in idalabel.items()}
_UpperCamelCase = idalabel
_UpperCamelCase = {v: k for k, v in idalabel.items()}
return config, is_panoptic
def a__ ( lowercase : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = []
# stem
# fmt: off
rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') )
rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') )
rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') )
rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') )
rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""",
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""",
) )
rename_keys.append(
(
F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""",
F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""",
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""",
F"""encoder.layers.{i}.self_attn.out_proj.weight""",
) )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""",
F"""decoder.layers.{i}.self_attn.out_proj.weight""",
) )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") )
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""",
F"""decoder.layers.{i}.encoder_attn.out_proj.weight""",
) )
rename_keys.append(
(
F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""",
F"""decoder.layers.{i}.encoder_attn.out_proj.bias""",
) )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") )
rename_keys.append(
(F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") )
rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
] )
return rename_keys
def a__ ( lowercase : List[str], lowercase : Dict, lowercase : str ) -> Dict:
"""simple docstring"""
_UpperCamelCase = state_dict.pop(lowercase )
_UpperCamelCase = val
def a__ ( lowercase : int, lowercase : int=False ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = ''''''
if is_panoptic:
_UpperCamelCase = '''detr.'''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
_UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
_UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_UpperCamelCase = in_proj_weight[:256, :]
_UpperCamelCase = in_proj_bias[:256]
_UpperCamelCase = in_proj_weight[256:512, :]
_UpperCamelCase = in_proj_bias[256:512]
_UpperCamelCase = in_proj_weight[-256:, :]
_UpperCamelCase = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
_UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
_UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
_UpperCamelCase = in_proj_weight[:256, :]
_UpperCamelCase = in_proj_bias[:256]
_UpperCamelCase = in_proj_weight[256:512, :]
_UpperCamelCase = in_proj_bias[256:512]
_UpperCamelCase = in_proj_weight[-256:, :]
_UpperCamelCase = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
_UpperCamelCase = state_dict.pop(
F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" )
_UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
_UpperCamelCase = in_proj_weight_cross_attn[:256, :]
_UpperCamelCase = in_proj_bias_cross_attn[:256]
_UpperCamelCase = in_proj_weight_cross_attn[256:512, :]
_UpperCamelCase = in_proj_bias_cross_attn[256:512]
_UpperCamelCase = in_proj_weight_cross_attn[-256:, :]
_UpperCamelCase = in_proj_bias_cross_attn[-256:]
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_UpperCamelCase = Image.open(requests.get(lowercase, stream=lowercase ).raw )
return im
@torch.no_grad()
def a__ ( lowercase : Optional[Any], lowercase : Union[str, Any]=None, lowercase : Tuple=False ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase , _UpperCamelCase = get_detr_config(lowercase )
# load original model from torch hub
_UpperCamelCase = {
'''detr-resnet-50''': '''detr_resnet50''',
'''detr-resnet-101''': '''detr_resnet101''',
}
logger.info(F"""Converting model {model_name}...""" )
_UpperCamelCase = torch.hub.load('''facebookresearch/detr''', model_name_to_original_name[model_name], pretrained=lowercase ).eval()
_UpperCamelCase = detr.state_dict()
# rename keys
for src, dest in create_rename_keys(lowercase ):
if is_panoptic:
_UpperCamelCase = '''detr.''' + src
rename_key(lowercase, lowercase, lowercase )
# query, key and value matrices need special treatment
read_in_q_k_v(lowercase, is_panoptic=lowercase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
_UpperCamelCase = '''detr.model.''' if is_panoptic else '''model.'''
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('''detr''' )
and not key.startswith('''class_labels_classifier''' )
and not key.startswith('''bbox_predictor''' )
):
_UpperCamelCase = state_dict.pop(lowercase )
_UpperCamelCase = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
_UpperCamelCase = state_dict.pop(lowercase )
_UpperCamelCase = val
elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ):
continue
else:
_UpperCamelCase = state_dict.pop(lowercase )
_UpperCamelCase = val
else:
if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ):
_UpperCamelCase = state_dict.pop(lowercase )
_UpperCamelCase = val
# finally, create HuggingFace model and load state dict
_UpperCamelCase = DetrForSegmentation(lowercase ) if is_panoptic else DetrForObjectDetection(lowercase )
model.load_state_dict(lowercase )
model.eval()
# verify our conversion on an image
_UpperCamelCase = '''coco_panoptic''' if is_panoptic else '''coco_detection'''
_UpperCamelCase = DetrImageProcessor(format=lowercase )
_UpperCamelCase = processor(images=prepare_img(), return_tensors='''pt''' )
_UpperCamelCase = encoding['''pixel_values''']
_UpperCamelCase = detr(lowercase )
_UpperCamelCase = model(lowercase )
assert torch.allclose(outputs.logits, original_outputs['''pred_logits'''], atol=1e-3 )
assert torch.allclose(outputs.pred_boxes, original_outputs['''pred_boxes'''], atol=1e-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks, original_outputs['''pred_masks'''], atol=1e-4 )
print('''Looks ok!''' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(lowercase ).mkdir(exist_ok=lowercase )
model.save_pretrained(lowercase )
processor.save_pretrained(lowercase )
if push_to_hub:
# Upload model and image processor to the hub
logger.info('''Uploading PyTorch model and image processor to the hub...''' )
model.push_to_hub(F"""nielsr/{model_name}""" )
processor.push_to_hub(F"""nielsr/{model_name}""" )
if __name__ == "__main__":
lowercase__ : Tuple = argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='detr-resnet-50',
type=str,
choices=['detr-resnet-50', 'detr-resnet-101'],
help='Name of the DETR model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.')
lowercase__ : int = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 324 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def a__ ( lowercase : str ) -> None:
"""simple docstring"""
_UpperCamelCase , _UpperCamelCase = analyze_text(lowercase )
_UpperCamelCase = list(''' ''' + ascii_lowercase )
# what is our total sum of probabilities.
_UpperCamelCase = sum(single_char_strings.values() )
# one length string
_UpperCamelCase = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
_UpperCamelCase = single_char_strings[ch]
_UpperCamelCase = my_str / all_sum
my_fir_sum += prob * math.loga(lowercase ) # entropy formula.
# print entropy
print(F"""{round(-1 * my_fir_sum ):.1f}""" )
# two len string
_UpperCamelCase = sum(two_char_strings.values() )
_UpperCamelCase = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
_UpperCamelCase = cha + cha
if sequence in two_char_strings:
_UpperCamelCase = two_char_strings[sequence]
_UpperCamelCase = int(lowercase ) / all_sum
my_sec_sum += prob * math.loga(lowercase )
# print second entropy
print(F"""{round(-1 * my_sec_sum ):.1f}""" )
# print the difference between them
print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" )
def a__ ( lowercase : str ) -> tuple[dict, dict]:
"""simple docstring"""
_UpperCamelCase = Counter() # type: ignore
_UpperCamelCase = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0, len(lowercase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def a__ ( ) -> int:
"""simple docstring"""
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 324 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=3 , lowerCAmelCase__ : List[Any]=32 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Any=10 , lowerCAmelCase__ : Dict=[10, 20, 30, 40] , lowerCAmelCase__ : Optional[Any]=[1, 1, 2, 1] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Tuple=None , ) -> str:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = image_size
_UpperCamelCase = num_channels
_UpperCamelCase = embeddings_size
_UpperCamelCase = hidden_sizes
_UpperCamelCase = depths
_UpperCamelCase = is_training
_UpperCamelCase = use_labels
_UpperCamelCase = hidden_act
_UpperCamelCase = num_labels
_UpperCamelCase = scope
_UpperCamelCase = len(lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCamelCase = self.get_config()
return config, pixel_values
def snake_case__ ( self : Tuple ) -> Dict:
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxRegNetModel(config=lowerCAmelCase__ )
_UpperCamelCase = model(lowerCAmelCase__ )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def snake_case__ ( self : str , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.num_labels
_UpperCamelCase = FlaxRegNetForImageClassification(config=lowerCAmelCase__ )
_UpperCamelCase = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Any = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
_snake_case : List[str] = False
_snake_case : Optional[Any] = False
_snake_case : List[Any] = False
def snake_case__ ( self : Any ) -> None:
'''simple docstring'''
_UpperCamelCase = FlaxRegNetModelTester(self )
_UpperCamelCase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
return
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def snake_case__ ( self : int ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(lowerCAmelCase__ )
_UpperCamelCase = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCamelCase = [*signature.parameters.keys()]
_UpperCamelCase = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Dict:
'''simple docstring'''
def check_hidden_states_output(lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Dict ):
_UpperCamelCase = model_class(lowerCAmelCase__ )
_UpperCamelCase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
_UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_UpperCamelCase = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 )
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCamelCase = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCamelCase = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = model_class(lowerCAmelCase__ )
@jax.jit
def model_jitted(lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : Dict ):
return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ )
with self.subTest('''JIT Enabled''' ):
_UpperCamelCase = model_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_UpperCamelCase = model_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' )
_UpperCamelCase = self.default_image_processor
_UpperCamelCase = prepare_img()
_UpperCamelCase = image_processor(images=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
_UpperCamelCase = (1, 1000)
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
_UpperCamelCase = jnp.array([-0.4180, -1.5051, -3.4836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 1 |
'''simple docstring'''
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowercase__ : Optional[List[str]] = None
lowercase__ : Optional[Any] = '<' if sys.byteorder == 'little' else '>'
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowercase__ : Dict = [
np.dtype('|b1'),
np.dtype('|u1'),
np.dtype('<u2'),
np.dtype('>u2'),
np.dtype('<i2'),
np.dtype('>i2'),
np.dtype('<u4'),
np.dtype('>u4'),
np.dtype('<i4'),
np.dtype('>i4'),
np.dtype('<f4'),
np.dtype('>f4'),
np.dtype('<f8'),
np.dtype('>f8'),
]
@dataclass
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : bool = True
_snake_case : Optional[str] = None
# Automatically constructed
_snake_case : ClassVar[str] = "PIL.Image.Image"
_snake_case : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} )
_snake_case : str = field(default='Image' , init=__magic_name__ , repr=__magic_name__ )
def __call__( self : int ) -> Optional[Any]:
'''simple docstring'''
return self.pa_type
def snake_case__ ( self : str , lowerCAmelCase__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ) -> dict:
'''simple docstring'''
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = np.array(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"path": value, "bytes": None}
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return {"path": None, "bytes": value}
elif isinstance(lowerCAmelCase__ , np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowerCAmelCase__ )
elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get('''path''' )}
elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )}
else:
raise ValueError(
f"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : dict , lowerCAmelCase__ : Dict=None ) -> "PIL.Image.Image":
'''simple docstring'''
if not self.decode:
raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support decoding images, please install \'Pillow\'.''' )
if token_per_repo_id is None:
_UpperCamelCase = {}
_UpperCamelCase , _UpperCamelCase = value['''path'''], value['''bytes''']
if bytes_ is None:
if path is None:
raise ValueError(f"""An image should have one of 'path' or 'bytes' but both are None in {value}.""" )
else:
if is_local_path(lowerCAmelCase__ ):
_UpperCamelCase = PIL.Image.open(lowerCAmelCase__ )
else:
_UpperCamelCase = path.split('''::''' )[-1]
try:
_UpperCamelCase = string_to_dict(lowerCAmelCase__ , config.HUB_DATASETS_URL )['''repo_id''']
_UpperCamelCase = token_per_repo_id.get(lowerCAmelCase__ )
except ValueError:
_UpperCamelCase = None
with xopen(lowerCAmelCase__ , '''rb''' , use_auth_token=lowerCAmelCase__ ) as f:
_UpperCamelCase = BytesIO(f.read() )
_UpperCamelCase = PIL.Image.open(bytes_ )
else:
_UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def snake_case__ ( self : Any ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
return (
self
if self.decode
else {
"bytes": Value('''binary''' ),
"path": Value('''string''' ),
}
)
def snake_case__ ( self : str , lowerCAmelCase__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ) -> pa.StructArray:
'''simple docstring'''
if pa.types.is_string(storage.type ):
_UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
_UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
_UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
_UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('''bytes''' ) >= 0:
_UpperCamelCase = storage.field('''bytes''' )
else:
_UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.binary() )
if storage.type.get_field_index('''path''' ) >= 0:
_UpperCamelCase = storage.field('''path''' )
else:
_UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
_UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
_UpperCamelCase = pa.array(
[encode_np_array(np.array(lowerCAmelCase__ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , )
_UpperCamelCase = pa.array([None] * len(lowerCAmelCase__ ) , type=pa.string() )
_UpperCamelCase = pa.StructArray.from_arrays(
[bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : pa.StructArray ) -> pa.StructArray:
'''simple docstring'''
@no_op_if_value_is_null
def path_to_bytes(lowerCAmelCase__ : List[Any] ):
with xopen(lowerCAmelCase__ , '''rb''' ) as f:
_UpperCamelCase = f.read()
return bytes_
_UpperCamelCase = pa.array(
[
(path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
_UpperCamelCase = pa.array(
[os.path.basename(lowerCAmelCase__ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , )
_UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() )
return array_cast(lowerCAmelCase__ , self.pa_type )
def a__ ( ) -> List[str]:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
_UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def a__ ( lowercase : "PIL.Image.Image" ) -> bytes:
"""simple docstring"""
_UpperCamelCase = BytesIO()
if image.format in list_image_compression_formats():
_UpperCamelCase = image.format
else:
_UpperCamelCase = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF'''
image.save(lowercase, format=lowercase )
return buffer.getvalue()
def a__ ( lowercase : "PIL.Image.Image" ) -> dict:
"""simple docstring"""
if hasattr(lowercase, '''filename''' ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(lowercase )}
def a__ ( lowercase : np.ndarray ) -> dict:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
_UpperCamelCase = array.dtype
_UpperCamelCase = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER
_UpperCamelCase = dtype.kind
_UpperCamelCase = dtype.itemsize
_UpperCamelCase = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
_UpperCamelCase = np.dtype('''|u1''' )
if dtype_kind not in ["u", "i"]:
raise TypeError(
F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" )
if dtype is not dest_dtype:
warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
_UpperCamelCase = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
_UpperCamelCase = dtype_byteorder + dtype_kind + str(lowercase )
_UpperCamelCase = np.dtype(lowercase )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" )
_UpperCamelCase = PIL.Image.fromarray(array.astype(lowercase ) )
return {"path": None, "bytes": image_to_bytes(lowercase )}
def a__ ( lowercase : Union[List[str], List[dict], List[np.ndarray], List["PIL.Image.Image"]] ) -> List[dict]:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
if objs:
_UpperCamelCase , _UpperCamelCase = first_non_null_value(lowercase )
if isinstance(lowercase, lowercase ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(lowercase, np.ndarray ):
_UpperCamelCase = no_op_if_value_is_null(lowercase )
return [obj_to_image_dict_func(lowercase ) for obj in objs]
elif isinstance(lowercase, PIL.Image.Image ):
_UpperCamelCase = no_op_if_value_is_null(lowercase )
return [obj_to_image_dict_func(lowercase ) for obj in objs]
else:
return objs
else:
return objs
| 324 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 1 |
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : List[str] , *lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : Any ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = eval_examples
_UpperCamelCase = post_process_function
def snake_case__ ( self : str , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : str = "eval" ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset
_UpperCamelCase = self.get_eval_dataloader(lowerCAmelCase__ )
_UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_UpperCamelCase = self.compute_metrics
_UpperCamelCase = None
_UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_UpperCamelCase = time.time()
try:
_UpperCamelCase = eval_loop(
lowerCAmelCase__ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , )
finally:
_UpperCamelCase = compute_metrics
_UpperCamelCase = self.args.eval_batch_size * self.args.world_size
if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_UpperCamelCase = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions )
_UpperCamelCase = self.compute_metrics(lowerCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
_UpperCamelCase = metrics.pop(lowerCAmelCase__ )
metrics.update(output.metrics )
else:
_UpperCamelCase = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowerCAmelCase__ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_UpperCamelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , lowerCAmelCase__ )
return metrics
def snake_case__ ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str = "test" ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_test_dataloader(lowerCAmelCase__ )
