code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class _lowerCamelCase:
lowercase_ : Optional[Union[str, Path]] = None
lowercase_ : bool = False
lowercase_ : bool = False
lowercase_ : bool = False
lowercase_ : Optional[Dict] = None
lowercase_ : Optional[str] = None
lowercase_ : bool = False
lowercase_ : bool = False
lowercase_ : bool = False
lowercase_ : bool = True
lowercase_ : Optional[int] = None
lowercase_ : int = 1
lowercase_ : Optional[Union[str, bool]] = None
lowercase_ : bool = False
lowercase_ : Optional[Dict] = None
lowercase_ : Optional[str] = None
def UpperCamelCase ( self) -> "DownloadConfig":
"""simple docstring"""
return self.__class__(**{k: copy.deepcopy(lowerCamelCase) for k, v in self.__dict__.items()})
| 21 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 0 |
'''simple docstring'''
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class A_ :
@property
def lowercase ( self : Optional[int] ):
return self.get_dummy_input()
@property
def lowercase ( self : List[str] ):
if self.block_type == "down":
return (4, 3_2, 1_6, 1_6)
elif self.block_type == "mid":
return (4, 3_2, 3_2, 3_2)
elif self.block_type == "up":
return (4, 3_2, 6_4, 6_4)
raise ValueError(f'\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.' )
def lowercase ( self : str , snake_case_ : Dict=True , snake_case_ : int=False , snake_case_ : Any=False , snake_case_ : Union[str, Any]=False , ):
_UpperCAmelCase = 4
_UpperCAmelCase = 3_2
_UpperCAmelCase = (3_2, 3_2)
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = torch.device(snake_case_ )
_UpperCAmelCase = (batch_size, num_channels) + sizes
_UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ )
_UpperCAmelCase = {"hidden_states": hidden_states}
if include_temb:
_UpperCAmelCase = 1_2_8
_UpperCAmelCase = randn_tensor((batch_size, temb_channels) , generator=snake_case_ , device=snake_case_ )
if include_res_hidden_states_tuple:
_UpperCAmelCase = torch.manual_seed(1 )
_UpperCAmelCase = (randn_tensor(snake_case_ , generator=snake_case_ , device=snake_case_ ),)
if include_encoder_hidden_states:
_UpperCAmelCase = floats_tensor((batch_size, 3_2, 3_2) ).to(snake_case_ )
if include_skip_sample:
_UpperCAmelCase = randn_tensor(((batch_size, 3) + sizes) , generator=snake_case_ , device=snake_case_ )
return dummy_input
def lowercase ( self : List[str] ):
_UpperCAmelCase = {
"in_channels": 3_2,
"out_channels": 3_2,
"temb_channels": 1_2_8,
}
if self.block_type == "up":
_UpperCAmelCase = 3_2
if self.block_type == "mid":
init_dict.pop("out_channels" )
_UpperCAmelCase = self.dummy_input
return init_dict, inputs_dict
def lowercase ( self : int , snake_case_ : List[str] ):
_UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common()
_UpperCAmelCase = self.block_class(**snake_case_ )
unet_block.to(snake_case_ )
unet_block.eval()
with torch.no_grad():
_UpperCAmelCase = unet_block(**snake_case_ )
if isinstance(snake_case_ , snake_case_ ):
_UpperCAmelCase = output[0]
self.assertEqual(output.shape , self.output_shape )
_UpperCAmelCase = output[0, -1, -3:, -3:]
_UpperCAmelCase = torch.tensor(snake_case_ ).to(snake_case_ )
assert torch_all_close(output_slice.flatten() , snake_case_ , atol=5e-3 )
@unittest.skipIf(torch_device == "mps" , "Training is not supported in mps" )
def lowercase ( self : str ):
_UpperCAmelCase , _UpperCAmelCase = self.prepare_init_args_and_inputs_for_common()
_UpperCAmelCase = self.block_class(**snake_case_ )
model.to(snake_case_ )
model.train()
_UpperCAmelCase = model(**snake_case_ )
if isinstance(snake_case_ , snake_case_ ):
_UpperCAmelCase = output[0]
_UpperCAmelCase = torch.device(snake_case_ )
_UpperCAmelCase = randn_tensor(output.shape , device=snake_case_ )
_UpperCAmelCase = torch.nn.functional.mse_loss(snake_case_ , snake_case_ )
loss.backward()
| 22 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 0 |
'''simple docstring'''
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def snake_case_ ( ) -> Any:
UpperCAmelCase : int = HfArgumentParser(_lowerCAmelCase )
UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses()[0]
UpperCAmelCase : List[Any] = TensorFlowBenchmark(args=_lowerCAmelCase )
try:
UpperCAmelCase : List[Any] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
UpperCAmelCase : Any = '''Arg --no_{0} is no longer used, please use --no-{0} instead.'''
UpperCAmelCase : Union[str, Any] = ''' '''.join(str(_lowerCAmelCase ).split(''' ''' )[:-1] )
UpperCAmelCase : str = ''''''
UpperCAmelCase : Optional[int] = eval(str(_lowerCAmelCase ).split(''' ''' )[-1] )
UpperCAmelCase : Optional[Any] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
UpperCAmelCase : int = full_error_msg + begin_error_msg + str(_lowerCAmelCase )
raise ValueError(_lowerCAmelCase )
benchmark.run()
if __name__ == "__main__":
main()
| 23 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 0 |
def lowerCamelCase__ ( snake_case_ : Any ) -> Tuple:
__snake_case = [0] * len(snake_case_ )
__snake_case = []
__snake_case = []
__snake_case = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(snake_case_ ) ):
if indegree[i] == 0:
queue.append(snake_case_ )
while queue:
__snake_case = queue.pop(0 )
cnt += 1
topo.append(snake_case_ )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(snake_case_ )
if cnt != len(snake_case_ ):
print('''Cycle exists''' )
else:
print(snake_case_ )
# Adjacency List of Graph
snake_case_ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 24 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 0 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCAmelCase__ : int = 1_6
UpperCAmelCase__ : int = 3_2
def lowercase_ ( _snake_case ,_snake_case = 16 ):
SCREAMING_SNAKE_CASE__ : Dict = AutoTokenizer.from_pretrained("""bert-base-cased""" )
SCREAMING_SNAKE_CASE__ : Tuple = load_dataset("""glue""" ,"""mrpc""" )
def tokenize_function(_snake_case ):
# max_length=None => use the model max length (it's actually the default)
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_snake_case ,max_length=_snake_case )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE__ : List[str] = datasets.map(
_snake_case ,batched=_snake_case ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
SCREAMING_SNAKE_CASE__ : Any = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(_snake_case ):