# Temporarily disable metric computation, we will do it in the loop here.
_UpperCamelCase = self.compute_metrics
_UpperCamelCase = None
_UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_UpperCamelCase = time.time()
try:
_UpperCamelCase = eval_loop(
lowerCAmelCase__ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=lowerCAmelCase__ , metric_key_prefix=lowerCAmelCase__ , )
finally:
_UpperCamelCase = compute_metrics
_UpperCamelCase = self.args.eval_batch_size * self.args.world_size
if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics:
start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""]
output.metrics.update(
speed_metrics(
lowerCAmelCase__ , lowerCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_UpperCamelCase = self.post_process_function(lowerCAmelCase__ , lowerCAmelCase__ , output.predictions , '''predict''' )
_UpperCamelCase = self.compute_metrics(lowerCAmelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
_UpperCamelCase = metrics.pop(lowerCAmelCase__ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=lowerCAmelCase__ )
| 324 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 1 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowercase__ : Optional[int] = {
'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[str] = ['MobileViTFeatureExtractor']
lowercase__ : Dict = ['MobileViTImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Optional[int] = [
'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MobileViTForImageClassification',
'MobileViTForSemanticSegmentation',
'MobileViTModel',
'MobileViTPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : str = [
'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFMobileViTForImageClassification',
'TFMobileViTForSemanticSegmentation',
'TFMobileViTModel',
'TFMobileViTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilevit import MobileViTFeatureExtractor
from .image_processing_mobilevit import MobileViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilevit import (
MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTModel,
MobileViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mobilevit import (
TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFMobileViTForImageClassification,
TFMobileViTForSemanticSegmentation,
TFMobileViTModel,
TFMobileViTPreTrainedModel,
)
else:
import sys
lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 1 |
'''simple docstring'''
from . import __version__
# Backward compatibility imports, to make sure all those objects can be found in file_utils
from .utils import (
CLOUDFRONT_DISTRIB_PREFIX,
CONFIG_NAME,
DISABLE_TELEMETRY,
DUMMY_INPUTS,
DUMMY_MASK,
ENV_VARS_TRUE_AND_AUTO_VALUES,
ENV_VARS_TRUE_VALUES,
FEATURE_EXTRACTOR_NAME,
FLAX_WEIGHTS_NAME,
HF_MODULES_CACHE,
HUGGINGFACE_CO_PREFIX,
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
MODEL_CARD_NAME,
MULTIPLE_CHOICE_DUMMY_INPUTS,
PYTORCH_PRETRAINED_BERT_CACHE,
PYTORCH_TRANSFORMERS_CACHE,
S3_BUCKET_PREFIX,
SENTENCEPIECE_UNDERLINE,
SPIECE_UNDERLINE,
TF2_WEIGHTS_NAME,
TF_WEIGHTS_NAME,
TORCH_FX_REQUIRED_VERSION,
TRANSFORMERS_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
USE_JAX,
USE_TF,
USE_TORCH,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
ContextManagers,
DummyObject,
EntryNotFoundError,
ExplicitEnum,
ModelOutput,
PaddingStrategy,
PushToHubMixin,
RepositoryNotFoundError,
RevisionNotFoundError,
TensorType,
_LazyModule,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
cached_property,
copy_func,
default_cache_path,
define_sagemaker_information,
get_cached_models,
get_file_from_repo,
get_full_repo_name,
get_torch_version,
has_file,
http_user_agent,
is_apex_available,
is_bsa_available,
is_coloredlogs_available,
is_datasets_available,
is_detectrona_available,
is_faiss_available,
is_flax_available,
is_ftfy_available,
is_in_notebook,
is_ipex_available,
is_librosa_available,
is_offline_mode,
is_onnx_available,
is_pandas_available,
is_phonemizer_available,
is_protobuf_available,
is_psutil_available,
is_pyanvml_available,
is_pyctcdecode_available,
is_pytesseract_available,
is_pytorch_quantization_available,
is_rjieba_available,
is_sagemaker_dp_enabled,
is_sagemaker_mp_enabled,
is_scipy_available,
is_sentencepiece_available,
is_seqio_available,
is_sklearn_available,
is_soundfile_availble,
is_spacy_available,
is_speech_available,
is_tensor,
is_tensorflow_probability_available,
is_tfaonnx_available,
is_tf_available,
is_timm_available,
is_tokenizers_available,
is_torch_available,
is_torch_bfaa_available,
is_torch_cuda_available,
is_torch_fx_available,
is_torch_fx_proxy,
is_torch_mps_available,
is_torch_tfaa_available,
is_torch_tpu_available,
is_torchaudio_available,
is_training_run_on_sagemaker,
is_vision_available,
replace_return_docstrings,
requires_backends,
to_numpy,
to_py_obj,
torch_only_method,
)
| 324 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 1 |
'''simple docstring'''
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
lowercase__ : Any = logging.getLogger(__name__)
if __name__ == "__main__":
lowercase__ : List[Any] = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=3_05_22, type=int)
lowercase__ : List[Any] = parser.parse_args()
logger.info(F"""Loading data from {args.data_file}""")
with open(args.data_file, 'rb') as fp:
lowercase__ : Union[str, Any] = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
lowercase__ : Tuple = Counter()
for tk_ids in data:
counter.update(tk_ids)
lowercase__ : List[Any] = [0] * args.vocab_size
for k, v in counter.items():
lowercase__ : Tuple = v
logger.info(F"""Dump to {args.token_counts_dump}""")
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
| 324 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : list[int] ) -> int:
"""simple docstring"""
if not nums:
return 0
_UpperCamelCase = nums[0]
_UpperCamelCase = 0
for num in nums[1:]:
_UpperCamelCase , _UpperCamelCase = (
max_excluding + num,
max(lowercase, lowercase ),
)
return max(lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
lowercase__ : Any = list[list[int]]
# assigning initial values to the grid
lowercase__ : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
lowercase__ : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def a__ ( lowercase : Matrix, lowercase : int, lowercase : int, lowercase : int ) -> bool:
"""simple docstring"""
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def a__ ( lowercase : Matrix ) -> tuple[int, int] | None:
"""simple docstring"""
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def a__ ( lowercase : Matrix ) -> Matrix | None:
"""simple docstring"""
if location := find_empty_location(lowercase ):
_UpperCamelCase , _UpperCamelCase = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1, 10 ):
if is_safe(lowercase, lowercase, lowercase, lowercase ):
_UpperCamelCase = digit
if sudoku(lowercase ) is not None:
return grid
_UpperCamelCase = 0
return None
def a__ ( lowercase : Matrix ) -> None:
"""simple docstring"""
for row in grid:
for cell in row:
print(lowercase, end=''' ''' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('\nExample grid:\n' + '=' * 20)
print_solution(example_grid)
print('\nExample grid solution:')
lowercase__ : Dict = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('Cannot find a solution.')
| 324 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 1 |
'''simple docstring'''
from math import factorial
def a__ ( lowercase : int, lowercase : int, lowercase : float ) -> float:
"""simple docstring"""
if successes > trials:
raise ValueError('''successes must be lower or equal to trials''' )
if trials < 0 or successes < 0:
raise ValueError('''the function is defined for non-negative integers''' )
if not isinstance(lowercase, lowercase ) or not isinstance(lowercase, lowercase ):
raise ValueError('''the function is defined for non-negative integers''' )
if not 0 < prob < 1:
raise ValueError('''prob has to be in range of 1 - 0''' )
_UpperCamelCase = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
_UpperCamelCase = float(factorial(lowercase ) )
coefficient /= factorial(lowercase ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print('Probability of 2 successes out of 4 trails')
print('with probability of 0.75 is:', end=' ')
print(binomial_distribution(2, 4, 0.75))
| 324 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 1 |
'''simple docstring'''
import math
import sys
def a__ ( lowercase : int ) -> int:
"""simple docstring"""
if number != int(lowercase ):
raise ValueError('''the value of input must be a natural number''' )
if number < 0:
raise ValueError('''the value of input must not be a negative number''' )
if number == 0:
return 1
_UpperCamelCase = [-1] * (number + 1)
_UpperCamelCase = 0
for i in range(1, number + 1 ):
_UpperCamelCase = sys.maxsize
_UpperCamelCase = int(math.sqrt(lowercase ) )
for j in range(1, root + 1 ):
_UpperCamelCase = 1 + answers[i - (j**2)]
_UpperCamelCase = min(lowercase, lowercase )
_UpperCamelCase = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 1 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MODEL_FOR_CAUSAL_LM_MAPPING
_snake_case : Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=lowerCAmelCase__ )
self.assertEqual(
lowerCAmelCase__ , [
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] )
self.assertEqual(
lowerCAmelCase__ , [
[
{
'''generated_text''': (
'''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'''
''' oscope. FiliFili@@'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'''
''' oscope. oscope. FiliFili@@'''
)
}
],
] , )
_UpperCamelCase = text_generator('''This is a test''' , do_sample=lowerCAmelCase__ , num_return_sequences=2 , return_tensors=lowerCAmelCase__ )
self.assertEqual(
lowerCAmelCase__ , [
{'''generated_token_ids''': ANY(lowerCAmelCase__ )},
{'''generated_token_ids''': ANY(lowerCAmelCase__ )},
] , )
_UpperCamelCase = text_generator.model.config.eos_token_id
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = text_generator(
['''This is a test''', '''This is a second test'''] , do_sample=lowerCAmelCase__ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCAmelCase__ , )
self.assertEqual(
lowerCAmelCase__ , [
[
{'''generated_token_ids''': ANY(lowerCAmelCase__ )},
{'''generated_token_ids''': ANY(lowerCAmelCase__ )},
],
[
{'''generated_token_ids''': ANY(lowerCAmelCase__ )},
{'''generated_token_ids''': ANY(lowerCAmelCase__ )},
],
] , )
@require_tf
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' )
# Using `do_sample=False` to force deterministic output
_UpperCamelCase = text_generator('''This is a test''' , do_sample=lowerCAmelCase__ )
self.assertEqual(
lowerCAmelCase__ , [
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
] , )
_UpperCamelCase = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=lowerCAmelCase__ )
self.assertEqual(
lowerCAmelCase__ , [
[
{
'''generated_text''': (
'''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'''
''' please,'''
)
}
],
[
{
'''generated_text''': (
'''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'''
''' Cannes 閲閲Cannes Cannes Cannes 攵 please,'''
)
}
],
] , )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : str ) -> Dict:
'''simple docstring'''
_UpperCamelCase = TextGenerationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
return text_generator, ["This is a test", "Another test"]
def snake_case__ ( self : str ) -> Dict:
'''simple docstring'''
_UpperCamelCase = '''Hello I believe in'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
_UpperCamelCase = text_generator(lowerCAmelCase__ )
self.assertEqual(
lowerCAmelCase__ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , )
_UpperCamelCase = text_generator(lowerCAmelCase__ , stop_sequence=''' fe''' )
self.assertEqual(lowerCAmelCase__ , [{'''generated_text''': '''Hello I believe in fe'''}] )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
_UpperCamelCase = text_generator.model
_UpperCamelCase = text_generator.tokenizer
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(lowerCAmelCase__ , [{'''generated_text''': ANY(lowerCAmelCase__ )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , [{'''generated_text''': ANY(lowerCAmelCase__ )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = pipeline(task='''text-generation''' , model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , return_full_text=lowerCAmelCase__ )
_UpperCamelCase = text_generator('''This is a test''' )
self.assertEqual(lowerCAmelCase__ , [{'''generated_text''': ANY(lowerCAmelCase__ )}] )
self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] )
_UpperCamelCase = text_generator('''This is a test''' , return_full_text=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , [{'''generated_text''': ANY(lowerCAmelCase__ )}] )
self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) )
_UpperCamelCase = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=lowerCAmelCase__ )
self.assertEqual(
lowerCAmelCase__ , [
[{'''generated_text''': ANY(lowerCAmelCase__ )}, {'''generated_text''': ANY(lowerCAmelCase__ )}],
[{'''generated_text''': ANY(lowerCAmelCase__ )}, {'''generated_text''': ANY(lowerCAmelCase__ )}],
] , )
if text_generator.tokenizer.pad_token is not None:
_UpperCamelCase = text_generator(
['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCAmelCase__ )
self.assertEqual(
lowerCAmelCase__ , [
[{'''generated_text''': ANY(lowerCAmelCase__ )}, {'''generated_text''': ANY(lowerCAmelCase__ )}],
[{'''generated_text''': ANY(lowerCAmelCase__ )}, {'''generated_text''': ANY(lowerCAmelCase__ )}],
] , )
with self.assertRaises(lowerCAmelCase__ ):
_UpperCamelCase = text_generator('''test''' , return_full_text=lowerCAmelCase__ , return_text=lowerCAmelCase__ )
with self.assertRaises(lowerCAmelCase__ ):
_UpperCamelCase = text_generator('''test''' , return_full_text=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
with self.assertRaises(lowerCAmelCase__ ):
_UpperCamelCase = text_generator('''test''' , return_text=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
_UpperCamelCase = text_generator('''''' )
self.assertEqual(lowerCAmelCase__ , [{'''generated_text''': ANY(lowerCAmelCase__ )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
_UpperCamelCase = text_generator('''''' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
_UpperCamelCase = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM''']
if (
tokenizer.model_max_length < 10000
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('''This is a test''' * 500 , max_new_tokens=20 )
_UpperCamelCase = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(lowerCAmelCase__ ):
text_generator(
'''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def snake_case__ ( self : int ) -> str:
'''simple docstring'''
import torch
# Classic `model_kwargs`
_UpperCamelCase = pipeline(
model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
lowerCAmelCase__ , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
lowerCAmelCase__ , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
_UpperCamelCase = pipe('''This is a test''' )
self.assertEqual(
lowerCAmelCase__ , [
{
'''generated_text''': (
'''This is a test test test test test test test test test test test test test test test test'''
''' test'''
)
}
] , )
@require_torch
@require_torch_gpu
def snake_case__ ( self : Any ) -> List[str]:
'''simple docstring'''
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa )
pipe('''This is a test''' )
@require_torch
@require_accelerate
@require_torch_gpu
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
import torch
_UpperCamelCase = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa )
pipe('''This is a test''' , do_sample=lowerCAmelCase__ , top_p=0.5 )
def snake_case__ ( self : Dict ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = '''Hello world'''
_UpperCamelCase = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' )
if text_generator.model.framework == "tf":
_UpperCamelCase = logging.get_logger('''transformers.generation.tf_utils''' )
else:
_UpperCamelCase = logging.get_logger('''transformers.generation.utils''' )
_UpperCamelCase = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(lowerCAmelCase__ ) as cl:
_UpperCamelCase = text_generator(lowerCAmelCase__ , max_length=10 , max_new_tokens=1 )
self.assertIn(lowerCAmelCase__ , cl.out )
# The user only sets one -> no warning
with CaptureLogger(lowerCAmelCase__ ) as cl:
_UpperCamelCase = text_generator(lowerCAmelCase__ , max_new_tokens=1 )
self.assertNotIn(lowerCAmelCase__ , cl.out )
with CaptureLogger(lowerCAmelCase__ ) as cl:
_UpperCamelCase = text_generator(lowerCAmelCase__ , max_length=10 )
self.assertNotIn(lowerCAmelCase__ , cl.out )
| 324 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Tuple = {
'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json',
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[Any] = 'switch_transformers'
_snake_case : str = ['past_key_values']
_snake_case : int = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self : List[Any] , lowerCAmelCase__ : str=32128 , lowerCAmelCase__ : Optional[Any]=768 , lowerCAmelCase__ : Optional[Any]=64 , lowerCAmelCase__ : Optional[int]=2048 , lowerCAmelCase__ : Optional[Any]=64 , lowerCAmelCase__ : Tuple=12 , lowerCAmelCase__ : Tuple=3 , lowerCAmelCase__ : Tuple=12 , lowerCAmelCase__ : Optional[int]=3 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : str=8 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Tuple=0.01 , lowerCAmelCase__ : Optional[Any]="float32" , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[str]=32 , lowerCAmelCase__ : Tuple=128 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Dict=1e-6 , lowerCAmelCase__ : List[Any]=0.001 , lowerCAmelCase__ : Optional[int]=0.001 , lowerCAmelCase__ : str=1.0 , lowerCAmelCase__ : Optional[int]="relu" , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=0 , lowerCAmelCase__ : Optional[int]=1 , **lowerCAmelCase__ : int , ) -> Any:
'''simple docstring'''
_UpperCamelCase = vocab_size
_UpperCamelCase = d_model
_UpperCamelCase = d_kv
_UpperCamelCase = d_ff
_UpperCamelCase = num_sparse_encoder_layers
_UpperCamelCase = num_layers
_UpperCamelCase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
_UpperCamelCase = num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
_UpperCamelCase = self.num_layers // self.num_sparse_encoder_layers
else:
_UpperCamelCase = self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
_UpperCamelCase = self.num_decoder_layers // self.num_sparse_decoder_layers
else:
_UpperCamelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers
_UpperCamelCase = num_heads
_UpperCamelCase = num_experts
_UpperCamelCase = expert_capacity
_UpperCamelCase = router_bias
_UpperCamelCase = router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" )
_UpperCamelCase = router_dtype
_UpperCamelCase = router_ignore_padding_tokens
_UpperCamelCase = relative_attention_num_buckets
_UpperCamelCase = relative_attention_max_distance
_UpperCamelCase = dropout_rate
_UpperCamelCase = layer_norm_epsilon
_UpperCamelCase = initializer_factor
_UpperCamelCase = feed_forward_proj
_UpperCamelCase = use_cache
_UpperCamelCase = add_router_probs
_UpperCamelCase = router_z_loss_coef
_UpperCamelCase = router_aux_loss_coef
_UpperCamelCase = self.feed_forward_proj.split('''-''' )
_UpperCamelCase = act_info[-1]
_UpperCamelCase = act_info[0] == '''gated'''
if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
_UpperCamelCase = '''gelu_new'''
super().__init__(
pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
| 324 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Tuple = {
'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json',
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'transfo-xl'
_snake_case : Optional[int] = ['mems']
_snake_case : List[Any] = {
'n_token': 'vocab_size',
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self : List[str] , lowerCAmelCase__ : Any=267735 , lowerCAmelCase__ : Dict=[20000, 40000, 200000] , lowerCAmelCase__ : List[Any]=1024 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Optional[Any]=16 , lowerCAmelCase__ : List[str]=64 , lowerCAmelCase__ : Union[str, Any]=4096 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : Dict=18 , lowerCAmelCase__ : Optional[Any]=1600 , lowerCAmelCase__ : Any=1000 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Optional[Any]=0 , lowerCAmelCase__ : Optional[Any]=-1 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Any="normal" , lowerCAmelCase__ : Optional[int]=0.01 , lowerCAmelCase__ : Union[str, Any]=0.01 , lowerCAmelCase__ : Any=0.02 , lowerCAmelCase__ : Optional[int]=1e-5 , lowerCAmelCase__ : List[str]=0 , **lowerCAmelCase__ : int , ) -> Any:
'''simple docstring'''
_UpperCamelCase = vocab_size
_UpperCamelCase = []
self.cutoffs.extend(lowerCAmelCase__ )
if proj_share_all_but_first:
_UpperCamelCase = [False] + [True] * len(self.cutoffs )
else:
_UpperCamelCase = [False] + [False] * len(self.cutoffs )
_UpperCamelCase = d_model
_UpperCamelCase = d_embed
_UpperCamelCase = d_head
_UpperCamelCase = d_inner
_UpperCamelCase = div_val
_UpperCamelCase = pre_lnorm
_UpperCamelCase = n_layer
_UpperCamelCase = n_head
_UpperCamelCase = mem_len
_UpperCamelCase = same_length
_UpperCamelCase = attn_type
_UpperCamelCase = clamp_len
_UpperCamelCase = sample_softmax
_UpperCamelCase = adaptive
_UpperCamelCase = dropout
_UpperCamelCase = dropatt
_UpperCamelCase = untie_r
_UpperCamelCase = init
_UpperCamelCase = init_range
_UpperCamelCase = proj_init_std
_UpperCamelCase = init_std
_UpperCamelCase = layer_norm_epsilon
super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : int ) -> List[str]:
'''simple docstring'''
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 324 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 1 |
'''simple docstring'''
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : str = BarthezTokenizer
_snake_case : str = BarthezTokenizerFast
_snake_case : Union[str, Any] = True
_snake_case : List[str] = True
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
super().setUp()
_UpperCamelCase = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(lowerCAmelCase__ ) , 101122 )
def snake_case__ ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def snake_case__ ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.''']
_UpperCamelCase = [0, 57, 3018, 70307, 91, 2]
_UpperCamelCase = self.tokenizer(
lowerCAmelCase__ , max_length=len(lowerCAmelCase__ ) , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='''pt''' )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = tokenizer.encode(lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = {'''input_ids''': [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
_UpperCamelCase = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=lowerCAmelCase__ , )
| 324 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 1 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
lowercase__ : Optional[int] = logging.getLogger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=None ) -> int:
'''simple docstring'''
super().__init__(
lowerCAmelCase__ , question_encoder_tokenizer=lowerCAmelCase__ , generator_tokenizer=lowerCAmelCase__ , index=lowerCAmelCase__ , init_retrieval=lowerCAmelCase__ , )
_UpperCamelCase = None
def snake_case__ ( self : List[str] , lowerCAmelCase__ : int ) -> int:
'''simple docstring'''
logger.info('''initializing retrieval''' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('''dist initialized''' )
# needs to be set manually
_UpperCamelCase = self._infer_socket_ifname()
# avoid clash with the NCCL port
_UpperCamelCase = str(distributed_port + 1 )
_UpperCamelCase = dist.new_group(ranks=lowerCAmelCase__ , backend='''gloo''' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('''dist not initialized / main''' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
return dist.get_rank(group=self.process_group ) == 0
def snake_case__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=torch.floataa ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = torch.empty(lowerCAmelCase__ , dtype=lowerCAmelCase__ )
dist.scatter(lowerCAmelCase__ , src=0 , scatter_list=lowerCAmelCase__ , group=self.process_group )
return target_tensor
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
_UpperCamelCase = next((addr for addr in addrs if addr.startswith('''e''' )) , lowerCAmelCase__ )
return ifname
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : int ) -> Tuple[np.ndarray, List[dict]]:
'''simple docstring'''
if not dist.is_initialized():
_UpperCamelCase , _UpperCamelCase = self._main_retrieve(lowerCAmelCase__ , lowerCAmelCase__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase__ )
# distributed training
_UpperCamelCase = dist.get_world_size(group=self.process_group )
# gather logic
_UpperCamelCase = None
if self._is_main():
_UpperCamelCase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCAmelCase__ )]
dist.gather(torch.tensor(lowerCAmelCase__ ) , dst=0 , gather_list=lowerCAmelCase__ , group=self.process_group )
# scatter logic
_UpperCamelCase = question_hidden_states.shape[0]
_UpperCamelCase = []
_UpperCamelCase = []
if self._is_main():
assert len(lowerCAmelCase__ ) == world_size
_UpperCamelCase , _UpperCamelCase = self._main_retrieve(torch.cat(lowerCAmelCase__ ).numpy() , lowerCAmelCase__ )
_UpperCamelCase , _UpperCamelCase = torch.tensor(lowerCAmelCase__ ), torch.tensor(lowerCAmelCase__ )
_UpperCamelCase = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = self._scattered(lowerCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa )
_UpperCamelCase = self._scattered(lowerCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase__ )
| 324 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Union[str, Any] = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'open-llama'
def __init__( self : str , lowerCAmelCase__ : Dict=100000 , lowerCAmelCase__ : int=4096 , lowerCAmelCase__ : Optional[Any]=11008 , lowerCAmelCase__ : int=32 , lowerCAmelCase__ : Dict=32 , lowerCAmelCase__ : Optional[Any]="silu" , lowerCAmelCase__ : str=2048 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=1e-6 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Dict=1 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : Union[str, Any]=None , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = vocab_size
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = hidden_size
_UpperCamelCase = intermediate_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = hidden_act
_UpperCamelCase = initializer_range
_UpperCamelCase = rms_norm_eps
_UpperCamelCase = use_cache
_UpperCamelCase = kwargs.pop(
'''use_memorry_efficient_attention''' , lowerCAmelCase__ )
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_dropout_prob
_UpperCamelCase = use_stable_embedding
_UpperCamelCase = shared_input_output_embedding
_UpperCamelCase = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , tie_word_embeddings=lowerCAmelCase__ , **lowerCAmelCase__ , )
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowerCAmelCase__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f"""got {self.rope_scaling}""" )
_UpperCamelCase = self.rope_scaling.get('''type''' , lowerCAmelCase__ )
_UpperCamelCase = self.rope_scaling.get('''factor''' , lowerCAmelCase__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" )
if rope_scaling_factor is None or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
| 324 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 1 |
'''simple docstring'''
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model')
lowercase__ : Tuple = get_tests_dir('fixtures/test_sentencepiece_bpe.model')
lowercase__ : Dict = 'pt' if is_torch_available() else 'tf'
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = CamembertTokenizer
_snake_case : Any = CamembertTokenizerFast
_snake_case : str = True
_snake_case : str = True
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = CamembertTokenizer(lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : int ) -> str:
'''simple docstring'''
_UpperCamelCase = '''<pad>'''
_UpperCamelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>NOTUSED''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(lowerCAmelCase__ ) , 1004 )
def snake_case__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1005 )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = CamembertTokenizer(lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
_UpperCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.encode(lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
_UpperCamelCase = self.get_tokenizer()
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = '''I was born in 92000, and this is falsé.'''
_UpperCamelCase = tokenizer.tokenize(lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = self.get_rust_tokenizer()
_UpperCamelCase = tokenizer.encode(lowerCAmelCase__ )
_UpperCamelCase = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : Optional[int] ) -> int:
'''simple docstring'''
_UpperCamelCase = {'''input_ids''': [[5, 54, 7196, 297, 30, 23, 776, 18, 11, 3215, 3705, 8252, 22, 3164, 1181, 2116, 29, 16, 813, 25, 791, 3314, 20, 3446, 38, 27575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9088, 20, 1517, 8, 22804, 18818, 10, 38, 629, 607, 607, 142, 19, 7196, 867, 56, 10326, 24, 2267, 20, 416, 5072, 15612, 233, 734, 7, 2399, 27, 16, 3015, 1649, 7, 24, 20, 4338, 2399, 27, 13, 3400, 14, 13, 6189, 8, 930, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
_UpperCamelCase = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name='''camembert-base''' , revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' , sequences=lowerCAmelCase__ , )
| 324 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 1 |
'''simple docstring'''
import pickle
import numpy as np
from matplotlib import pyplot as plt
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict=0.2 , lowerCAmelCase__ : Optional[int]=0.2 ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = bp_numa
_UpperCamelCase = bp_numa
_UpperCamelCase = bp_numa
_UpperCamelCase = conva_get[:2]
_UpperCamelCase = conva_get[2]
_UpperCamelCase = size_pa
_UpperCamelCase = rate_w
_UpperCamelCase = rate_t
_UpperCamelCase = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
_UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
_UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
_UpperCamelCase = -2 * np.random.rand(self.conva[1] ) + 1
_UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1
_UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : str ) -> Any:
'''simple docstring'''
_UpperCamelCase = {
'''num_bp1''': self.num_bpa,
'''num_bp2''': self.num_bpa,
'''num_bp3''': self.num_bpa,
'''conv1''': self.conva,
'''step_conv1''': self.step_conva,
'''size_pooling1''': self.size_poolinga,
'''rate_weight''': self.rate_weight,
'''rate_thre''': self.rate_thre,
'''w_conv1''': self.w_conva,
'''wkj''': self.wkj,
'''vji''': self.vji,
'''thre_conv1''': self.thre_conva,
'''thre_bp2''': self.thre_bpa,
'''thre_bp3''': self.thre_bpa,
}
with open(lowerCAmelCase__ , '''wb''' ) as f:
pickle.dump(lowerCAmelCase__ , lowerCAmelCase__ )
print(f"""Model saved: {save_path}""" )
@classmethod
def snake_case__ ( cls : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> str:
'''simple docstring'''
with open(lowerCAmelCase__ , '''rb''' ) as f:
_UpperCamelCase = pickle.load(lowerCAmelCase__ ) # noqa: S301
_UpperCamelCase = model_dic.get('''conv1''' )
conv_get.append(model_dic.get('''step_conv1''' ) )
_UpperCamelCase = model_dic.get('''size_pooling1''' )
_UpperCamelCase = model_dic.get('''num_bp1''' )
_UpperCamelCase = model_dic.get('''num_bp2''' )
_UpperCamelCase = model_dic.get('''num_bp3''' )
_UpperCamelCase = model_dic.get('''rate_weight''' )
_UpperCamelCase = model_dic.get('''rate_thre''' )
# create model instance
_UpperCamelCase = CNN(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# modify model parameter
_UpperCamelCase = model_dic.get('''w_conv1''' )
_UpperCamelCase = model_dic.get('''wkj''' )
_UpperCamelCase = model_dic.get('''vji''' )
_UpperCamelCase = model_dic.get('''thre_conv1''' )
_UpperCamelCase = model_dic.get('''thre_bp2''' )
_UpperCamelCase = model_dic.get('''thre_bp3''' )
return conv_ins
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Optional[Any] ) -> int:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Dict ) -> Any:
'''simple docstring'''
return round(lowerCAmelCase__ , 3 )
def snake_case__ ( self : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> Dict:
'''simple docstring'''
_UpperCamelCase = convs[0]
_UpperCamelCase = convs[1]
_UpperCamelCase = np.shape(lowerCAmelCase__ )[0]
# get the data slice of original image data, data_focus
_UpperCamelCase = []
for i_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ):
for j_focus in range(0 , size_data - size_conv + 1 , lowerCAmelCase__ ):
_UpperCamelCase = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(lowerCAmelCase__ )
# calculate the feature map of every single kernel, and saved as list of matrix
_UpperCamelCase = []
_UpperCamelCase = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(lowerCAmelCase__ ):
_UpperCamelCase = []
for i_focus in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(lowerCAmelCase__ ) )
_UpperCamelCase = np.asmatrix(lowerCAmelCase__ ).reshape(
lowerCAmelCase__ , lowerCAmelCase__ )
data_featuremap.append(lowerCAmelCase__ )
# expanding the data slice to One dimenssion
_UpperCamelCase = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(lowerCAmelCase__ ) )
_UpperCamelCase = np.asarray(lowerCAmelCase__ )
return focus_list, data_featuremap
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : int="average_pool" ) -> Dict:
'''simple docstring'''
_UpperCamelCase = len(featuremaps[0] )
_UpperCamelCase = int(size_map / size_pooling )
_UpperCamelCase = []
for i_map in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = featuremaps[i_map]
_UpperCamelCase = []
for i_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
for j_focus in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(lowerCAmelCase__ ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(lowerCAmelCase__ ) )
_UpperCamelCase = np.asmatrix(lowerCAmelCase__ ).reshape(lowerCAmelCase__ , lowerCAmelCase__ )
featuremap_pooled.append(lowerCAmelCase__ )
return featuremap_pooled
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = []
for i in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = np.shape(data[i] )
_UpperCamelCase = data[i].reshape(1 , shapes[0] * shapes[1] )
_UpperCamelCase = data_listed.getA().tolist()[0]
data_expanded.extend(lowerCAmelCase__ )
_UpperCamelCase = np.asarray(lowerCAmelCase__ )
return data_expanded
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = np.asarray(lowerCAmelCase__ )
_UpperCamelCase = np.shape(lowerCAmelCase__ )
_UpperCamelCase = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def snake_case__ ( self : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = 0
for i_map in range(lowerCAmelCase__ ):
_UpperCamelCase = np.ones((size_map, size_map) )
for i in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
for j in range(0 , lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = pd_pool[
i_pool
]
_UpperCamelCase = i_pool + 1
_UpperCamelCase = np.multiply(
lowerCAmelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(lowerCAmelCase__ )
return pd_all
def snake_case__ ( self : Dict , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=bool ) -> Union[str, Any]:
'''simple docstring'''
print('''----------------------Start Training-------------------------''' )
print((''' - - Shape: Train_Data ''', np.shape(lowerCAmelCase__ )) )
print((''' - - Shape: Teach_Data ''', np.shape(lowerCAmelCase__ )) )
_UpperCamelCase = 0
_UpperCamelCase = []
_UpperCamelCase = 10000
while rp < n_repeat and mse >= error_accuracy:
_UpperCamelCase = 0
print(f"""-------------Learning Time {rp}--------------""" )
for p in range(len(lowerCAmelCase__ ) ):
# print('------------Learning Image: %d--------------'%p)
_UpperCamelCase = np.asmatrix(datas_train[p] )
_UpperCamelCase = np.asarray(datas_teach[p] )
_UpperCamelCase , _UpperCamelCase = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCamelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga )
_UpperCamelCase = np.shape(lowerCAmelCase__ )
_UpperCamelCase = self._expand(lowerCAmelCase__ )
_UpperCamelCase = data_bp_input
_UpperCamelCase = np.dot(lowerCAmelCase__ , self.vji.T ) - self.thre_bpa
_UpperCamelCase = self.sig(lowerCAmelCase__ )
_UpperCamelCase = np.dot(lowerCAmelCase__ , self.wkj.T ) - self.thre_bpa
_UpperCamelCase = self.sig(lowerCAmelCase__ )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
_UpperCamelCase = np.multiply(
(data_teach - bp_outa) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) )
_UpperCamelCase = np.multiply(
np.dot(lowerCAmelCase__ , self.wkj ) , np.multiply(lowerCAmelCase__ , (1 - bp_outa) ) )
_UpperCamelCase = np.dot(lowerCAmelCase__ , self.vji )
_UpperCamelCase = pd_i_all / (self.size_poolinga * self.size_poolinga)
_UpperCamelCase = pd_conva_pooled.T.getA().tolist()
_UpperCamelCase = self._calculate_gradient_from_pool(
lowerCAmelCase__ , lowerCAmelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
_UpperCamelCase = self._expand_mat(pd_conva_all[k_conv] )
_UpperCamelCase = self.rate_weight * np.dot(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
_UpperCamelCase = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
_UpperCamelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
_UpperCamelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight
_UpperCamelCase = self.thre_bpa - pd_k_all * self.rate_thre
_UpperCamelCase = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
_UpperCamelCase = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
_UpperCamelCase = rp + 1
_UpperCamelCase = error_count / patterns
all_mse.append(lowerCAmelCase__ )
def draw_error():
_UpperCamelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(lowerCAmelCase__ , '''+-''' )
plt.plot(lowerCAmelCase__ , '''r--''' )
plt.xlabel('''Learning Times''' )
plt.ylabel('''All_mse''' )
plt.grid(lowerCAmelCase__ , alpha=0.5 )
plt.show()
print('''------------------Training Complished---------------------''' )
print((''' - - Training epoch: ''', rp, f""" - - Mse: {mse:.6f}""") )
if draw_e:
draw_error()
return mse
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = []
print('''-------------------Start Testing-------------------------''' )
print((''' - - Shape: Test_Data ''', np.shape(lowerCAmelCase__ )) )
for p in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = np.asmatrix(datas_test[p] )
_UpperCamelCase , _UpperCamelCase = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCamelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga )
_UpperCamelCase = self._expand(lowerCAmelCase__ )
_UpperCamelCase = data_bp_input
_UpperCamelCase = bp_outa * self.vji.T - self.thre_bpa
_UpperCamelCase = self.sig(lowerCAmelCase__ )
_UpperCamelCase = bp_outa * self.wkj.T - self.thre_bpa
_UpperCamelCase = self.sig(lowerCAmelCase__ )
produce_out.extend(bp_outa.getA().tolist() )
_UpperCamelCase = [list(map(self.do_round , lowerCAmelCase__ ) ) for each in produce_out]
return np.asarray(lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Any ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = np.asmatrix(lowerCAmelCase__ )
_UpperCamelCase , _UpperCamelCase = self.convolute(
lowerCAmelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
_UpperCamelCase = self.pooling(lowerCAmelCase__ , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 324 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
lowercase__ : int = TypeVar('T')
class __lowerCAmelCase ( Generic[T] ):
"""simple docstring"""
_snake_case : deque[T] # Cache store of keys
_snake_case : set[T] # References of the keys in cache
_snake_case : int = 1_0 # Maximum capacity of cache
def __init__( self : Union[str, Any] , lowerCAmelCase__ : int ) -> None:
'''simple docstring'''
_UpperCamelCase = deque()
_UpperCamelCase = set()
if not n:
_UpperCamelCase = sys.maxsize
elif n < 0:
raise ValueError('''n should be an integer greater than 0.''' )
else:
_UpperCamelCase = n
def snake_case__ ( self : List[str] , lowerCAmelCase__ : T ) -> None:
'''simple docstring'''
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
_UpperCamelCase = self.dq_store.pop()
self.key_reference.remove(lowerCAmelCase__ )
else:
self.dq_store.remove(lowerCAmelCase__ )
self.dq_store.appendleft(lowerCAmelCase__ )
self.key_reference.add(lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> None:
'''simple docstring'''
for k in self.dq_store:
print(lowerCAmelCase__ )
def __repr__( self : Optional[int] ) -> str:
'''simple docstring'''
return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : LRUCache[str | int] = LRUCache(4)
lru_cache.refer('A')
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer('A')
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 324 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowercase__ : Optional[Any] = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def a__ ( lowercase : Union[str, Any], lowercase : Any, lowercase : Optional[Any]=None, lowercase : Dict=None, lowercase : Union[str, Any]=None, lowercase : Dict=None, lowercase : Dict=None, lowercase : List[str]=None, ) -> Dict:
"""simple docstring"""
if attention_mask is None:
_UpperCamelCase = np.where(input_ids != config.pad_token_id, 1, 0 )
if decoder_attention_mask is None:
_UpperCamelCase = np.where(decoder_input_ids != config.pad_token_id, 1, 0 )
if head_mask is None:
_UpperCamelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_UpperCamelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple=13 , lowerCAmelCase__ : Union[str, Any]=7 , lowerCAmelCase__ : List[Any]=True , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : Tuple=99 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : str=4 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : str=2 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : int=0 , lowerCAmelCase__ : List[Any]=0.02 , ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = eos_token_id
_UpperCamelCase = pad_token_id
_UpperCamelCase = bos_token_id
_UpperCamelCase = initializer_range
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_UpperCamelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , 1 , 2 )
_UpperCamelCase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase__ , )
_UpperCamelCase = prepare_blenderbot_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return config, inputs_dict
def snake_case__ ( self : Any ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = 20
_UpperCamelCase = model_class_name(lowerCAmelCase__ )
_UpperCamelCase = model.encode(inputs_dict['''input_ids'''] )
_UpperCamelCase , _UpperCamelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
_UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
_UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
_UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
_UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase__ , )
_UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = 20
_UpperCamelCase = model_class_name(lowerCAmelCase__ )
_UpperCamelCase = model.encode(inputs_dict['''input_ids'''] )
_UpperCamelCase , _UpperCamelCase = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
_UpperCamelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_UpperCamelCase = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCamelCase = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
_UpperCamelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' )
_UpperCamelCase = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase__ , decoder_position_ids=lowerCAmelCase__ , )
_UpperCamelCase = model.decode(lowerCAmelCase__ , lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ )
_UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[int] = 9_9
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_UpperCamelCase = input_ids.shape[0]
_UpperCamelCase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._get_config_and_data()
_UpperCamelCase = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ )
_UpperCamelCase = lm_model(input_ids=lowerCAmelCase__ )
_UpperCamelCase = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , lowerCAmelCase__ )
def snake_case__ ( self : Dict ) -> Dict:
'''simple docstring'''
_UpperCamelCase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_UpperCamelCase = FlaxBlenderbotForConditionalGeneration(lowerCAmelCase__ )
_UpperCamelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_UpperCamelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_UpperCamelCase = lm_model(input_ids=lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ )
_UpperCamelCase = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['''logits'''].shape , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , 1 , 2 )
_UpperCamelCase = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum()
_UpperCamelCase = np.equal(lowerCAmelCase__ , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(lowerCAmelCase__ , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase , __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[Any] = True
_snake_case : str = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
_snake_case : Any = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def snake_case__ ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxBlenderbotModelTester(self )
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCamelCase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = model_class(lowerCAmelCase__ )
@jax.jit
def encode_jitted(lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None , **lowerCAmelCase__ : Optional[int] ):
return model.encode(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
with self.subTest('''JIT Enabled''' ):
_UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_UpperCamelCase = encode_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
def snake_case__ ( self : List[str] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCamelCase = model_class(lowerCAmelCase__ )
_UpperCamelCase = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] )
_UpperCamelCase = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] ):
return model.decode(
decoder_input_ids=lowerCAmelCase__ , decoder_attention_mask=lowerCAmelCase__ , encoder_outputs=lowerCAmelCase__ , )
with self.subTest('''JIT Enabled''' ):
_UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
_UpperCamelCase = decode_jitted(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) )
for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_UpperCamelCase = np.ones((1, 1) ) * model.config.eos_token_id
_UpperCamelCase = model(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' )
@slow
def snake_case__ ( self : str ) -> int:
'''simple docstring'''
_UpperCamelCase = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25}
_UpperCamelCase = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True}
_UpperCamelCase = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=lowerCAmelCase__ )
_UpperCamelCase = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' )
_UpperCamelCase = ['''Sam''']
_UpperCamelCase = tokenizer(lowerCAmelCase__ , return_tensors='''jax''' )
_UpperCamelCase = model.generate(**lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = '''Sam is a great name. It means "sun" in Gaelic.'''
_UpperCamelCase = tokenizer.batch_decode(lowerCAmelCase__ , **lowerCAmelCase__ )
assert generated_txt[0].strip() == tgt_text
| 324 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowercase__ : List[str] = {
'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'],
'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : List[str] = [
'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'AdaptiveEmbedding',
'TransfoXLForSequenceClassification',
'TransfoXLLMHeadModel',
'TransfoXLModel',
'TransfoXLPreTrainedModel',
'load_tf_weights_in_transfo_xl',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : int = [
'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFAdaptiveEmbedding',
'TFTransfoXLForSequenceClassification',
'TFTransfoXLLMHeadModel',
'TFTransfoXLMainLayer',
'TFTransfoXLModel',
'TFTransfoXLPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig
from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_transfo_xl import (
TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
AdaptiveEmbedding,
TransfoXLForSequenceClassification,
TransfoXLLMHeadModel,
TransfoXLModel,
TransfoXLPreTrainedModel,
load_tf_weights_in_transfo_xl,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_transfo_xl import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFAdaptiveEmbedding,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLMainLayer,
TFTransfoXLModel,
TFTransfoXLPreTrainedModel,
)
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
import pandas as pd
def a__ ( lowercase : list[int], lowercase : list[int], lowercase : int ) -> list[int]:
"""simple docstring"""
_UpperCamelCase = [0] * no_of_processes
_UpperCamelCase = [0] * no_of_processes
# Copy the burst time into remaining_time[]
for i in range(lowercase ):
_UpperCamelCase = burst_time[i]
_UpperCamelCase = 0
_UpperCamelCase = 0
_UpperCamelCase = 999999999
_UpperCamelCase = 0
_UpperCamelCase = False
# Process until all processes are completed
while complete != no_of_processes:
for j in range(lowercase ):
if arrival_time[j] <= increment_time and remaining_time[j] > 0:
if remaining_time[j] < minm:
_UpperCamelCase = remaining_time[j]
_UpperCamelCase = j
_UpperCamelCase = True
if not check:
increment_time += 1
continue
remaining_time[short] -= 1
_UpperCamelCase = remaining_time[short]
if minm == 0:
_UpperCamelCase = 999999999
if remaining_time[short] == 0:
complete += 1
_UpperCamelCase = False
# Find finish time of current process
_UpperCamelCase = increment_time + 1
# Calculate waiting time
_UpperCamelCase = finish_time - arrival_time[short]
_UpperCamelCase = finar - burst_time[short]
if waiting_time[short] < 0:
_UpperCamelCase = 0
# Increment time
increment_time += 1
return waiting_time
def a__ ( lowercase : list[int], lowercase : int, lowercase : list[int] ) -> list[int]:
"""simple docstring"""
_UpperCamelCase = [0] * no_of_processes
for i in range(lowercase ):
_UpperCamelCase = burst_time[i] + waiting_time[i]
return turn_around_time
def a__ ( lowercase : list[int], lowercase : list[int], lowercase : int ) -> None:
"""simple docstring"""
_UpperCamelCase = 0
_UpperCamelCase = 0
for i in range(lowercase ):
_UpperCamelCase = total_waiting_time + waiting_time[i]
_UpperCamelCase = total_turn_around_time + turn_around_time[i]
print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" )
print('''Average turn around time =''', total_turn_around_time / no_of_processes )
if __name__ == "__main__":
print('Enter how many process you want to analyze')
lowercase__ : str = int(input())
lowercase__ : Optional[int] = [0] * no_of_processes
lowercase__ : List[Any] = [0] * no_of_processes
lowercase__ : Dict = list(range(1, no_of_processes + 1))
for i in range(no_of_processes):
print('Enter the arrival time and burst time for process:--' + str(i + 1))
lowercase__ , lowercase__ : Dict = map(int, input().split())
lowercase__ : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes)
lowercase__ : int = burst_time
lowercase__ : List[str] = no_of_processes
lowercase__ : int = waiting_time
lowercase__ : Any = calculate_turnaroundtime(bt, n, wt)
calculate_average_times(waiting_time, turn_around_time, no_of_processes)
lowercase__ : Optional[Any] = pd.DataFrame(
list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)),
columns=[
'Process',
'BurstTime',
'ArrivalTime',
'WaitingTime',
'TurnAroundTime',
],
)
# Printing the dataFrame
pd.set_option('display.max_rows', fcfs.shape[0] + 1)
print(fcfs)
| 324 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 1 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowercase__ : str = logging.get_logger(__name__)
@add_end_docstrings(__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : str , **lowerCAmelCase__ : Dict ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
if self.framework == "tf":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(lowerCAmelCase__ )
def __call__( self : Tuple , lowerCAmelCase__ : Union[str, "Image.Image", List[Dict[str, Any]]] , lowerCAmelCase__ : Union[str, List[str]] = None , **lowerCAmelCase__ : Tuple , ) -> List[str]:
'''simple docstring'''
if "text_queries" in kwargs:
_UpperCamelCase = kwargs.pop('''text_queries''' )
if isinstance(lowerCAmelCase__ , (str, Image.Image) ):
_UpperCamelCase = {'''image''': image, '''candidate_labels''': candidate_labels}
else:
_UpperCamelCase = image
_UpperCamelCase = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ )
return results
def snake_case__ ( self : int , **lowerCAmelCase__ : Dict ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = {}
if "threshold" in kwargs:
_UpperCamelCase = kwargs['''threshold''']
if "top_k" in kwargs:
_UpperCamelCase = kwargs['''top_k''']
return {}, {}, postprocess_params
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase = load_image(inputs['''image'''] )
_UpperCamelCase = inputs['''candidate_labels''']
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = candidate_labels.split(''',''' )
_UpperCamelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa )
for i, candidate_label in enumerate(lowerCAmelCase__ ):
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework )
_UpperCamelCase = self.image_processor(lowerCAmelCase__ , return_tensors=self.framework )
yield {
"is_last": i == len(lowerCAmelCase__ ) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] ) -> Any:
'''simple docstring'''
_UpperCamelCase = model_inputs.pop('''target_size''' )
_UpperCamelCase = model_inputs.pop('''candidate_label''' )
_UpperCamelCase = model_inputs.pop('''is_last''' )
_UpperCamelCase = self.model(**lowerCAmelCase__ )
_UpperCamelCase = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs}
return model_outputs
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : int=None ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = []
for model_output in model_outputs:
_UpperCamelCase = model_output['''candidate_label''']
_UpperCamelCase = BaseModelOutput(lowerCAmelCase__ )
_UpperCamelCase = self.image_processor.post_process_object_detection(
outputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ , target_sizes=model_output['''target_size'''] )[0]
for index in outputs["scores"].nonzero():
_UpperCamelCase = outputs['''scores'''][index].item()
_UpperCamelCase = self._get_bounding_box(outputs['''boxes'''][index][0] )
_UpperCamelCase = {'''score''': score, '''label''': label, '''box''': box}
results.append(lowerCAmelCase__ )
_UpperCamelCase = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["score"] , reverse=lowerCAmelCase__ )
if top_k:
_UpperCamelCase = results[:top_k]
return results
def snake_case__ ( self : int , lowerCAmelCase__ : "torch.Tensor" ) -> Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' )
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = box.int().tolist()
_UpperCamelCase = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 324 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : str = LDMTextToImagePipeline
_snake_case : List[Any] = TEXT_TO_IMAGE_PARAMS - {
'negative_prompt',
'negative_prompt_embeds',
'cross_attention_kwargs',
'prompt_embeds',
}
_snake_case : List[str] = PipelineTesterMixin.required_optional_params - {
'num_images_per_prompt',
'callback',
'callback_steps',
}
_snake_case : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
_snake_case : Any = False
def snake_case__ ( self : Any ) -> Optional[Any]:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
_UpperCamelCase = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , )
torch.manual_seed(0 )
_UpperCamelCase = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('''DownEncoderBlock2D''', '''DownEncoderBlock2D''') , up_block_types=('''UpDecoderBlock2D''', '''UpDecoderBlock2D''') , latent_channels=4 , )
torch.manual_seed(0 )
_UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_UpperCamelCase = CLIPTextModel(lowerCAmelCase__ )
_UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
_UpperCamelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vqvae''': vae,
'''bert''': text_encoder,
'''tokenizer''': tokenizer,
}
return components
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str]=0 ) -> Dict:
'''simple docstring'''
if str(lowerCAmelCase__ ).startswith('''mps''' ):
_UpperCamelCase = torch.manual_seed(lowerCAmelCase__ )
else:
_UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
_UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_UpperCamelCase = self.get_dummy_components()
_UpperCamelCase = LDMTextToImagePipeline(**lowerCAmelCase__ )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCamelCase = self.get_dummy_inputs(lowerCAmelCase__ )
_UpperCamelCase = pipe(**lowerCAmelCase__ ).images
_UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
_UpperCamelCase = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=torch.floataa , lowerCAmelCase__ : Optional[int]=0 ) -> Any:
'''simple docstring'''
_UpperCamelCase = torch.manual_seed(lowerCAmelCase__ )
_UpperCamelCase = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 32, 32) )
_UpperCamelCase = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ )
_UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCamelCase = self.get_inputs(lowerCAmelCase__ )
_UpperCamelCase = pipe(**lowerCAmelCase__ ).images
_UpperCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
_UpperCamelCase = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] )
_UpperCamelCase = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str=torch.floataa , lowerCAmelCase__ : Union[str, Any]=0 ) -> Dict:
'''simple docstring'''
_UpperCamelCase = torch.manual_seed(lowerCAmelCase__ )
_UpperCamelCase = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 32, 32) )
_UpperCamelCase = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ )
_UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 50,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = LDMTextToImagePipeline.from_pretrained('''CompVis/ldm-text2im-large-256''' ).to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
_UpperCamelCase = self.get_inputs(lowerCAmelCase__ )
_UpperCamelCase = pipe(**lowerCAmelCase__ ).images[0]
_UpperCamelCase = load_numpy(
'''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy''' )
_UpperCamelCase = np.abs(expected_image - image ).max()
assert max_diff < 1e-3
| 324 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 1 |
'''simple docstring'''
from timeit import timeit
lowercase__ : Dict = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def a__ ( lowercase : str ) -> bool:
"""simple docstring"""
_UpperCamelCase = 0
_UpperCamelCase = len(lowercase ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def a__ ( lowercase : str ) -> bool:
"""simple docstring"""
_UpperCamelCase = len(lowercase ) // 2
_UpperCamelCase = len(lowercase )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(lowercase ) )
def a__ ( lowercase : str ) -> bool:
"""simple docstring"""
if len(lowercase ) <= 2:
return True
if s[0] == s[len(lowercase ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def a__ ( lowercase : str ) -> bool:
"""simple docstring"""
return s == s[::-1]
def a__ ( lowercase : str ) -> None:
"""simple docstring"""
_UpperCamelCase = F"""all({name}(key) is value for key, value in test_data.items())"""
_UpperCamelCase = F"""from __main__ import test_data, {name}"""
_UpperCamelCase = 500000
_UpperCamelCase = timeit(stmt=lowercase, setup=lowercase, number=lowercase )
print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(F"""{key:21} {value}""")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 324 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 1 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
lowercase__ : Any = None
lowercase__ : Dict = logging.get_logger(__name__)
lowercase__ : List[Any] = '▁'
lowercase__ : List[str] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : Optional[int] = {
'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'},
'tokenizer_file': {
'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'