# On TPU it's best to pad everything to the same length or training will be very slow.
SCREAMING_SNAKE_CASE__ : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
SCREAMING_SNAKE_CASE__ : Optional[Any] = 16
elif accelerator.mixed_precision != "no":
SCREAMING_SNAKE_CASE__ : Any = 8
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = None
return tokenizer.pad(
_snake_case ,padding="""longest""" ,max_length=_snake_case ,pad_to_multiple_of=_snake_case ,return_tensors="""pt""" ,)
# Instantiate dataloaders.
SCREAMING_SNAKE_CASE__ : Union[str, Any] = DataLoader(
tokenized_datasets["""train"""] ,shuffle=_snake_case ,collate_fn=_snake_case ,batch_size=_snake_case )
SCREAMING_SNAKE_CASE__ : int = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=_snake_case ,collate_fn=_snake_case ,batch_size=_snake_case )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCAmelCase__ : Union[str, Any] = mocked_dataloaders # noqa: F811
def lowercase_ ( _snake_case ,_snake_case ):
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,_snake_case ) == "1":
SCREAMING_SNAKE_CASE__ : Optional[int] = 2
# Initialize accelerator
SCREAMING_SNAKE_CASE__ : int = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
SCREAMING_SNAKE_CASE__ : List[str] = config["""lr"""]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config["""num_epochs"""] )
SCREAMING_SNAKE_CASE__ : List[str] = int(config["""seed"""] )
SCREAMING_SNAKE_CASE__ : Optional[Any] = int(config["""batch_size"""] )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = evaluate.load("""glue""" ,"""mrpc""" )
# If the batch size is too big we use gradient accumulation
SCREAMING_SNAKE_CASE__ : Dict = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
SCREAMING_SNAKE_CASE__ : Tuple = batch_size // MAX_GPU_BATCH_SIZE
SCREAMING_SNAKE_CASE__ : Any = MAX_GPU_BATCH_SIZE
set_seed(_snake_case )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = get_dataloaders(_snake_case ,_snake_case )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
SCREAMING_SNAKE_CASE__ : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=_snake_case )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
SCREAMING_SNAKE_CASE__ : Dict = model.to(accelerator.device )
# Instantiate optimizer
SCREAMING_SNAKE_CASE__ : Dict = AdamW(params=model.parameters() ,lr=_snake_case )
# Instantiate scheduler
SCREAMING_SNAKE_CASE__ : Dict = get_linear_schedule_with_warmup(
optimizer=_snake_case ,num_warmup_steps=100 ,num_training_steps=(len(_snake_case ) * num_epochs) // gradient_accumulation_steps ,)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : str = accelerator.prepare(
_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case )
# Now we train the model
for epoch in range(_snake_case ):
model.train()
for step, batch in enumerate(_snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
SCREAMING_SNAKE_CASE__ : List[str] = model(**_snake_case )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.loss
SCREAMING_SNAKE_CASE__ : List[Any] = loss / gradient_accumulation_steps
accelerator.backward(_snake_case )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
SCREAMING_SNAKE_CASE__ : Optional[int] = 0
for step, batch in enumerate(_snake_case ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ : List[str] = model(**_snake_case )
SCREAMING_SNAKE_CASE__ : Optional[int] = outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = accelerator.gather((predictions, batch["""labels"""]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(_snake_case ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
SCREAMING_SNAKE_CASE__ : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen]
SCREAMING_SNAKE_CASE__ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=_snake_case ,references=_snake_case ,)
SCREAMING_SNAKE_CASE__ : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' ,_snake_case )
def lowercase_ ( ):
SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" ,type=_snake_case ,default=_snake_case ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
SCREAMING_SNAKE_CASE__ : Dict = parser.parse_args()
SCREAMING_SNAKE_CASE__ : List[str] = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(_snake_case ,_snake_case )
if __name__ == "__main__":
main()
| 25 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 0 |
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
_snake_case = 1e-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class lowercase :
def __init__( self , _a , _a=16 , _a=13 , _a=7 , _a=14 , _a=10 , _a=19 , _a=5 , _a=4 , _a=True , _a=16 , _a=2 , _a=4 , _a=4 , _a="gelu" , _a=0.1 , _a=0.1 , _a=[1, 2, 3, 4, 5] , _a=25 , _a=5 , ) -> Optional[Any]:
_A : str = d_model
_A : Any = parent
_A : List[str] = batch_size
_A : Any = prediction_length
_A : str = context_length
_A : Any = cardinality
_A : str = num_time_features
_A : str = lags_sequence
_A : List[Any] = embedding_dimension
_A : int = is_training
_A : Tuple = hidden_size
_A : Any = num_hidden_layers
_A : Optional[Any] = num_attention_heads
_A : Tuple = intermediate_size
_A : List[Any] = hidden_act
_A : Tuple = hidden_dropout_prob
_A : Optional[Any] = attention_probs_dropout_prob
_A : Any = context_length
_A : str = prediction_length + label_length
_A : int = label_length
_A : List[str] = moving_average
_A : Dict = autocorrelation_factor
def a__ ( self ) -> List[str]:
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def a__ ( self , _a ) -> Optional[int]:
_A : int = config.context_length + max(config.lags_sequence )
_A : Optional[int] = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
_A : List[str] = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
_A : Optional[Any] = floats_tensor([self.batch_size, _past_length] )
_A : Optional[Any] = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
_A : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
_A : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length] )
_A : str = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def a__ ( self ) -> Tuple:
_A : List[Any] = self.get_config()
_A : int = self.prepare_autoformer_inputs_dict(_a )
return config, inputs_dict
def a__ ( self ) -> Optional[int]:
_A , _A : Tuple = self.prepare_config_and_inputs()
return config, inputs_dict
def a__ ( self , _a , _a ) -> Optional[Any]:
_A : Dict = AutoformerModel(config=_a ).to(_a ).eval()
_A : int = model(**_a )
_A : str = outputs.encoder_last_hidden_state
_A : Optional[Any] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
_A : str = model.get_encoder()
encoder.save_pretrained(_a )
_A : Optional[Any] = AutoformerEncoder.from_pretrained(_a ).to(_a )
_A , _A , _A , _A , _A : Optional[int] = model.create_network_inputs(**_a )
_A , _A : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
_A : Union[str, Any] = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
_A : str = encoder(inputs_embeds=_a )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 )
_A : str = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
_A : Optional[int] = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
_A : Tuple = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
_A : int = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
_A : Tuple = model.get_decoder()
decoder.save_pretrained(_a )
_A : Tuple = AutoformerDecoder.from_pretrained(_a ).to(_a )