},
}
lowercase__ : int = {
'google/pegasus-xsum': 5_12,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : List[str] = VOCAB_FILES_NAMES
_snake_case : Tuple = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : List[Any] = PegasusTokenizer
_snake_case : Any = ['input_ids', 'attention_mask']
def __init__( self : int , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Optional[Any]=None , lowerCAmelCase__ : Dict="<pad>" , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : str="<unk>" , lowerCAmelCase__ : List[str]="<mask_2>" , lowerCAmelCase__ : Any="<mask_1>" , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=103 , **lowerCAmelCase__ : Dict , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = offset
if additional_special_tokens is not None:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise TypeError(
f"""additional_special_tokens should be of type {type(lowerCAmelCase__ )}, but is"""
f""" {type(lowerCAmelCase__ )}""" )
_UpperCamelCase = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"""<unk_{i}>""" for i in range(len(lowerCAmelCase__ ) , self.offset - 1 )
]
if len(set(lowerCAmelCase__ ) ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
_UpperCamelCase = additional_special_tokens_extended
else:
_UpperCamelCase = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )]
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , mask_token_sent=lowerCAmelCase__ , offset=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Dict ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
'''There should be 3 special tokens: mask_token, pad_token, and eos_token +'''
f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" )
return [1 if x in all_special_ids else 0 for x in seq]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List , lowerCAmelCase__ : Optional[List] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return self._special_token_mask(lowerCAmelCase__ )
elif token_ids_a is None:
return self._special_token_mask(lowerCAmelCase__ ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any]=None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def snake_case__ ( self : int , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 1 |
'''simple docstring'''
lowercase__ : Tuple = [0, 2, 4, 6, 8]
lowercase__ : Any = [1, 3, 5, 7, 9]
def a__ ( lowercase : int, lowercase : int, lowercase : list[int], lowercase : int ) -> int:
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
_UpperCamelCase = 0
for digit in range(10 ):
_UpperCamelCase = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, lowercase, lowercase )
return result
_UpperCamelCase = 0
for digita in range(10 ):
_UpperCamelCase = digita
if (remainder + digita) % 2 == 0:
_UpperCamelCase = ODD_DIGITS
else:
_UpperCamelCase = EVEN_DIGITS
for digita in other_parity_digits:
_UpperCamelCase = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, lowercase, lowercase, )
return result
def a__ ( lowercase : int = 9 ) -> int:
"""simple docstring"""
_UpperCamelCase = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(lowercase, 0, [0] * length, lowercase )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 324 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 1 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 1 |
'''simple docstring'''
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
lowercase__ : List[Any] = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
lowercase__ : List[str] = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
lowercase__ : int = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/google-research/google-research/tree/master/rouge'''] , reference_urls=[
'''https://en.wikipedia.org/wiki/ROUGE_(metric)''',
'''https://github.com/google-research/google-research/tree/master/rouge''',
] , )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Any=False ) -> Union[str, Any]:
'''simple docstring'''
if rouge_types is None:
_UpperCamelCase = ['''rouge1''', '''rouge2''', '''rougeL''', '''rougeLsum''']
_UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=lowerCAmelCase__ , use_stemmer=lowerCAmelCase__ )
if use_aggregator:
_UpperCamelCase = scoring.BootstrapAggregator()
else:
_UpperCamelCase = []
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = scorer.score(lowerCAmelCase__ , lowerCAmelCase__ )
if use_aggregator:
aggregator.add_scores(lowerCAmelCase__ )
else:
scores.append(lowerCAmelCase__ )
if use_aggregator:
_UpperCamelCase = aggregator.aggregate()
else:
_UpperCamelCase = {}
for key in scores[0]:
_UpperCamelCase = [score[key] for score in scores]
return result
| 324 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int=13 , lowerCAmelCase__ : Tuple=7 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : Union[str, Any]=99 , lowerCAmelCase__ : Dict=32 , lowerCAmelCase__ : str=5 , lowerCAmelCase__ : int=4 , lowerCAmelCase__ : List[str]=37 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Any=0.1 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : Tuple=512 , lowerCAmelCase__ : Optional[Any]=16 , lowerCAmelCase__ : List[str]=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = True
_UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = True
_snake_case : Optional[int] = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxRobertaPreLayerNormModelTester(self )
@slow
def snake_case__ ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCAmelCase__ )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCAmelCase__ )
_UpperCamelCase = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa )
_UpperCamelCase = model(lowerCAmelCase__ )[0]
_UpperCamelCase = [1, 11, 50265]
self.assertEqual(list(output.shape ) , lowerCAmelCase__ )
# compare the actual values for a slice.
_UpperCamelCase = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
@slow
def snake_case__ ( self : Any ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=lowerCAmelCase__ )
_UpperCamelCase = np.array([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] , dtype=jnp.intaa )
_UpperCamelCase = model(lowerCAmelCase__ )[0]
# compare the actual values for a slice.
_UpperCamelCase = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 1 |
'''simple docstring'''
import re
def a__ ( lowercase : str ) -> bool:
"""simple docstring"""
_UpperCamelCase = re.compile(
r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' )
return bool(re.search(lowercase, lowercase ) )
if __name__ == "__main__":
lowercase__ : List[str] = '0094702343221'
print(is_sri_lankan_phone_number(phone))
| 324 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 1 |
'''simple docstring'''
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
lowercase__ : Union[str, Any] = {
'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt',
'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt',
'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt',
'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt',
'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt',
'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt',
'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt',
'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt',
'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt',
'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt',
}
def a__ ( lowercase : int ) -> Any:
"""simple docstring"""
_UpperCamelCase = ['''layers''', '''blocks''']
for k in ignore_keys:
state_dict.pop(lowercase, lowercase )
lowercase__ : Optional[int] = {
'blocks': 'layers',
'mlp.0': 'fc1',
'mlp.2': 'fc2',
'mlp_ln': 'final_layer_norm',
'.attn.query': '.self_attn.q_proj',
'.attn.key': '.self_attn.k_proj',
'.attn.value': '.self_attn.v_proj',
'.attn_ln': '.self_attn_layer_norm',
'.attn.out': '.self_attn.out_proj',
'.cross_attn.query': '.encoder_attn.q_proj',
'.cross_attn.key': '.encoder_attn.k_proj',
'.cross_attn.value': '.encoder_attn.v_proj',
'.cross_attn_ln': '.encoder_attn_layer_norm',
'.cross_attn.out': '.encoder_attn.out_proj',
'decoder.ln.': 'decoder.layer_norm.',
'encoder.ln.': 'encoder.layer_norm.',
'token_embedding': 'embed_tokens',
'encoder.positional_embedding': 'encoder.embed_positions.weight',
'decoder.positional_embedding': 'decoder.embed_positions.weight',
'ln_post': 'layer_norm',
}
def a__ ( lowercase : Any ) -> str:
"""simple docstring"""
_UpperCamelCase = list(s_dict.keys() )
for key in keys:
_UpperCamelCase = key
for k, v in WHISPER_MAPPING.items():
if k in key:
_UpperCamelCase = new_key.replace(lowercase, lowercase )
print(F"""{key} -> {new_key}""" )
_UpperCamelCase = s_dict.pop(lowercase )
return s_dict
def a__ ( lowercase : Tuple ) -> List[str]:
"""simple docstring"""
_UpperCamelCase , _UpperCamelCase = emb.weight.shape
_UpperCamelCase = nn.Linear(lowercase, lowercase, bias=lowercase )
_UpperCamelCase = emb.weight.data
return lin_layer
def a__ ( lowercase : str, lowercase : str ) -> bytes:
"""simple docstring"""
os.makedirs(lowercase, exist_ok=lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = url.split('''/''' )[-2]
_UpperCamelCase = os.path.join(lowercase, lowercase )
if os.path.exists(lowercase ) and not os.path.isfile(lowercase ):
raise RuntimeError(F"""{download_target} exists and is not a regular file""" )
if os.path.isfile(lowercase ):
_UpperCamelCase = open(lowercase, '''rb''' ).read()
if hashlib.shaaaa(lowercase ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" )
with urllib.request.urlopen(lowercase ) as source, open(lowercase, '''wb''' ) as output:
with tqdm(
total=int(source.info().get('''Content-Length''' ) ), ncols=80, unit='''iB''', unit_scale=lowercase, unit_divisor=1024 ) as loop:
while True:
_UpperCamelCase = source.read(8192 )
if not buffer:
break
output.write(lowercase )
loop.update(len(lowercase ) )
_UpperCamelCase = open(lowercase, '''rb''' ).read()
if hashlib.shaaaa(lowercase ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' )
return model_bytes
def a__ ( lowercase : Dict, lowercase : int ) -> Dict:
"""simple docstring"""
if ".pt" not in checkpoint_path:
_UpperCamelCase = _download(_MODELS[checkpoint_path] )
else:
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = original_checkpoint['''dims''']
_UpperCamelCase = original_checkpoint['''model_state_dict''']
_UpperCamelCase = state_dict['''decoder.token_embedding.weight''']
remove_ignore_keys_(lowercase )
rename_keys(lowercase )
_UpperCamelCase = True
_UpperCamelCase = state_dict['''decoder.layers.0.fc1.weight'''].shape[0]
_UpperCamelCase = WhisperConfig(
vocab_size=dimensions['''n_vocab'''], encoder_ffn_dim=lowercase, decoder_ffn_dim=lowercase, num_mel_bins=dimensions['''n_mels'''], d_model=dimensions['''n_audio_state'''], max_target_positions=dimensions['''n_text_ctx'''], encoder_layers=dimensions['''n_audio_layer'''], encoder_attention_heads=dimensions['''n_audio_head'''], decoder_layers=dimensions['''n_text_layer'''], decoder_attention_heads=dimensions['''n_text_state'''], max_source_positions=dimensions['''n_audio_ctx'''], )
_UpperCamelCase = WhisperForConditionalGeneration(lowercase )
_UpperCamelCase , _UpperCamelCase = model.model.load_state_dict(lowercase, strict=lowercase )
if len(lowercase ) > 0 and not set(lowercase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
F""" but all the following weights are missing {missing}""" )
if tie_embeds:
_UpperCamelCase = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
_UpperCamelCase = proj_out_weights
model.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
lowercase__ : List[Any] = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 324 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 1 |
'''simple docstring'''
import unittest
import numpy as np
def a__ ( lowercase : np.ndarray, lowercase : np.ndarray, lowercase : np.ndarray, lowercase : np.ndarray | None = None, ) -> np.ndarray:
"""simple docstring"""
_UpperCamelCase = np.shape(lowercase )
_UpperCamelCase = np.shape(lowercase )
_UpperCamelCase = np.shape(lowercase )
if shape_a[0] != shape_b[0]:
_UpperCamelCase = (
'''Expected the same number of rows for A and B. '''
F"""Instead found A of size {shape_a} and B of size {shape_b}"""
)
raise ValueError(lowercase )
if shape_b[1] != shape_c[1]:
_UpperCamelCase = (
'''Expected the same number of columns for B and C. '''
F"""Instead found B of size {shape_b} and C of size {shape_c}"""
)
raise ValueError(lowercase )
_UpperCamelCase = pseudo_inv
if a_inv is None:
try:
_UpperCamelCase = np.linalg.inv(lowercase )
except np.linalg.LinAlgError:
raise ValueError(
'''Input matrix A is not invertible. Cannot compute Schur complement.''' )
return mat_c - mat_b.T @ a_inv @ mat_b
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Optional[int] ) -> None:
'''simple docstring'''
_UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] )
_UpperCamelCase = np.array([[2, 1], [6, 3]] )
_UpperCamelCase = schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = np.block([[a, b], [b.T, c]] )
_UpperCamelCase = np.linalg.det(lowerCAmelCase__ )
_UpperCamelCase = np.linalg.det(lowerCAmelCase__ )
_UpperCamelCase = np.linalg.det(lowerCAmelCase__ )
self.assertAlmostEqual(lowerCAmelCase__ , det_a * det_s )
def snake_case__ ( self : Any ) -> None:
'''simple docstring'''
_UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] )
_UpperCamelCase = np.array([[2, 1], [6, 3]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : int ) -> None:
'''simple docstring'''
_UpperCamelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] )
_UpperCamelCase = np.array([[0, 3], [3, 0], [2, 3]] )
_UpperCamelCase = np.array([[2, 1, 3], [6, 3, 5]] )
with self.assertRaises(lowerCAmelCase__ ):
schur_complement(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
unittest.main()
| 324 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 1 |
'''simple docstring'''
import logging
import os
from .state import PartialState
class __lowerCAmelCase ( logging.LoggerAdapter ):
"""simple docstring"""
@staticmethod
def snake_case__ ( lowerCAmelCase__ : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def snake_case__ ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , *lowerCAmelCase__ : str , **lowerCAmelCase__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
if PartialState._shared_state == {}:
raise RuntimeError(
'''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' )
_UpperCamelCase = kwargs.pop('''main_process_only''' , lowerCAmelCase__ )
_UpperCamelCase = kwargs.pop('''in_order''' , lowerCAmelCase__ )
if self.isEnabledFor(lowerCAmelCase__ ):
if self._should_log(lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = self.process(lowerCAmelCase__ , lowerCAmelCase__ )
self.logger.log(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
elif in_order:
_UpperCamelCase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
_UpperCamelCase , _UpperCamelCase = self.process(lowerCAmelCase__ , lowerCAmelCase__ )
self.logger.log(lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
state.wait_for_everyone()
def a__ ( lowercase : str, lowercase : str = None ) -> str:
"""simple docstring"""
if log_level is None:
_UpperCamelCase = os.environ.get('''ACCELERATE_LOG_LEVEL''', lowercase )
_UpperCamelCase = logging.getLogger(lowercase )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(lowercase, {} )
| 324 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
class __lowerCAmelCase :
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : list[str] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = []
self.adlist.append(
{'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} )
for keyword in keywords:
self.add_keyword(lowerCAmelCase__ )
self.set_fail_transitions()
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> int | None:
'''simple docstring'''
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : str ) -> None:
'''simple docstring'''
_UpperCamelCase = 0
for character in keyword:
_UpperCamelCase = self.find_next_state(lowerCAmelCase__ , lowerCAmelCase__ )
if next_state is None:
self.adlist.append(
{
'''value''': character,
'''next_states''': [],
'''fail_state''': 0,
'''output''': [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
_UpperCamelCase = len(self.adlist ) - 1
else:
_UpperCamelCase = next_state
self.adlist[current_state]["output"].append(lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> None:
'''simple docstring'''
_UpperCamelCase = deque()
for node in self.adlist[0]["next_states"]:
q.append(lowerCAmelCase__ )
_UpperCamelCase = 0
while q:
_UpperCamelCase = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(lowerCAmelCase__ )
_UpperCamelCase = self.adlist[r]['''fail_state''']
while (
self.find_next_state(lowerCAmelCase__ , self.adlist[child]['''value'''] ) is None
and state != 0
):
_UpperCamelCase = self.adlist[state]['''fail_state''']
_UpperCamelCase = self.find_next_state(
lowerCAmelCase__ , self.adlist[child]['''value'''] )
if self.adlist[child]["fail_state"] is None:
_UpperCamelCase = 0
_UpperCamelCase = (
self.adlist[child]['''output''']
+ self.adlist[self.adlist[child]['''fail_state''']]['''output''']
)
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> dict[str, list[int]]:
'''simple docstring'''
_UpperCamelCase = {} # returns a dict with keywords and list of its occurrences
_UpperCamelCase = 0
for i in range(len(lowerCAmelCase__ ) ):
while (
self.find_next_state(lowerCAmelCase__ , string[i] ) is None
and current_state != 0
):
_UpperCamelCase = self.adlist[current_state]['''fail_state''']
_UpperCamelCase = self.find_next_state(lowerCAmelCase__ , string[i] )
if next_state is None:
_UpperCamelCase = 0
else:
_UpperCamelCase = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
_UpperCamelCase = []
result[key].append(i - len(lowerCAmelCase__ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 324 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowercase_ ( lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = DiTPipeline
__snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
__snake_case = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
__snake_case = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
__snake_case = False
def __lowerCAmelCase ( self : Union[str, Any] ) ->Tuple:
"""simple docstring"""
torch.manual_seed(0 )
a = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__UpperCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=__UpperCAmelCase , )
a = AutoencoderKL()
a = DDIMScheduler()
a = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler}
return components
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any]=0 ) ->Any:
"""simple docstring"""
if str(__UpperCAmelCase ).startswith('''mps''' ):
a = torch.manual_seed(__UpperCAmelCase )
else:
a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
a = {
'''class_labels''': [1],
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
def __lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
a = '''cpu'''
a = self.get_dummy_components()
a = self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
a = self.get_dummy_inputs(__UpperCAmelCase )
a = pipe(**__UpperCAmelCase ).images
a = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
a = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] )
a = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__UpperCAmelCase , 1e-3 )
def __lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
self._test_inference_batch_single_identical(relax_max_difference=__UpperCAmelCase , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __lowerCAmelCase ( self : Any ) ->int:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCAmelCase ( self : List[Any] ) ->str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
a = torch.manual_seed(0 )
a = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' )
pipe.to('''cuda''' )
a = ['''vase''', '''umbrella''', '''white shark''', '''white wolf''']
a = pipe.get_label_ids(__UpperCAmelCase )
a = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=40 , output_type='''np''' ).images
for word, image in zip(__UpperCAmelCase , __UpperCAmelCase ):
a = load_numpy(
F"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-2
def __lowerCAmelCase ( self : str ) ->Tuple:
"""simple docstring"""
a = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' )
a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('''cuda''' )
a = ['''vase''', '''umbrella''']
a = pipe.get_label_ids(__UpperCAmelCase )
a = torch.manual_seed(0 )
a = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=25 , output_type='''np''' ).images
for word, image in zip(__UpperCAmelCase , __UpperCAmelCase ):
a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
F"""/dit/{word}_512.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-1
| 0 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 0 |
'''simple docstring'''
def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int:
'''simple docstring'''
return x if y == 0 else greatest_common_divisor(snake_case_ , x % y )
def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> int:
'''simple docstring'''
return (x * y) // greatest_common_divisor(snake_case_ , snake_case_ )
def lowerCAmelCase_ ( snake_case_ : int = 20 ) -> int:
'''simple docstring'''
UpperCAmelCase_ = 1
for i in range(1 , n + 1 ):
UpperCAmelCase_ = lcm(snake_case_ , snake_case_ )
return g
if __name__ == "__main__":
print(f"{solution() = }")
| 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 0 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE (A = 600_851_475_143 ) -> int:
"""simple docstring"""
try:
lowercase__ = int(A )
except (TypeError, ValueError):
raise TypeError('''Parameter n must be int or castable to int.''' )
if n <= 0:
raise ValueError('''Parameter n must be greater than or equal to one.''' )
lowercase__ = 2
lowercase__ = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
lowercase__ = i
while n % i == 0:
lowercase__ = n // i
i += 1
return int(A )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 2 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class A ( __snake_case , __snake_case , unittest.TestCase ):
__magic_name__ = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'''feature-extraction''': TFMobileBertModel,
'''fill-mask''': TFMobileBertForMaskedLM,
'''question-answering''': TFMobileBertForQuestionAnswering,
'''text-classification''': TFMobileBertForSequenceClassification,
'''token-classification''': TFMobileBertForTokenClassification,
'''zero-shot''': TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> List[str]:
"""simple docstring"""
A : Tuple = super()._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_labels=SCREAMING_SNAKE_CASE )
if return_labels:
if model_class in get_values(SCREAMING_SNAKE_CASE ):
A : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class A ( __snake_case ):
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=13 , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=99 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=32 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=37 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=4 , SCREAMING_SNAKE_CASE=None , ) -> str:
"""simple docstring"""
A : List[str] = parent
A : str = batch_size
A : Optional[Any] = seq_length
A : List[str] = is_training
A : List[Any] = use_input_mask
A : Optional[Any] = use_token_type_ids
A : Optional[Any] = use_labels
A : List[str] = vocab_size
A : Dict = hidden_size
A : Union[str, Any] = num_hidden_layers
A : Tuple = num_attention_heads
A : Dict = intermediate_size
A : Tuple = hidden_act
A : List[Any] = hidden_dropout_prob
A : Tuple = attention_probs_dropout_prob
A : int = max_position_embeddings
A : int = type_vocab_size
A : str = type_sequence_label_size
A : int = initializer_range
A : Optional[Any] = num_labels
A : Optional[int] = num_choices
A : Tuple = scope
A : Dict = embedding_size
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
A : Union[str, Any] = None
if self.use_input_mask:
A : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
A : Dict = None
if self.use_token_type_ids:
A : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
A : Tuple = None
A : str = None
A : Any = None
if self.use_labels:
A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
A : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices )
A : Optional[Any] = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : int = TFMobileBertModel(config=SCREAMING_SNAKE_CASE )
A : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A : List[str] = model(SCREAMING_SNAKE_CASE )
A : str = [input_ids, input_mask]
A : List[str] = model(SCREAMING_SNAKE_CASE )
A : Dict = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : Optional[int] = TFMobileBertForMaskedLM(config=SCREAMING_SNAKE_CASE )
A : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A : Dict = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : Union[str, Any] = TFMobileBertForNextSentencePrediction(config=SCREAMING_SNAKE_CASE )
A : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : str = TFMobileBertForPreTraining(config=SCREAMING_SNAKE_CASE )
A : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A : str = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
A : str = self.num_labels
A : Tuple = TFMobileBertForSequenceClassification(config=SCREAMING_SNAKE_CASE )
A : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A : Dict = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Dict = self.num_choices
A : Dict = TFMobileBertForMultipleChoice(config=SCREAMING_SNAKE_CASE )
A : Tuple = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
A : int = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
A : Union[str, Any] = tf.tile(tf.expand_dims(SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
A : Tuple = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
A : Optional[Any] = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Dict = self.num_labels
A : Optional[Any] = TFMobileBertForTokenClassification(config=SCREAMING_SNAKE_CASE )
A : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A : str = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
A : Union[str, Any] = TFMobileBertForQuestionAnswering(config=SCREAMING_SNAKE_CASE )
A : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
A : Any = model(SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : List[str] = self.prepare_config_and_inputs()
(
(
A
), (
A
), (
A
), (
A
), (
A
), (
A
), (
A
),
) : Any = config_and_inputs
A : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
def __lowerCAmelCase ( self ) -> Tuple:
"""simple docstring"""
A : Optional[int] = TFMobileBertModelTest.TFMobileBertModelTester(self )
A : Union[str, Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE , hidden_size=37 )
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[int]:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> str:
"""simple docstring"""
A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
A : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> Optional[Any]:
"""simple docstring"""
A : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self ) -> List[str]:
"""simple docstring"""
A : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*SCREAMING_SNAKE_CASE )
@slow
def __lowerCAmelCase ( self ) -> Any:
"""simple docstring"""
for model_name in ["google/mobilebert-uncased"]:
A : Optional[int] = TFMobileBertModel.from_pretrained(SCREAMING_SNAKE_CASE )
self.assertIsNotNone(SCREAMING_SNAKE_CASE )
@require_tf
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> Dict:
"""simple docstring"""
A : Optional[Any] = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' )
A : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] )
A : str = model(SCREAMING_SNAKE_CASE )[0]
A : Dict = [1, 6, 30522]
self.assertEqual(output.shape , SCREAMING_SNAKE_CASE )
A : Union[str, Any] = tf.constant(
[
[
[-4.5_919_547, -9.248_295, -9.645_256],
[-6.7_306_175, -6.440_284, -6.6_052_837],
[-7.2_743_506, -6.7_847_915, -6.024_673],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 )
| 3 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
__snake_case =None
__snake_case =logging.get_logger(__name__)
__snake_case ={"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
__snake_case ={
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
__snake_case ={
"""facebook/nllb-large-en-ro""": 1_024,
"""facebook/nllb-200-distilled-600M""": 1_024,
}
# fmt: off
__snake_case =["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class UpperCAmelCase_ ( __lowercase ):
lowerCamelCase : Tuple = VOCAB_FILES_NAMES
lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase : Optional[Any] = ['''input_ids''', '''attention_mask''']
lowerCamelCase : str = NllbTokenizer
lowerCamelCase : List[int] = []
lowerCamelCase : List[int] = []
def __init__( self : List[str] , UpperCAmelCase__ : Tuple=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Optional[int]="<s>" , UpperCAmelCase__ : str="</s>" , UpperCAmelCase__ : int="</s>" , UpperCAmelCase__ : List[Any]="<s>" , UpperCAmelCase__ : Dict="<unk>" , UpperCAmelCase__ : Union[str, Any]="<pad>" , UpperCAmelCase__ : Union[str, Any]="<mask>" , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : int=False , **UpperCAmelCase__ : Any , ) -> Dict:
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase = AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token
lowerCAmelCase = legacy_behaviour
super().__init__(
vocab_file=UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , src_lang=UpperCAmelCase__ , tgt_lang=UpperCAmelCase__ , additional_special_tokens=UpperCAmelCase__ , legacy_behaviour=UpperCAmelCase__ , **UpperCAmelCase__ , )
lowerCAmelCase = vocab_file
lowerCAmelCase = False if not self.vocab_file else True
lowerCAmelCase = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
lowerCAmelCase = {
lang_code: self.convert_tokens_to_ids(UpperCAmelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
lowerCAmelCase = src_lang if src_lang is not None else 'eng_Latn'
lowerCAmelCase = self.convert_tokens_to_ids(self._src_lang )
lowerCAmelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def __UpperCAmelCase ( self : List[Any] ) -> str:
return self._src_lang
@src_lang.setter
def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : str ) -> None:
lowerCAmelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : List[int] , UpperCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __UpperCAmelCase ( self : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] , UpperCAmelCase__ : Optional[str] , **UpperCAmelCase__ : int ) -> Any:
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
lowerCAmelCase = src_lang
lowerCAmelCase = self(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ , return_tensors=UpperCAmelCase__ , **UpperCAmelCase__ )
lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase__ )
lowerCAmelCase = tgt_lang_id
return inputs
def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str = "eng_Latn" , UpperCAmelCase__ : Optional[List[str]] = None , UpperCAmelCase__ : str = "fra_Latn" , **UpperCAmelCase__ : List[Any] , ) -> BatchEncoding:
lowerCAmelCase = src_lang
lowerCAmelCase = tgt_lang
return super().prepare_seqaseq_batch(UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ )
def __UpperCAmelCase ( self : int ) -> List[str]:
return self.set_src_lang_special_tokens(self.src_lang )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Any ) -> None:
lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase__ )
if self.legacy_behaviour:
lowerCAmelCase = []
lowerCAmelCase = [self.eos_token_id, self.cur_lang_code]
else:
lowerCAmelCase = [self.cur_lang_code]
lowerCAmelCase = [self.eos_token_id]
lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCAmelCase = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : str ) -> None:
lowerCAmelCase = self.convert_tokens_to_ids(UpperCAmelCase__ )
if self.legacy_behaviour:
lowerCAmelCase = []
lowerCAmelCase = [self.eos_token_id, self.cur_lang_code]
else:
lowerCAmelCase = [self.cur_lang_code]
lowerCAmelCase = [self.eos_token_id]
lowerCAmelCase = self.convert_ids_to_tokens(self.prefix_tokens )
lowerCAmelCase = self.convert_ids_to_tokens(self.suffix_tokens )
lowerCAmelCase = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(UpperCAmelCase__ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' )
return
lowerCAmelCase = os.path.join(
UpperCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ):
copyfile(self.vocab_file , UpperCAmelCase__ )
return (out_vocab_file,)
| 4 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCAmelCase__ = logging.get_logger(__name__)
class lowerCamelCase__ ( lowerCAmelCase , lowerCAmelCase):
SCREAMING_SNAKE_CASE__ = '''maskformer-swin'''
SCREAMING_SNAKE_CASE__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__(self , UpperCAmelCase=2_2_4 , UpperCAmelCase=4 , UpperCAmelCase=3 , UpperCAmelCase=9_6 , UpperCAmelCase=[2, 2, 6, 2] , UpperCAmelCase=[3, 6, 1_2, 2_4] , UpperCAmelCase=7 , UpperCAmelCase=4.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Any:
super().__init__(**UpperCAmelCase )
_lowercase =image_size
_lowercase =patch_size
_lowercase =num_channels
_lowercase =embed_dim
_lowercase =depths
_lowercase =len(UpperCAmelCase )
_lowercase =num_heads
_lowercase =window_size
_lowercase =mlp_ratio
_lowercase =qkv_bias
_lowercase =hidden_dropout_prob
_lowercase =attention_probs_dropout_prob
_lowercase =drop_path_rate
_lowercase =hidden_act
_lowercase =use_absolute_embeddings
_lowercase =layer_norm_eps
_lowercase =initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowercase =int(embed_dim * 2 ** (len(UpperCAmelCase ) - 1) )
_lowercase =['''stem'''] + [f"stage{idx}" for idx in range(1 , len(UpperCAmelCase ) + 1 )]
_lowercase , _lowercase =get_aligned_output_features_output_indices(
out_features=UpperCAmelCase , out_indices=UpperCAmelCase , stage_names=self.stage_names )
| 5 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : List[str] = logging.get_logger(__name__)
A : Dict = {
'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json',
# See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2
}
class __A( a ):
snake_case_ = '''wav2vec2'''
def __init__( self , _snake_case=32 , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3_072 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.1 , _snake_case=0.1 , _snake_case=0.02 , _snake_case=1E-5 , _snake_case="group" , _snake_case="gelu" , _snake_case=(512, 512, 512, 512, 512, 512, 512) , _snake_case=(5, 2, 2, 2, 2, 2, 2) , _snake_case=(10, 3, 3, 3, 3, 2, 2) , _snake_case=False , _snake_case=128 , _snake_case=16 , _snake_case=False , _snake_case=True , _snake_case=0.05 , _snake_case=10 , _snake_case=2 , _snake_case=0.0 , _snake_case=10 , _snake_case=0 , _snake_case=320 , _snake_case=2 , _snake_case=0.1 , _snake_case=100 , _snake_case=256 , _snake_case=256 , _snake_case=0.1 , _snake_case="sum" , _snake_case=False , _snake_case=False , _snake_case=256 , _snake_case=(512, 512, 512, 512, 1_500) , _snake_case=(5, 3, 3, 1, 1) , _snake_case=(1, 2, 3, 1, 1) , _snake_case=512 , _snake_case=0 , _snake_case=1 , _snake_case=2 , _snake_case=False , _snake_case=3 , _snake_case=2 , _snake_case=3 , _snake_case=None , _snake_case=None , **_snake_case , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case )
__a = hidden_size
__a = feat_extract_norm
__a = feat_extract_activation
__a = list(_snake_case )
__a = list(_snake_case )
__a = list(_snake_case )
__a = conv_bias
__a = num_conv_pos_embeddings
__a = num_conv_pos_embedding_groups
__a = len(self.conv_dim )
__a = num_hidden_layers
__a = intermediate_size
__a = hidden_act
__a = num_attention_heads
__a = hidden_dropout
__a = attention_dropout
__a = activation_dropout
__a = feat_proj_dropout
__a = final_dropout
__a = layerdrop
__a = layer_norm_eps
__a = initializer_range
__a = vocab_size
__a = do_stable_layer_norm
__a = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='''
''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='''
F""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
F""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a = apply_spec_augment
__a = mask_time_prob
__a = mask_time_length
__a = mask_time_min_masks
__a = mask_feature_prob
__a = mask_feature_length
__a = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__a = num_codevectors_per_group
__a = num_codevector_groups
__a = contrastive_logits_temperature
__a = feat_quantizer_dropout
__a = num_negatives
__a = codevector_dim
__a = proj_codevector_dim
__a = diversity_loss_weight
# ctc loss
__a = ctc_loss_reduction
__a = ctc_zero_infinity
# adapter
__a = add_adapter
__a = adapter_kernel_size
__a = adapter_stride
__a = num_adapter_layers
__a = output_hidden_size or hidden_size
__a = adapter_attn_dim
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__a = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__a = list(_snake_case )
__a = list(_snake_case )
__a = list(_snake_case )
__a = xvector_output_dim
@property
def SCREAMING_SNAKE_CASE_ ( self ) -> Dict:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 6 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 0 |
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowercase_ = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A ( _UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
lowerCamelCase = ReformerTokenizer
lowerCamelCase = ReformerTokenizerFast
lowerCamelCase = True
lowerCamelCase = False
lowerCamelCase = True
def snake_case__ ( self : Any )-> str:
'''simple docstring'''
super().setUp()
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : Optional[int] )-> Optional[int]:
'''simple docstring'''
A__ = '<s>'
A__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ )
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0],'<unk>' )
self.assertEqual(vocab_keys[1],'<s>' )
self.assertEqual(vocab_keys[-1],'j' )
self.assertEqual(len(lowercase_ ),1_0_0_0 )
def snake_case__ ( self : Dict )-> Dict:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size,1_0_0_0 )
def snake_case__ ( self : Dict )-> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A__ = self.get_tokenizer()
A__ = self.get_rust_tokenizer()
A__ = 'I was born in 92000, and this is falsé.'