_A : List[Any] = decoder(
trend=_a , inputs_embeds=_a , encoder_hidden_states=_a , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 )
@require_torch
class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ):
_a = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
_a = (AutoformerForPrediction,) if is_torch_available() else ()
_a = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
_a = False
_a = False
_a = False
_a = False
_a = False
_a = False
def a__ ( self ) -> Dict:
_A : Optional[int] = AutoformerModelTester(self )
_A : Union[str, Any] = ConfigTester(self , config_class=_a , has_text_modality=_a )
def a__ ( self ) -> int:
self.config_tester.run_common_tests()
def a__ ( self ) -> Optional[int]:
_A , _A : Any = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
_A : Dict = model_class(_a )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_a )
_A , _A : Any = model_class.from_pretrained(_a , output_loading_info=_a )
self.assertEqual(info["""missing_keys"""] , [] )
def a__ ( self ) -> str:
_A : Dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*_a )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def a__ ( self ) -> Optional[int]:
pass
def a__ ( self ) -> str:
_A : Union[str, Any] = inspect.signature(getattr(_a , """forward""" ) )
# The main input is the name of the argument after `self`
_A : Union[str, Any] = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , _a )
def a__ ( self ) -> List[Any]:
_A , _A : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A : str = model_class(_a )
_A : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_A : List[str] = [*signature.parameters.keys()]
_A : Tuple = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(_a )] , _a )
def a__ ( self ) -> Optional[Any]:
_A , _A : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
_A : Any = True
_A : str = getattr(self.model_tester , """seq_length""" , _a )
_A : Dict = getattr(self.model_tester , """decoder_seq_length""" , _a )
_A : str = getattr(self.model_tester , """encoder_seq_length""" , _a )
_A : List[Any] = getattr(self.model_tester , """d_model""" , _a )
_A : Optional[int] = getattr(self.model_tester , """num_attention_heads""" , _a )
_A : List[str] = d_model // num_attention_heads
for model_class in self.all_model_classes:
_A : Optional[Any] = True
_A : List[str] = False
_A : Optional[int] = True
_A : Union[str, Any] = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : List[Any] = model(**self._prepare_for_class(_a , _a ) )
_A : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_A : Dict = True
_A : List[Any] = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : int = model(**self._prepare_for_class(_a , _a ) )
_A : Tuple = outputs.encoder_attentions
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
_A : List[str] = len(_a )
_A : int = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(_a , _a )
# decoder attentions
_A : Dict = outputs.decoder_attentions
self.assertIsInstance(_a , (list, tuple) )
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
_A : Optional[Any] = outputs.cross_attentions
self.assertIsInstance(_a , (list, tuple) )
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
_A : Dict = True
_A : Any = True
_A : str = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
_A : List[str] = model(**self._prepare_for_class(_a , _a ) )
self.assertEqual(out_len + 2 , len(_a ) )
_A : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(_a ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def a__ ( self ) -> int:
super().test_retain_grad_hidden_states_attentions()
def lowerCAmelCase_ ( snake_case_="train-batch.pt" ):
_A : Optional[int] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""",filename=snake_case_,repo_type="""dataset""" )
_A : List[str] = torch.load(snake_case_,map_location=snake_case_ )
return batch
@require_torch
@slow
class lowercase ( unittest.TestCase ):
def a__ ( self ) -> Any:
_A : Optional[int] = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a )
_A : Any = prepare_batch()
with torch.no_grad():
_A : Union[str, Any] = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
_A : List[Any] = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , _a )
_A : str = torch.tensor(
[[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=_a )
self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) )
def a__ ( self ) -> Optional[Any]:
_A : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a )
_A : Optional[Any] = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_A : List[str] = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
_A : Optional[int] = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , _a )
_A : Tuple = torch.tensor(
[[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=_a )
self.assertTrue(torch.allclose(output[0, :3, :3] , _a , atol=_a ) )
def a__ ( self ) -> List[str]:
_A : Union[str, Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(_a )
_A : Optional[int] = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
_A : str = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
_A : str = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , _a )
_A : int = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=_a )
_A : Dict = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _a , rtol=1e-1 ) )
| 26 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
ClapTextConfig,
ClapTextModelWithProjection,
RobertaTokenizer,
SpeechTaHifiGan,
SpeechTaHifiGanConfig,
)
from diffusers import (
AudioLDMPipeline,
AutoencoderKL,
DDIMScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.utils import is_xformers_available, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ):
A_ = AudioLDMPipeline
A_ = TEXT_TO_AUDIO_PARAMS
A_ = TEXT_TO_AUDIO_BATCH_PARAMS
A_ = frozenset(
[
"num_inference_steps",
"num_waveforms_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
def __UpperCAmelCase ( self ):
'''simple docstring'''
torch.manual_seed(0 )
__a : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(32, 64) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=32 , class_embeddings_concat=__a , )
__a : Dict = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__a , set_alpha_to_one=__a , )
torch.manual_seed(0 )
__a : int = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
__a : Any = ClapTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , )
__a : List[str] = ClapTextModelWithProjection(__a )
__a : Any = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=77 )
__a : str = SpeechTaHifiGanConfig(
model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=__a , )
__a : Optional[int] = SpeechTaHifiGan(__a )
__a : Dict = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'vocoder': vocoder,
}
return components
def __UpperCAmelCase ( self , __a , __a=0 ):
'''simple docstring'''
if str(__a ).startswith('mps' ):
__a : List[str] = torch.manual_seed(__a )
else:
__a : Union[str, Any] = torch.Generator(device=__a ).manual_seed(__a )
__a : int = {
'prompt': 'A hammer hitting a wooden surface',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
}
return inputs
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator
__a : Tuple = self.get_dummy_components()
__a : List[str] = AudioLDMPipeline(**__a )
__a : int = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : List[Any] = self.get_dummy_inputs(__a )
__a : Any = audioldm_pipe(**__a )
__a : Optional[Any] = output.audios[0]
assert audio.ndim == 1
assert len(__a ) == 256
__a : Dict = audio[:10]
__a : Union[str, Any] = np.array(
[-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : str = self.get_dummy_components()
__a : Optional[Any] = AudioLDMPipeline(**__a )
__a : Any = audioldm_pipe.to(__a )
__a : List[Any] = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : Any = self.get_dummy_inputs(__a )
__a : Optional[int] = 3 * [inputs['prompt']]
# forward
__a : List[Any] = audioldm_pipe(**__a )
__a : str = output.audios[0]
__a : Any = self.get_dummy_inputs(__a )
__a : Optional[Any] = 3 * [inputs.pop('prompt' )]
__a : int = audioldm_pipe.tokenizer(
__a , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors='pt' , )
__a : str = text_inputs['input_ids'].to(__a )
__a : Optional[int] = audioldm_pipe.text_encoder(
__a , )
__a : int = prompt_embeds.text_embeds
# additional L_2 normalization over each hidden-state
__a : Union[str, Any] = F.normalize(__a , dim=-1 )
__a : Optional[int] = prompt_embeds
# forward
__a : Union[str, Any] = audioldm_pipe(**__a )
__a : Optional[int] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Any = self.get_dummy_components()
__a : Optional[int] = AudioLDMPipeline(**__a )
__a : Union[str, Any] = audioldm_pipe.to(__a )
__a : Union[str, Any] = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : str = self.get_dummy_inputs(__a )
__a : List[str] = 3 * ['this is a negative prompt']
__a : int = negative_prompt
__a : List[Any] = 3 * [inputs['prompt']]
# forward
__a : Dict = audioldm_pipe(**__a )
__a : str = output.audios[0]
__a : List[Any] = self.get_dummy_inputs(__a )
__a : List[str] = 3 * [inputs.pop('prompt' )]
__a : int = []
for p in [prompt, negative_prompt]:
__a : List[str] = audioldm_pipe.tokenizer(
__a , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=__a , return_tensors='pt' , )
__a : Dict = text_inputs['input_ids'].to(__a )
__a : List[Any] = audioldm_pipe.text_encoder(
__a , )
__a : Tuple = text_embeds.text_embeds
# additional L_2 normalization over each hidden-state
__a : Optional[int] = F.normalize(__a , dim=-1 )
embeds.append(__a )
__a , __a : Union[str, Any] = embeds
# forward
__a : List[str] = audioldm_pipe(**__a )
__a : Optional[Any] = output.audios[0]
assert np.abs(audio_a - audio_a ).max() < 1E-2
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator
__a : Tuple = self.get_dummy_components()
__a : Optional[int] = PNDMScheduler(skip_prk_steps=__a )
__a : List[Any] = AudioLDMPipeline(**__a )
__a : int = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : List[str] = self.get_dummy_inputs(__a )
__a : str = 'egg cracking'
__a : Union[str, Any] = audioldm_pipe(**__a , negative_prompt=__a )
__a : List[str] = output.audios[0]
assert audio.ndim == 1
assert len(__a ) == 256
__a : Tuple = audio[:10]
__a : List[Any] = np.array(
[-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032] )
assert np.abs(audio_slice - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : int = 'cpu' # ensure determinism for the device-dependent torch.Generator
__a : int = self.get_dummy_components()
__a : Dict = PNDMScheduler(skip_prk_steps=__a )
__a : Any = AudioLDMPipeline(**__a )
__a : Dict = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : List[str] = 'A hammer hitting a wooden surface'
# test num_waveforms_per_prompt=1 (default)
__a : str = audioldm_pipe(__a , num_inference_steps=2 ).audios
assert audios.shape == (1, 256)
# test num_waveforms_per_prompt=1 (default) for batch of prompts
__a : Tuple = 2
__a : Optional[Any] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios
assert audios.shape == (batch_size, 256)
# test num_waveforms_per_prompt for single prompt
__a : Tuple = 2
__a : Dict = audioldm_pipe(__a , num_inference_steps=2 , num_waveforms_per_prompt=__a ).audios
assert audios.shape == (num_waveforms_per_prompt, 256)
# test num_waveforms_per_prompt for batch of prompts
__a : Optional[Any] = 2
__a : List[str] = audioldm_pipe(
[prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=__a ).audios
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
__a : int = self.get_dummy_components()
__a : Optional[Any] = AudioLDMPipeline(**__a )
__a : Any = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : Dict = audioldm_pipe.vocoder.config.sampling_rate
__a : Union[str, Any] = self.get_dummy_inputs(__a )
__a : str = audioldm_pipe(audio_length_in_s=0.016 , **__a )
__a : Optional[Any] = output.audios[0]
assert audio.ndim == 1
assert len(__a ) / vocoder_sampling_rate == 0.016
__a : Tuple = audioldm_pipe(audio_length_in_s=0.032 , **__a )
__a : Optional[Any] = output.audios[0]
assert audio.ndim == 1
assert len(__a ) / vocoder_sampling_rate == 0.032
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Optional[Any] = self.get_dummy_components()
__a : int = AudioLDMPipeline(**__a )
__a : Optional[Any] = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : Optional[Any] = ['hey']
__a : Optional[Any] = audioldm_pipe(__a , num_inference_steps=1 )
__a : int = output.audios.shape
assert audio_shape == (1, 256)
__a : str = audioldm_pipe.vocoder.config
config.model_in_dim *= 2
__a : Any = SpeechTaHifiGan(__a ).to(__a )
__a : str = audioldm_pipe(__a , num_inference_steps=1 )
__a : int = output.audios.shape
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
assert audio_shape == (1, 256)
def __UpperCAmelCase ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__a )
def __UpperCAmelCase ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(test_mean_pixel_difference=__a )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __UpperCAmelCase ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__a )
@slow
class __UpperCamelCase ( unittest.TestCase ):
def __UpperCAmelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self , __a , __a="cpu" , __a=torch.floataa , __a=0 ):
'''simple docstring'''
__a : Tuple = torch.Generator(device=__a ).manual_seed(__a )
__a : List[str] = np.random.RandomState(__a ).standard_normal((1, 8, 128, 16) )
__a : Tuple = torch.from_numpy(__a ).to(device=__a , dtype=__a )
__a : Optional[Any] = {
'prompt': 'A hammer hitting a wooden surface',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 2.5,
}
return inputs
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : List[str] = AudioLDMPipeline.from_pretrained('cvssp/audioldm' )
__a : int = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : Optional[Any] = self.get_inputs(__a )
__a : Optional[Any] = 25
__a : List[Any] = audioldm_pipe(**__a ).audios[0]
assert audio.ndim == 1
assert len(__a ) == 8_1920
__a : List[str] = audio[7_7230:7_7240]
__a : str = np.array(
[-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315] )
__a : Dict = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 1E-2
def __UpperCAmelCase ( self ):
'''simple docstring'''
__a : Any = AudioLDMPipeline.from_pretrained('cvssp/audioldm' )
__a : Optional[int] = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config )
__a : Optional[Any] = audioldm_pipe.to(__a )
audioldm_pipe.set_progress_bar_config(disable=__a )
__a : Dict = self.get_inputs(__a )
__a : Tuple = audioldm_pipe(**__a ).audios[0]
assert audio.ndim == 1
assert len(__a ) == 8_1920
__a : int = audio[2_7780:2_7790]
__a : str = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212] )
__a : Optional[Any] = np.abs(expected_slice - audio_slice ).max()
assert max_diff < 3E-2
| 27 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 0 |
'''simple docstring'''
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_lowerCamelCase : Any = logging.get_logger(__name__)
@add_end_docstrings(_a )
class SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
def __init__( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : Union[str, Any] ):
"""simple docstring"""
super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
requires_backends(self , 'decord' )
self.check_model_type(UpperCamelCase__ )
def A ( self : Optional[int] , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : Optional[Any]=None ):
"""simple docstring"""
UpperCamelCase = {}
if frame_sampling_rate is not None:
UpperCamelCase = frame_sampling_rate
if num_frames is not None:
UpperCamelCase = num_frames
UpperCamelCase = {}
if top_k is not None:
UpperCamelCase = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : List[str] , UpperCamelCase__ : Union[str, List[str]] , **UpperCamelCase__ : Dict ):
"""simple docstring"""
return super().__call__(UpperCamelCase__ , **UpperCamelCase__ )
def A ( self : Tuple , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : Tuple=1 ):
"""simple docstring"""
if num_frames is None:
UpperCamelCase = self.model.config.num_frames
if video.startswith('http://' ) or video.startswith('https://' ):
UpperCamelCase = BytesIO(requests.get(UpperCamelCase__ ).content )
UpperCamelCase = VideoReader(UpperCamelCase__ )
videoreader.seek(0 )
UpperCamelCase = 0
UpperCamelCase = num_frames * frame_sampling_rate - 1
UpperCamelCase = np.linspace(UpperCamelCase__ , UpperCamelCase__ , num=UpperCamelCase__ , dtype=np.intaa )
UpperCamelCase = videoreader.get_batch(UpperCamelCase__ ).asnumpy()
UpperCamelCase = list(UpperCamelCase__ )
UpperCamelCase = self.image_processor(UpperCamelCase__ , return_tensors=self.framework )
return model_inputs
def A ( self : Union[str, Any] , UpperCamelCase__ : List[str] ):
"""simple docstring"""
UpperCamelCase = self.model(**UpperCamelCase__ )
return model_outputs
def A ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=5 ):
"""simple docstring"""
if top_k > self.model.config.num_labels:
UpperCamelCase = self.model.config.num_labels
if self.framework == "pt":
UpperCamelCase = model_outputs.logits.softmax(-1 )[0]
UpperCamelCase , UpperCamelCase = probs.topk(UpperCamelCase__ )
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
UpperCamelCase = scores.tolist()
UpperCamelCase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase__ , UpperCamelCase__ )]
| 28 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 0 |
def lowercase__ ( __snake_case : dict ):
'''simple docstring'''
UpperCAmelCase_ : set[int] = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
UpperCAmelCase_ : set[int] = set()
return any(
node not in visited and depth_first_search(__snake_case , __snake_case , __snake_case , __snake_case )
for node in graph )
def lowercase__ ( __snake_case : dict , __snake_case : int , __snake_case : set , __snake_case : set ):
'''simple docstring'''
visited.add(__snake_case )
rec_stk.add(__snake_case )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(__snake_case , __snake_case , __snake_case , __snake_case ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(__snake_case )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 29 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 0 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
__a = np.linspace(start=0, stop=7_5, num=7_5, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
__a = [0, 2_5, 5_0]
__a = [2_5, 5_0, 7_5]
__a = fuzz.membership.trimf(X, abca)
__a = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
__a = np.ones(7_5)
__a = np.zeros((7_5,))
# 1. Union = max(µA(x), µB(x))
__a = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
__a = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
__a = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
__a = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
__a = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
__a = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
__a = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
__a = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title('Young')
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title('Middle aged')
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title('union')
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title('intersection')
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title('complement_a')
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title('difference a/b')
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title('alg_sum')
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title('alg_product')
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title('bdd_sum')
plt.grid(True)
plt.subplot(4, 3, 1_0)
plt.plot(X, bdd_difference)
plt.title('bdd_difference')
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 30 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 0 |
'''simple docstring'''
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> str:
"""simple docstring"""
if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release:
# old versions of hfh don't url-encode the file path
_UpperCAmelCase : Union[str, Any] = quote(_UpperCAmelCase )
return hfh.hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" , revision=_UpperCAmelCase )
| 31 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 0 |
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str=1_3 , SCREAMING_SNAKE_CASE__ : Optional[int]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : str=9_9 , SCREAMING_SNAKE_CASE__ : str=2_4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=6 , SCREAMING_SNAKE_CASE__ : Optional[int]=3_7 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 , SCREAMING_SNAKE_CASE__ : List[str]=1_6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Tuple=1_0_0_0 , ) -> str:
a_ : Optional[Any] = parent
a_ : List[str] = batch_size
a_ : List[str] = seq_length
a_ : str = is_training
a_ : str = use_input_mask
a_ : int = use_token_type_ids
a_ : List[str] = use_labels
a_ : Optional[int] = vocab_size
a_ : Any = hidden_size
a_ : int = num_hidden_layers
a_ : List[str] = num_attention_heads
a_ : str = intermediate_size
a_ : Union[str, Any] = hidden_act
a_ : List[str] = hidden_dropout_prob
a_ : int = attention_probs_dropout_prob
a_ : int = max_position_embeddings
a_ : Tuple = type_vocab_size
a_ : Optional[Any] = type_sequence_label_size
a_ : Tuple = initializer_range
a_ : Dict = num_labels
a_ : str = scope
a_ : Optional[int] = range_bbox
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
a_ : Any = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
a_ : int = bbox[i, j, 3]
a_ : str = bbox[i, j, 1]
a_ : List[str] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
a_ : Tuple = bbox[i, j, 2]
a_ : List[str] = bbox[i, j, 0]
a_ : Union[str, Any] = t
a_ : List[Any] = None
if self.use_input_mask:
a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
a_ : List[Any] = None
if self.use_token_type_ids:
a_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
a_ : int = None
a_ : Tuple = None
if self.use_labels:
a_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
a_ : Optional[int] = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE ( self : Dict ) -> int:
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> str:
a_ : Any = LiltModel(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
a_ : Any = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ )
a_ : Optional[int] = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ )
a_ : List[Any] = model(SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , ) -> int:
a_ : Any = self.num_labels
a_ : str = LiltForTokenClassification(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
a_ : str = model(
SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE ( self : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> str:
a_ : Union[str, Any] = LiltForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ )
model.to(SCREAMING_SNAKE_CASE__ )
model.eval()
a_ : List[str] = model(
SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]:
a_ : int = self.prepare_config_and_inputs()
(
(
a_
) , (
a_
) , (
a_
) , (
a_
) , (
a_
) , (
a_
) , (
a_
) ,
) : List[Any] = config_and_inputs
a_ : Optional[int] = {
'input_ids': input_ids,
'bbox': bbox,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ):
snake_case__ : Union[str, Any] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
snake_case__ : str = (
{
'''feature-extraction''': LiltModel,
'''question-answering''': LiltForQuestionAnswering,
'''text-classification''': LiltForSequenceClassification,
'''token-classification''': LiltForTokenClassification,
'''zero-shot''': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
snake_case__ : List[str] = False
snake_case__ : str = False
def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> int:
return True
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
a_ : str = LiltModelTester(self )
a_ : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=3_7 )
def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[Any]:
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str:
a_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[int]:
a_ : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
a_ : List[str] = type
self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
a_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]:
a_ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE__ )
@slow
def SCREAMING_SNAKE_CASE ( self : str ) -> Union[str, Any]:
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a_ : List[Any] = LiltModel.from_pretrained(SCREAMING_SNAKE_CASE__ )
self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
@require_torch
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
a_ : List[str] = LiltModel.from_pretrained('SCUT-DLVCLab/lilt-roberta-en-base' ).to(SCREAMING_SNAKE_CASE__ )
a_ : str = torch.tensor([[1, 2]] , device=SCREAMING_SNAKE_CASE__ )
a_ : List[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=SCREAMING_SNAKE_CASE__ )
# forward pass
with torch.no_grad():
a_ : str = model(input_ids=SCREAMING_SNAKE_CASE__ , bbox=SCREAMING_SNAKE_CASE__ )
a_ : Optional[int] = torch.Size([1, 2, 7_6_8] )
a_ : int = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=SCREAMING_SNAKE_CASE__ , )
self.assertTrue(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) )
| 32 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 0 |
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import numpy as np
import tensorflow as tf
import torch
def lowercase ( __snake_case : List[Any] ):
lowercase_ : int = os.path.join(args.tf_model_dir , '''parameters.json''' )
lowercase_ : Any = json.loads(open(__snake_case ).read() )
if not params:
raise ValueError(
F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' )
if not args.output.endswith('''.pt''' ):
lowercase_ : Dict = args.output + '''.pt'''
lowercase_ : Any = OrderedDict()
with tf.device('''/CPU:0''' ):
lowercase_ : int = tf.train.load_checkpoint(args.tf_model_dir )
lowercase_ : Optional[int] = reader.get_variable_to_shape_map()
for key_name in shapes.keys():
lowercase_ : int = reader.get_tensor(__snake_case ).astype(np.floataa )
if key_name.endswith('''/adam_m''' ) or key_name.endswith('''/adam_v''' ):
continue
if key_name.startswith('''pasts/''' ):
if key_name.startswith('''pasts/mlp''' ):
lowercase_ : Optional[Any] = int(key_name[9] )
elif key_name.startswith('''pasts/out''' ):
lowercase_ : Tuple = 8
lowercase_ : str = '''model.sqout.%d.weight''' % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
lowercase_ : Optional[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : List[Any] = torch.tensor(__snake_case )
elif key_name.startswith('''model/moe''' ):
lowercase_ : Optional[int] = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/switch_gating/kernel''' ):
lowercase_ : List[str] = '''model.blocks.%d.feed_forward.mlp.router.classifier.weight''' % player
lowercase_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Tuple = torch.tensor(__snake_case )
elif key_name.endswith('''/softmlp/kernel''' ):
lowercase_ : List[str] = '''model.blocks.%d.feed_forward.soft_bypass_mlp.weight''' % player
lowercase_ : List[str] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : List[str] = torch.tensor(__snake_case )
elif key_name.endswith('''/wo/kernel''' ) or key_name.endswith('''/wi/kernel''' ):
lowercase_ : Union[str, Any] = key_name[-9:-7]
for i in range(1_6 ):
lowercase_ : Tuple = '''model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight''' % (player, i, nlayer)
lowercase_ : str = (
vnp[i].transpose([1, 0] ).copy()
) # In Mesh-Tensorflow, it is one array, so it is divided
lowercase_ : Tuple = torch.tensor(__snake_case )
elif key_name.startswith('''model/mlp''' ):
lowercase_ : Optional[int] = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/p1/kernel''' ):
lowercase_ : List[Any] = '''model.blocks.%d.feed_forward.mlp.wi.weight''' % player
lowercase_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Dict = torch.tensor(__snake_case )
elif key_name.endswith('''/p1/bias''' ):
lowercase_ : Any = '''model.blocks.%d.feed_forward.mlp.wi.bias''' % player
lowercase_ : Any = vnp.copy() # same because it is one dimensional
lowercase_ : int = torch.tensor(__snake_case )
elif key_name.endswith('''/p2/kernel''' ):
lowercase_ : Optional[Any] = '''model.blocks.%d.feed_forward.mlp.wo.weight''' % player
lowercase_ : int = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : int = torch.tensor(__snake_case )
elif key_name.endswith('''/p2/bias''' ):
lowercase_ : Optional[int] = '''model.blocks.%d.feed_forward.mlp.wo.bias''' % player
lowercase_ : List[str] = vnp.copy() # same because it is one dimensional
lowercase_ : int = torch.tensor(__snake_case )
elif key_name.startswith('''model/ln''' ):
lowercase_ : Optional[Any] = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
lowercase_ : str = '''model.blocks.%d.feed_forward.norm.bias''' % player
lowercase_ : Any = vnp.copy() # same because it is one dimensional
lowercase_ : int = torch.tensor(__snake_case )
elif key_name.endswith('''/g''' ):
lowercase_ : Union[str, Any] = '''model.blocks.%d.feed_forward.norm.weight''' % player
lowercase_ : Union[str, Any] = vnp.copy() # same because it is one dimensional