A__ = tokenizer.tokenize(lowercase_ )
A__ = rust_tokenizer.tokenize(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
A__ = self.get_rust_tokenizer()
A__ = tokenizer.encode(lowercase_ )
A__ = rust_tokenizer.encode(lowercase_ )
self.assertListEqual(lowercase_,lowercase_ )
def snake_case__ ( self : int,lowercase_ : Optional[int]=1_5 )-> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
A__ = self.rust_tokenizer_class.from_pretrained(lowercase_,**lowercase_ )
# Simple input
A__ = 'This is a simple input'
A__ = ['This is a simple input 1', 'This is a simple input 2']
A__ = ('This is a simple input', 'This is a pair')
A__ = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Simple input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(lowercase_,tokenizer_r.encode_plus,lowercase_,max_length=lowercase_,padding='max_length' )
# Pair input
self.assertRaises(
lowercase_,tokenizer_r.batch_encode_plus,lowercase_,max_length=lowercase_,padding='max_length',)
def snake_case__ ( self : List[Any] )-> Tuple:
'''simple docstring'''
pass
def snake_case__ ( self : Dict )-> str:
'''simple docstring'''
A__ = ReformerTokenizer(lowercase_,keep_accents=lowercase_ )
A__ = tokenizer.tokenize('This is a test' )
self.assertListEqual(lowercase_,['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowercase_ ),[2_8_5, 4_6, 1_0, 1_7_0, 3_8_2],)
A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
],)
A__ = tokenizer.convert_tokens_to_ids(lowercase_ )
self.assertListEqual(
lowercase_,[8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4],)
A__ = tokenizer.convert_ids_to_tokens(lowercase_ )
self.assertListEqual(
lowercase_,[
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
],)
@cached_property
def snake_case__ ( self : Optional[int] )-> Any:
'''simple docstring'''
return ReformerTokenizer.from_pretrained('google/reformer-crime-and-punishment' )
@slow
def snake_case__ ( self : str )-> Tuple:
'''simple docstring'''
A__ = 'Hello World!'
A__ = [1_2_6, 3_2, 2_6_2, 1_5_2, 3_8, 7_2, 2_8_7]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@slow
def snake_case__ ( self : Optional[int] )-> str:
'''simple docstring'''
A__ = (
'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'
' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'
)
A__ = [
1_0_8,
2_6_5,
2_4,
1_1_1,
4,
2_5_8,
1_5_6,
3_5,
2_8,
2_7_5,
3,
2_5_9,
2_9_7,
2_6_0,
8_4,
4,
3_5,
1_1_0,
4_4,
8,
2_5_9,
9_1,
2_6_8,
2_1,
1_1,
2_0_9,
2_7_4,
1_0_9,
2_6_6,
2_7_7,
1_1_7,
8_6,
9_3,
3_1_5,
2_5_8,
2_7_8,
2_5_8,
2_7_7,
2_5_8,
0,
2_5_8,
2_8_8,
2_5_8,
3_1_9,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
0,
2_5_8,
2_8_7,
2_5_8,
3_1_5,
2_5_8,
2_8_9,
2_5_8,
2_7_8,
9_9,
2_6_9,
2_6_6,
2_6_2,
8,
2_5_9,
2_4_1,
4,
2_1_7,
2_3_0,
2_6_8,
2_6_6,
5_5,
1_6_8,
1_0_6,
7_5,
1_9_3,
2_6_6,
2_2_3,
2_7,
4_9,
2_6,
2_8_2,
2_5,
2_6_4,
2_9_9,
1_9,
2_6,
0,
2_5_8,
2_7_7,
1_1_7,
8_6,
9_3,
1_7_6,
1_8_3,
2_7_0,
1_1,
2_6_2,
4_2,
6_1,
2_6_5,
]
self.assertListEqual(lowercase_,self.big_tokenizer.encode(lowercase_ ) )
@require_torch
@slow
def snake_case__ ( self : int )-> Any:
'''simple docstring'''
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
A__ = list(self.big_tokenizer.get_vocab().keys() )[:1_0]
A__ = ' '.join(lowercase_ )
A__ = self.big_tokenizer.encode_plus(lowercase_,return_tensors='pt' )
A__ = self.big_tokenizer.batch_encode_plus([sequence, sequence],return_tensors='pt' )
A__ = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
A__ = encoded_sequence['input_ids'].shape
A__ = ReformerModel(lowercase_ )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**lowercase_ )
model(**lowercase_ )
@slow
def snake_case__ ( self : int )-> Tuple:
'''simple docstring'''
A__ = {'input_ids': [[1_0_8, 2_6_5, 2_4, 1_1_1, 4, 2_5_8, 1_5_6, 7, 5_1, 2_7_9, 5_8, 7, 7_6, 2_5, 6_9, 2_7_8], [1_4_0, 2_4_3, 2_6_4, 1_3_4, 1_7, 2_6_7, 7_7, 2_6_3, 2_2, 2_6_2, 2_9_7, 2_5_8, 3_0_4, 1_7_7, 2_7_9, 2_6_6, 1_4, 8_9, 1_3, 3_5, 2_6_1, 2_9_9, 2_7_2, 1_3_7, 2_7_5, 2_7_8]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
A__ = [
'This is a very simple sentence.',
'The quick brown fox jumps over the lazy dog.',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase_,model_name='google/reformer-crime-and-punishment',revision='0e6c3decb8211d49bf881013425dc8b0448b3f5a',padding=lowercase_,sequences=lowercase_,)
| 7 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 0 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowerCAmelCase_ = _symbol_database.Default()
lowerCAmelCase_ = _descriptor_pool.Default().AddSerializedFile(
b'''\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'''
)
lowerCAmelCase_ = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, '''sentencepiece_model_pb2''', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowerCAmelCase_ = None
lowerCAmelCase_ = b'''H\003'''
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowerCAmelCase_ = 45
lowerCAmelCase_ = 15_81
lowerCAmelCase_ = 15_17
lowerCAmelCase_ = 15_70
lowerCAmelCase_ = 15_84
lowerCAmelCase_ = 17_93
lowerCAmelCase_ = 17_95
lowerCAmelCase_ = 19_16
lowerCAmelCase_ = 18_64
lowerCAmelCase_ = 19_05
lowerCAmelCase_ = 19_19
lowerCAmelCase_ = 24_29
lowerCAmelCase_ = 22_08
lowerCAmelCase_ = 24_18
lowerCAmelCase_ = 23_23
lowerCAmelCase_ = 24_07
# @@protoc_insertion_point(module_scope) | 8 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 0 |
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser()
parser.add_argument('''--model_ckpt''' , type=lowercase__ , default='''microsoft/unixcoder-base-nine''' )
parser.add_argument('''--num_epochs''' , type=lowercase__ , default=5 )
parser.add_argument('''--batch_size''' , type=lowercase__ , default=6 )
parser.add_argument('''--gradient_accumulation_steps''' , type=lowercase__ , default=1 )
parser.add_argument('''--freeze''' , type=lowercase__ , default=lowercase__ )
parser.add_argument('''--learning_rate''' , type=lowercase__ , default=5e-4 )
parser.add_argument('''--seed''' , type=lowercase__ , default=0 )
parser.add_argument('''--lr_scheduler_type''' , type=lowercase__ , default='''cosine''' )
parser.add_argument('''--num_warmup_steps''' , type=lowercase__ , default=10 )
parser.add_argument('''--weight_decay''' , type=lowercase__ , default=0.01 )
parser.add_argument('''--output_dir''' , type=lowercase__ , default='''./results''' )
return parser.parse_args()
__lowerCAmelCase : List[Any] =load('accuracy')
def _UpperCamelCase ( lowercase__ ):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = eval_pred
__SCREAMING_SNAKE_CASE : int = np.argmax(lowercase__ , axis=1 )
return metric.compute(predictions=lowercase__ , references=lowercase__ )
class _lowercase ( A__ ):
'''simple docstring'''
def __init__( self :Any , lowerCAmelCase__ :Union[str, Any] ) -> None:
super().__init__()
__SCREAMING_SNAKE_CASE : Dict = trainer
def __magic_name__( self :Dict , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :int ) -> Optional[int]:
if control.should_evaluate:
__SCREAMING_SNAKE_CASE : List[str] = deepcopy(lowerCAmelCase__ )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' )
return control_copy
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : List[Any] = get_args()
set_seed(args.seed )
__SCREAMING_SNAKE_CASE : Optional[int] = load_dataset('''codeparrot/codecomplex''' , split='''train''' )
__SCREAMING_SNAKE_CASE : Optional[Any] = dataset.train_test_split(test_size=0.2 )
__SCREAMING_SNAKE_CASE : int = train_test['''test'''].train_test_split(test_size=0.5 )
__SCREAMING_SNAKE_CASE : Optional[int] = DatasetDict(
{
'''train''': train_test['''train'''],
'''test''': test_validation['''train'''],
'''valid''': test_validation['''test'''],
} )
print('''Loading tokenizer and model''' )
__SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained(args.model_ckpt )
__SCREAMING_SNAKE_CASE : Dict = tokenizer.eos_token
__SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 )
__SCREAMING_SNAKE_CASE : str = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
__SCREAMING_SNAKE_CASE : Any = False
__SCREAMING_SNAKE_CASE : Any = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) )
def tokenize(lowercase__ ):
__SCREAMING_SNAKE_CASE : Any = tokenizer(example['''src'''] , truncation=lowercase__ , max_length=1024 )
__SCREAMING_SNAKE_CASE : List[str] = labels.straint(example['''complexity'''] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
__SCREAMING_SNAKE_CASE : Union[str, Any] = train_test_validation.map(
lowercase__ , batched=lowercase__ , remove_columns=train_test_validation['''train'''].column_names , )
__SCREAMING_SNAKE_CASE : Dict = DataCollatorWithPadding(tokenizer=lowercase__ )
__SCREAMING_SNAKE_CASE : Any = TrainingArguments(
output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , )
__SCREAMING_SNAKE_CASE : Any = Trainer(
model=lowercase__ , args=lowercase__ , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=lowercase__ , data_collator=lowercase__ , compute_metrics=lowercase__ , )
print('''Training...''' )
trainer.add_callback(CustomCallback(lowercase__ ) )
trainer.train()
if __name__ == "__main__":
main()
| 9 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: str =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100])
lowerCamelCase__: Dict =get_activation("gelu")
self.assertTrue(torch.allclose(gelu_python(UpperCAmelCase_) , torch_builtin(UpperCAmelCase_)))
self.assertFalse(torch.allclose(gelu_python(UpperCAmelCase_) , gelu_new(UpperCAmelCase_)))
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
lowerCamelCase__: List[str] =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100])
lowerCamelCase__: str =get_activation("gelu")
lowerCamelCase__: Union[str, Any] =get_activation("gelu_10")
lowerCamelCase__: Dict =torch_builtin(UpperCAmelCase_)
lowerCamelCase__: Any =geluaa(UpperCAmelCase_)
lowerCamelCase__: Union[str, Any] =torch.where(y_gelu_aa < 10.0 , 1 , 0)
self.assertTrue(torch.max(UpperCAmelCase_).item() == 10.0)
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask))
def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]:
'''simple docstring'''
get_activation("gelu")
get_activation("gelu_10")
get_activation("gelu_fast")
get_activation("gelu_new")
get_activation("gelu_python")
get_activation("gelu_pytorch_tanh")
get_activation("linear")
get_activation("mish")
get_activation("quick_gelu")
get_activation("relu")
get_activation("sigmoid")
get_activation("silu")
get_activation("swish")
get_activation("tanh")
with self.assertRaises(UpperCAmelCase_):
get_activation("bogus")
with self.assertRaises(UpperCAmelCase_):
get_activation(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Dict =get_activation("gelu")
lowerCamelCase__: str =1
lowerCamelCase__: Union[str, Any] =get_activation("gelu")
self.assertEqual(acta.a , 1)
with self.assertRaises(UpperCAmelCase_):
lowerCamelCase__: Union[str, Any] =acta.a
| 10 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 0 |
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None:
warnings.warn(
"The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use BeitImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase)
| 11 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 0 |
class lowerCamelCase__:
def __init__( self: Optional[Any] , UpperCamelCase_: list[int] ):
__lowerCamelCase = len(UpperCamelCase_ )
__lowerCamelCase = [0] * len_array
if len_array > 0:
__lowerCamelCase = array[0]
for i in range(1 , UpperCamelCase_ ):
__lowerCamelCase = self.prefix_sum[i - 1] + array[i]
def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: int ):
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def lowerCAmelCase__ ( self: List[Any] , UpperCamelCase_: int ):
__lowerCamelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(UpperCamelCase_ )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 0 |
from math import sqrt
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (
number >= 0
), "'number' must been an int and positive"
SCREAMING_SNAKE_CASE_: Optional[int] = True
# 0 and 1 are none primes.
if number <= 1:
SCREAMING_SNAKE_CASE_: List[Any] = False
for divisor in range(2 , int(round(sqrt(_UpperCAmelCase ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
SCREAMING_SNAKE_CASE_: Union[str, Any] = False
break
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'status' must been from type bool"
return status
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
SCREAMING_SNAKE_CASE_: List[str] = list(range(2 , n + 1 ) )
SCREAMING_SNAKE_CASE_: Tuple = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_UpperCAmelCase ) ):
for j in range(i + 1 , len(_UpperCAmelCase ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
SCREAMING_SNAKE_CASE_: List[Any] = 0
# filters actual prime numbers.
SCREAMING_SNAKE_CASE_: str = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list"
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n > 2), "'N' must been an int and > 2"
SCREAMING_SNAKE_CASE_: List[str] = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_UpperCAmelCase ):
ans.append(_UpperCAmelCase )
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list"
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and number >= 0, "'number' must been an int and >= 0"
SCREAMING_SNAKE_CASE_: Dict = [] # this list will be returns of the function.
# potential prime number factors.
SCREAMING_SNAKE_CASE_: Union[str, Any] = 2
SCREAMING_SNAKE_CASE_: List[str] = number
if number == 0 or number == 1:
ans.append(_UpperCAmelCase )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_UpperCAmelCase ):
while quotient != 1:
if is_prime(_UpperCAmelCase ) and (quotient % factor == 0):
ans.append(_UpperCAmelCase )
quotient /= factor
else:
factor += 1
else:
ans.append(_UpperCAmelCase )
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type list"
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (
number >= 0
), "'number' bust been an int and >= 0"
SCREAMING_SNAKE_CASE_: int = 0
# prime factorization of 'number'
SCREAMING_SNAKE_CASE_: List[Any] = prime_factorization(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Tuple = max(_UpperCAmelCase )
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int"
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (
number >= 0
), "'number' bust been an int and >= 0"
SCREAMING_SNAKE_CASE_: Optional[Any] = 0
# prime factorization of 'number'
SCREAMING_SNAKE_CASE_: Dict = prime_factorization(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Dict = min(_UpperCAmelCase )
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'ans' must been from type int"
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _UpperCAmelCase ), "compare bust been from type bool"
return number % 2 == 0
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _UpperCAmelCase ), "compare bust been from type bool"
return number % 2 != 0
def A_ ( _UpperCAmelCase ):
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (number > 2) and is_even(_UpperCAmelCase )
), "'number' must been an int, even and > 2"
SCREAMING_SNAKE_CASE_: Dict = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
SCREAMING_SNAKE_CASE_: Optional[int] = get_prime_numbers(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: str = len(_UpperCAmelCase )
# run variable for while-loops.
SCREAMING_SNAKE_CASE_: Any = 0
SCREAMING_SNAKE_CASE_: List[str] = None
# exit variable. for break up the loops
SCREAMING_SNAKE_CASE_: int = True
while i < len_pn and loop:
SCREAMING_SNAKE_CASE_: str = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
SCREAMING_SNAKE_CASE_: Any = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase )
and (len(_UpperCAmelCase ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase )
and isinstance(_UpperCAmelCase , _UpperCAmelCase )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
SCREAMING_SNAKE_CASE_: Dict = 0
while numbera != 0:
SCREAMING_SNAKE_CASE_: Union[str, Any] = numbera % numbera
SCREAMING_SNAKE_CASE_: List[str] = numbera
SCREAMING_SNAKE_CASE_: Tuple = rest
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase )
and isinstance(_UpperCAmelCase , _UpperCAmelCase )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
SCREAMING_SNAKE_CASE_: str = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
SCREAMING_SNAKE_CASE_: Optional[int] = prime_factorization(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_factorization(_UpperCAmelCase )
elif numbera == 1 or numbera == 1:
SCREAMING_SNAKE_CASE_: int = []
SCREAMING_SNAKE_CASE_: Any = []
SCREAMING_SNAKE_CASE_: str = max(_UpperCAmelCase , _UpperCAmelCase )
SCREAMING_SNAKE_CASE_: str = 0
SCREAMING_SNAKE_CASE_: str = 0
SCREAMING_SNAKE_CASE_: Any = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
SCREAMING_SNAKE_CASE_: Any = prime_fac_a.count(_UpperCAmelCase )
SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_fac_a.count(_UpperCAmelCase )
for _ in range(max(_UpperCAmelCase , _UpperCAmelCase ) ):
ans *= n
else:
SCREAMING_SNAKE_CASE_: int = prime_fac_a.count(_UpperCAmelCase )
for _ in range(_UpperCAmelCase ):
ans *= n
done.append(_UpperCAmelCase )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
SCREAMING_SNAKE_CASE_: Union[str, Any] = prime_fac_a.count(_UpperCAmelCase )
for _ in range(_UpperCAmelCase ):
ans *= n
done.append(_UpperCAmelCase )
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'number' must been a positive int"
SCREAMING_SNAKE_CASE_: List[str] = 0
SCREAMING_SNAKE_CASE_: Any = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_UpperCAmelCase ):
ans += 1
# precondition
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and is_prime(
_UpperCAmelCase ), "'ans' must been a prime number and from type int"
return ans
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
assert (
is_prime(_UpperCAmelCase ) and is_prime(_UpperCAmelCase ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
SCREAMING_SNAKE_CASE_: List[str] = p_number_a + 1 # jump to the next number
SCREAMING_SNAKE_CASE_: int = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_UpperCAmelCase ):
number += 1
while number < p_number_a:
ans.append(_UpperCAmelCase )
number += 1
# fetch the next prime number.
while not is_prime(_UpperCAmelCase ):
number += 1
# precondition
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase )
and ans[0] != p_number_a
and ans[len(_UpperCAmelCase ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 1), "'n' must been int and >= 1"
SCREAMING_SNAKE_CASE_: Optional[int] = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_UpperCAmelCase )
# precondition
assert ans[0] == 1 and ans[len(_UpperCAmelCase ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (
number > 1
), "'number' must been an int and >= 1"
SCREAMING_SNAKE_CASE_: Optional[Any] = get_divisors(_UpperCAmelCase )
# precondition
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase )
and (divisors[0] == 1)
and (divisors[len(_UpperCAmelCase ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase )
and isinstance(_UpperCAmelCase , _UpperCAmelCase )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
SCREAMING_SNAKE_CASE_: Union[str, Any] = gcd(abs(_UpperCAmelCase ) , abs(_UpperCAmelCase ) )
# precondition
assert (
isinstance(_UpperCAmelCase , _UpperCAmelCase )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been a int and >= 0"
SCREAMING_SNAKE_CASE_: Dict = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def A_ ( _UpperCAmelCase ):
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and (n >= 0), "'n' must been an int and >= 0"
SCREAMING_SNAKE_CASE_: Optional[int] = 0
SCREAMING_SNAKE_CASE_: Tuple = 1
SCREAMING_SNAKE_CASE_: Any = 1 # this will be return
for _ in range(n - 1 ):
SCREAMING_SNAKE_CASE_: Optional[int] = ans
ans += fiba
SCREAMING_SNAKE_CASE_: Union[str, Any] = tmp
return ans
| 13 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 0 |
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int:
"""simple docstring"""
return int((input_a, input_a).count(0 ) != 0 )
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
assert nand_gate(0 , 0 ) == 1
assert nand_gate(0 , 1 ) == 1
assert nand_gate(1 , 0 ) == 1
assert nand_gate(1 , 1 ) == 0
if __name__ == "__main__":
print(nand_gate(0, 0))
print(nand_gate(0, 1))
print(nand_gate(1, 0))
print(nand_gate(1, 1))
| 14 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_torch_available,
is_transformers_available,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .multicontrolnet import MultiControlNetModel
from .pipeline_controlnet import StableDiffusionControlNetPipeline
from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline
from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
if is_transformers_available() and is_flax_available():
from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
| 15 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 0 |
"""simple docstring"""
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase = 16 ) -> Optional[Any]:
lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase__ : int = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__lowerCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowercase__ : str = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase__ : str = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowerCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase__ : List[str] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase__ : Optional[int] = 16
elif accelerator.mixed_precision != "no":
lowercase__ : List[Any] = 8
else:
lowercase__ : int = None
return tokenizer.pad(
__lowerCamelCase , padding='''longest''' , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase__ : List[Any] = DataLoader(
tokenized_datasets['''train'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
lowercase__ : str = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ = mocked_dataloaders # noqa: F811
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> str:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowerCamelCase ) == "1":
lowercase__ : List[Any] = 2
# Initialize accelerator
lowercase__ : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase__ : str = config['''lr''']
lowercase__ : str = int(config['''num_epochs'''] )
lowercase__ : Optional[int] = int(config['''seed'''] )
lowercase__ : Tuple = int(config['''batch_size'''] )
lowercase__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=__lowerCamelCase )
def inner_training_loop(__lowerCamelCase ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(__lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase__ : List[str] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase__ : Tuple = model.to(accelerator.device )
# Instantiate optimizer
lowercase__ : List[str] = AdamW(params=model.parameters() , lr=__lowerCamelCase )
lowercase__ , lowercase__ : List[Any] = get_dataloaders(__lowerCamelCase , __lowerCamelCase )
# Instantiate scheduler
lowercase__ : Optional[int] = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : Optional[int] = accelerator.prepare(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase__ : Dict = model(**__lowerCamelCase )
lowercase__ : List[Any] = outputs.loss
accelerator.backward(__lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase__ : Tuple = model(**__lowerCamelCase )
lowercase__ : Any = outputs.logits.argmax(dim=-1 )
lowercase__ , lowercase__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__lowerCamelCase , references=__lowerCamelCase , )
lowercase__ : List[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __lowerCamelCase )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def __UpperCAmelCase ( ) -> Dict:
lowercase__ : Optional[int] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__lowerCamelCase , default=__lowerCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
lowercase__ : int = parser.parse_args()
lowercase__ : Union[str, Any] = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
main()
| 16 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 0 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from diffusers.models.activations import get_activation
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : List[str] ):
__lowercase = get_activation("swish" )
self.assertIsInstance(UpperCAmelCase__, nn.SiLU )
self.assertEqual(act(torch.tensor(-1_0_0, dtype=torch.floataa ) ).item(), 0 )
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(0, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(2_0, dtype=torch.floataa ) ).item(), 2_0 )
def _lowercase ( self : int ):
__lowercase = get_activation("silu" )
self.assertIsInstance(UpperCAmelCase__, nn.SiLU )
self.assertEqual(act(torch.tensor(-1_0_0, dtype=torch.floataa ) ).item(), 0 )
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(0, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(2_0, dtype=torch.floataa ) ).item(), 2_0 )
def _lowercase ( self : int ):
__lowercase = get_activation("mish" )
self.assertIsInstance(UpperCAmelCase__, nn.Mish )
self.assertEqual(act(torch.tensor(-2_0_0, dtype=torch.floataa ) ).item(), 0 )
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(0, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(2_0, dtype=torch.floataa ) ).item(), 2_0 )
def _lowercase ( self : int ):
__lowercase = get_activation("gelu" )
self.assertIsInstance(UpperCAmelCase__, nn.GELU )
self.assertEqual(act(torch.tensor(-1_0_0, dtype=torch.floataa ) ).item(), 0 )
self.assertNotEqual(act(torch.tensor(-1, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(0, dtype=torch.floataa ) ).item(), 0 )
self.assertEqual(act(torch.tensor(2_0, dtype=torch.floataa ) ).item(), 2_0 )
| 17 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__lowerCamelCase : Tuple = None
__lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
__lowerCamelCase : str = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
__lowerCamelCase : Optional[int] = {
'''vocab_file''': {
'''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''',
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'''
),
},
'''tokenizer_file''': {
'''google/bigbird-roberta-base''': (
'''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'''
),
'''google/bigbird-roberta-large''': (
'''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'''
),
'''google/bigbird-base-trivia-itc''': (
'''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'''
),
},
}
__lowerCamelCase : List[str] = {
'''google/bigbird-roberta-base''': 40_96,
'''google/bigbird-roberta-large''': 40_96,
'''google/bigbird-base-trivia-itc''': 40_96,
}
__lowerCamelCase : Optional[Any] = '''▁'''
class a__ ( A__ ):
A = VOCAB_FILES_NAMES
A = PRETRAINED_VOCAB_FILES_MAP
A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A = BigBirdTokenizer
A = ['input_ids', 'attention_mask']
A = []
def __init__( self : Union[str, Any],_A : Any=None,_A : Any=None,_A : str="<unk>",_A : str="<s>",_A : int="</s>",_A : Union[str, Any]="<pad>",_A : Dict="[SEP]",_A : int="[MASK]",_A : int="[CLS]",**_A : Any,):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token
SCREAMING_SNAKE_CASE_ : int = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token
SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token
SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token
SCREAMING_SNAKE_CASE_ : int = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token
SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE_ : List[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token
super().__init__(
_A,tokenizer_file=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,pad_token=_A,cls_token=_A,mask_token=_A,**_A,)
SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_file
SCREAMING_SNAKE_CASE_ : Union[str, Any] = False if not self.vocab_file else True
def __UpperCamelCase ( self : Union[str, Any],_A : List[int],_A : Optional[List[int]] = None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __UpperCamelCase ( self : Union[str, Any],_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(_A )) + [1]
return [1] + ([0] * len(_A )) + [1] + ([0] * len(_A )) + [1]
def __UpperCamelCase ( self : List[Any],_A : List[int],_A : Optional[List[int]] = None ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCamelCase ( self : str,_A : str,_A : Optional[str] = None ):
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(_A ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(
_A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ):
copyfile(self.vocab_file,_A )
return (out_vocab_file,)
| 18 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 0 |
from __future__ import annotations
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = [True] * limit
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
lowerCamelCase_ = i * 2
while index < limit:
lowerCamelCase_ = False
lowerCamelCase_ = index + i
lowerCamelCase_ = [2]
for i in range(3 , lowerCamelCase__ , 2 ):
if is_prime[i]:
primes.append(lowerCamelCase__ )
return primes
def lowerCamelCase_ ( lowerCamelCase__ = 1_0_0_0_0_0_0 ):
lowerCamelCase_ = prime_sieve(lowerCamelCase__ )
lowerCamelCase_ = 0
lowerCamelCase_ = 0
for i in range(len(lowerCamelCase__ ) ):
for j in range(i + length , len(lowerCamelCase__ ) ):
lowerCamelCase_ = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
lowerCamelCase_ = j - i
lowerCamelCase_ = sol
return largest
if __name__ == "__main__":
print(F"""{solution() = }""")
| 19 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 0 |
import os
import unittest
from transformers import BatchEncoding
from transformers.models.bert.tokenization_bert import (
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer
from transformers.testing_utils import require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
class __snake_case ( lowerCAmelCase , unittest.TestCase ):
_a : Optional[int]= ProphetNetTokenizer
_a : str= False
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
super().setUp()
lowercase : Optional[int] = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
lowercase : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
def _SCREAMING_SNAKE_CASE ( self ,snake_case ):
'''simple docstring'''
lowercase : int = """UNwant\u00E9d,running"""
lowercase : Dict = """unwanted, running"""
return input_text, output_text
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[Any] = self.tokenizer_class(self.vocab_file )
lowercase : List[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(snake_case ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,[9, 6, 7, 12, 10, 11] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Dict = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[Any] = BasicTokenizer(do_lower_case=snake_case )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Dict = BasicTokenizer(do_lower_case=snake_case ,strip_accents=snake_case )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[str] = BasicTokenizer(do_lower_case=snake_case ,strip_accents=snake_case )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : List[str] = BasicTokenizer(do_lower_case=snake_case )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : int = BasicTokenizer(do_lower_case=snake_case )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Tuple = BasicTokenizer(do_lower_case=snake_case ,strip_accents=snake_case )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = BasicTokenizer(do_lower_case=snake_case ,strip_accents=snake_case )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : str = BasicTokenizer(do_lower_case=snake_case ,never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
lowercase : Optional[Any] = {}
for i, token in enumerate(snake_case ):
lowercase : Union[str, Any] = i
lowercase : List[str] = WordpieceTokenizer(vocab=snake_case ,unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) ,[] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] )
@require_torch
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
lowercase : Tuple = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""]
lowercase : Union[str, Any] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102]
lowercase : Optional[Any] = tokenizer(snake_case ,padding=snake_case ,return_tensors="""pt""" )
self.assertIsInstance(snake_case ,snake_case )
lowercase : Optional[int] = list(batch.input_ids.numpy()[0] )
self.assertListEqual(snake_case ,snake_case )
self.assertEqual((2, 9) ,batch.input_ids.shape )
self.assertEqual((2, 9) ,batch.attention_mask.shape )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
@slow
def _SCREAMING_SNAKE_CASE ( self ):
'''simple docstring'''
lowercase : Optional[int] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" )
lowercase : List[Any] = tokenizer.encode("""sequence builders""" ,add_special_tokens=snake_case )
lowercase : Optional[int] = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=snake_case )
lowercase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(snake_case )
lowercase : Tuple = tokenizer.build_inputs_with_special_tokens(snake_case ,snake_case )
assert encoded_sentence == text + [102]
assert encoded_pair == text + [102] + text_a + [102]
| 20 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.