lowercase_ : int = torch.tensor(__snake_case )
elif key_name.startswith('''model/att''' ):
lowercase_ : Optional[int] = int(key_name[9:].split('''/''' )[0] )
if key_name.endswith('''/qkv/kernel''' ):
lowercase_ : Dict = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
lowercase_ : Tuple = state[:, 0, :, :]
lowercase_ : Dict = state[:, 1, :, :]
lowercase_ : Union[str, Any] = state[:, 2, :, :]
lowercase_ : int = (
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Optional[Any] = (
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Union[str, Any] = (
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] )
.transpose([1, 0] )
.copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase_ : List[str] = '''model.blocks.%d.self_attn.self_attn.q_proj.weight''' % player
lowercase_ : str = torch.tensor(__snake_case )
lowercase_ : str = '''model.blocks.%d.self_attn.self_attn.k_proj.weight''' % player
lowercase_ : Any = torch.tensor(__snake_case )
lowercase_ : List[Any] = '''model.blocks.%d.self_attn.self_attn.v_proj.weight''' % player
lowercase_ : Any = torch.tensor(__snake_case )
elif key_name.endswith('''/o/kernel''' ):
lowercase_ : Dict = '''model.blocks.%d.self_attn.self_attn.out_proj.weight''' % player
lowercase_ : Optional[int] = (
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy()
) # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Any = torch.tensor(__snake_case )
elif key_name.startswith('''model/an''' ):
lowercase_ : str = int(key_name[8:].split('''/''' )[0] )
if key_name.endswith('''/b''' ):
lowercase_ : Dict = '''model.blocks.%d.self_attn.norm.bias''' % player
lowercase_ : Union[str, Any] = vnp.copy() # same because it is one dimensional
lowercase_ : str = torch.tensor(__snake_case )
elif key_name.endswith('''/g''' ):
lowercase_ : str = '''model.blocks.%d.self_attn.norm.weight''' % player
lowercase_ : Optional[Any] = vnp.copy() # same because it is one dimensional
lowercase_ : Any = torch.tensor(__snake_case )
elif (
key_name.startswith('''model/wte''' )
or key_name.startswith('''model/wpe''' )
or key_name.startswith('''model/ete''' )
):
lowercase_ : int = {'''wte''': '''embed_tokens''', '''wpe''': '''position_embeddings''', '''ete''': '''extra_position_embeddings'''}[
key_name[-3:]
]
lowercase_ : str = '''model.%s.weight''' % nlayer
lowercase_ : int = vnp.copy() # same in embedded
lowercase_ : int = torch.tensor(__snake_case )
if key_name.startswith('''model/wte''' ):
lowercase_ : Dict = '''lm_head.weight'''
lowercase_ : Tuple = vnp.copy() # same in embedded
lowercase_ : Dict = torch.tensor(__snake_case )
elif key_name.startswith('''model/wob''' ):
lowercase_ : int = '''final_logits_bias'''
lowercase_ : Any = vnp.copy() # same in embedded
lowercase_ : Optional[Any] = state.reshape((1, -1) )
lowercase_ : Any = torch.tensor(__snake_case )
elif key_name == "model/dense/kernel":
lowercase_ : List[str] = '''model.last_project.weight'''
lowercase_ : str = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix
lowercase_ : Optional[Any] = torch.tensor(__snake_case )
elif key_name == "model/dense_1/bias":
lowercase_ : Dict = '''model.last_project.bias'''
lowercase_ : Tuple = vnp.copy() # same because it is one dimensional
lowercase_ : Any = torch.tensor(__snake_case )
torch.save(__snake_case , args.output )
if __name__ == "__main__":
__A : Tuple = argparse.ArgumentParser(
description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''')
parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''')
__A : Any = parser.parse_args()
convert_tf_gptsan_to_pt(args)
| 33 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import MutableSequence
class _a :
def __init__( self : Union[str, Any] , lowercase : int , lowercase : MutableSequence[float] ):
'''simple docstring'''
if len(lowercase ) != degree + 1:
raise ValueError(
'''The number of coefficients should be equal to the degree + 1.''' )
UpperCAmelCase = list(lowercase )
UpperCAmelCase = degree
def __add__( self : List[Any] , lowercase : Polynomial ):
'''simple docstring'''
if self.degree > polynomial_a.degree:
UpperCAmelCase = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , lowercase )
else:
UpperCAmelCase = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , lowercase )
def __sub__( self : str , lowercase : Polynomial ):
'''simple docstring'''
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self : Optional[int] ):
'''simple docstring'''
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self : List[Any] , lowercase : Polynomial ):
'''simple docstring'''
UpperCAmelCase = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , lowercase )
def A ( self : Optional[int] , lowercase : int | float ):
'''simple docstring'''
UpperCAmelCase = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self : str ):
'''simple docstring'''
UpperCAmelCase = ''''''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase )
return polynomial
def __repr__( self : List[Any] ):
'''simple docstring'''
return self.__str__()
def A ( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = [0] * self.degree
for i in range(self.degree ):
UpperCAmelCase = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , lowercase )
def A ( self : str , lowercase : int | float = 0 ):
'''simple docstring'''
UpperCAmelCase = [0] * (self.degree + 2)
UpperCAmelCase = constant
for i in range(self.degree + 1 ):
UpperCAmelCase = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , lowercase )
def __eq__( self : List[Any] , lowercase : object ):
'''simple docstring'''
if not isinstance(lowercase , lowercase ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self : Tuple , lowercase : object ):
'''simple docstring'''
return not self.__eq__(lowercase )
| 34 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 0 |
'''simple docstring'''
from pickle import UnpicklingError
import jax
import jax.numpy as jnp
import numpy as np
from flax.serialization import from_bytes
from flax.traverse_util import flatten_dict
from ..utils import logging
__a = logging.get_logger(__name__)
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]:
try:
with open(_lowerCAmelCase , """rb""" ) as flax_state_f:
snake_case__ : Any = from_bytes(_lowerCAmelCase , flax_state_f.read() )
except UnpicklingError as e:
try:
with open(_lowerCAmelCase ) as f:
if f.read().startswith("""version""" ):
raise OSError(
"""You seem to have cloned a repository without having git-lfs installed. Please"""
""" install git-lfs and run `git lfs install` followed by `git lfs pull` in the"""
""" folder you cloned.""" )
else:
raise ValueError from e
except (UnicodeDecodeError, ValueError):
raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. " )
return load_flax_weights_in_pytorch_model(_lowerCAmelCase , _lowerCAmelCase )
def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> int:
try:
import torch # noqa: F401
except ImportError:
logger.error(
"""Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see"""
""" https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation"""
""" instructions.""" )
raise
# check if we have bf16 weights
snake_case__ : Optional[int] = flatten_dict(jax.tree_util.tree_map(lambda _lowerCAmelCase : x.dtype == jnp.bfloataa , _lowerCAmelCase ) ).values()
if any(_lowerCAmelCase ):
# convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16
# and bf16 is not fully supported in PT yet.
logger.warning(
"""Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """
"""before loading those in PyTorch model.""" )
snake_case__ : Optional[Any] = jax.tree_util.tree_map(
lambda _lowerCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _lowerCAmelCase )
snake_case__ : Optional[int] = """"""
snake_case__ : Any = flatten_dict(_lowerCAmelCase , sep=""".""" )
snake_case__ : Union[str, Any] = pt_model.state_dict()
# keep track of unexpected & missing keys
snake_case__ : Any = []
snake_case__ : List[Any] = set(pt_model_dict.keys() )
for flax_key_tuple, flax_tensor in flax_state_dict.items():
snake_case__ : str = flax_key_tuple.split(""".""" )
if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4:
snake_case__ : Dict = flax_key_tuple_array[:-1] + ["""weight"""]
snake_case__ : List[Any] = jnp.transpose(_lowerCAmelCase , (3, 2, 0, 1) )
elif flax_key_tuple_array[-1] == "kernel":
snake_case__ : str = flax_key_tuple_array[:-1] + ["""weight"""]
snake_case__ : Dict = flax_tensor.T
elif flax_key_tuple_array[-1] == "scale":
snake_case__ : Dict = flax_key_tuple_array[:-1] + ["""weight"""]
if "time_embedding" not in flax_key_tuple_array:
for i, flax_key_tuple_string in enumerate(_lowerCAmelCase ):
snake_case__ : int = (
flax_key_tuple_string.replace("""_0""" , """.0""" )
.replace("""_1""" , """.1""" )
.replace("""_2""" , """.2""" )
.replace("""_3""" , """.3""" )
.replace("""_4""" , """.4""" )
.replace("""_5""" , """.5""" )
.replace("""_6""" , """.6""" )
.replace("""_7""" , """.7""" )
.replace("""_8""" , """.8""" )
.replace("""_9""" , """.9""" )
)
snake_case__ : List[Any] = """.""".join(_lowerCAmelCase )
if flax_key in pt_model_dict:
if flax_tensor.shape != pt_model_dict[flax_key].shape:
raise ValueError(
f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected "
f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." )
else:
# add weight to pytorch dict
snake_case__ : Tuple = np.asarray(_lowerCAmelCase ) if not isinstance(_lowerCAmelCase , np.ndarray ) else flax_tensor
snake_case__ : Optional[int] = torch.from_numpy(_lowerCAmelCase )
# remove from missing keys
missing_keys.remove(_lowerCAmelCase )
else:
# weight is not expected by PyTorch model
unexpected_keys.append(_lowerCAmelCase )
pt_model.load_state_dict(_lowerCAmelCase )
# re-transform missing_keys to list
snake_case__ : Tuple = list(_lowerCAmelCase )
if len(_lowerCAmelCase ) > 0:
logger.warning(
"""Some weights of the Flax model were not used when initializing the PyTorch model"""
f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing"
f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture"
""" (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This"""
f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect"
""" to be exactly identical (e.g. initializing a BertForSequenceClassification model from a"""
""" FlaxBertForSequenceClassification model).""" )
if len(_lowerCAmelCase ) > 0:
logger.warning(
f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly"
f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to"
""" use it for predictions and inference.""" )
return pt_model
| 35 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 0 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
_snake_case = abspath(join(dirname(dirname(dirname(__file__))), "src"))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="ignore", category=FutureWarning)
def A ( _lowerCamelCase ):
'''simple docstring'''
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_lowerCamelCase )
def A ( _lowerCamelCase ):
'''simple docstring'''
from transformers.testing_utils import pytest_terminal_summary_main
_lowerCAmelCase : int = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase )
| 36 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
_lowerCAmelCase = False
class lowerCAmelCase_( unittest.TestCase ):
'''simple docstring'''
pass
@slow
@require_torch_gpu
class lowerCAmelCase_( unittest.TestCase ):
'''simple docstring'''
def UpperCAmelCase_ ( self ) -> Optional[Any]:
lowerCAmelCase__ : Optional[int] = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
lowerCAmelCase__ : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
lowerCAmelCase__ : Tuple = torch.manual_seed(0 )
lowerCAmelCase__ : Dict = pipe(
image=__UpperCAmelCase ,generator=__UpperCAmelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type="""numpy""" ,).images
lowerCAmelCase__ : List[Any] = image[0, 253:256, 253:256, -1]
assert image.shape == (1, 512, 512, 3)
lowerCAmelCase__ : Tuple = np.array([0.0_4_4_1, 0.0_4_6_9, 0.0_5_0_7, 0.0_5_7_5, 0.0_6_3_2, 0.0_6_5_0, 0.0_8_6_5, 0.0_9_0_9, 0.0_9_4_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 37 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 0 |
from collections.abc import Generator
from math import sin
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes:
"""simple docstring"""
if len(__magic_name__ ) != 32:
raise ValueError("""Input must be of length 32""" )
UpperCamelCase :int = B""""""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> bytes:
"""simple docstring"""
if i < 0:
raise ValueError("""Input must be non-negative""" )
UpperCamelCase :Any = format(__magic_name__ , """08x""" )[-8:]
UpperCamelCase :Union[str, Any] = B""""""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" )
return little_endian_hex
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes:
"""simple docstring"""
UpperCamelCase :str = B""""""
for char in message:
bit_string += format(__magic_name__ , """08b""" ).encode("""utf-8""" )
UpperCamelCase :Any = format(len(__magic_name__ ) , """064b""" ).encode("""utf-8""" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(__magic_name__ ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> Generator[list[int], None, None]:
"""simple docstring"""
if len(__magic_name__ ) % 512 != 0:
raise ValueError("""Input must have length that's a multiple of 512""" )
for pos in range(0 , len(__magic_name__ ) , 512 ):
UpperCamelCase :Tuple = bit_string[pos : pos + 512]
UpperCamelCase :Optional[int] = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError("""Input must be non-negative""" )
UpperCamelCase :List[str] = format(__magic_name__ , """032b""" )
UpperCamelCase :Any = """"""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(__magic_name__ , 2 )
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
return (a + b) % 2**32
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int , __magic_name__ : int ) -> int:
"""simple docstring"""
if i < 0:
raise ValueError("""Input must be non-negative""" )
if shift < 0:
raise ValueError("""Shift must be non-negative""" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : bytes ) -> bytes:
"""simple docstring"""
UpperCamelCase :Tuple = preprocess(__magic_name__ )
UpperCamelCase :List[str] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
UpperCamelCase :Union[str, Any] = 0X67_45_23_01
UpperCamelCase :Union[str, Any] = 0XEF_CD_AB_89
UpperCamelCase :List[str] = 0X98_BA_DC_FE
UpperCamelCase :int = 0X10_32_54_76
UpperCamelCase :int = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(__magic_name__ ):
UpperCamelCase :Optional[Any] = aa
UpperCamelCase :Any = ba
UpperCamelCase :Tuple = ca
UpperCamelCase :List[str] = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
UpperCamelCase :int = d ^ (b & (c ^ d))
UpperCamelCase :Optional[int] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
UpperCamelCase :str = c ^ (d & (b ^ c))
UpperCamelCase :Union[str, Any] = (5 * i + 1) % 16
elif i <= 47:
UpperCamelCase :str = b ^ c ^ d
UpperCamelCase :Optional[int] = (3 * i + 5) % 16
else:
UpperCamelCase :List[str] = c ^ (b | not_aa(__magic_name__ ))
UpperCamelCase :int = (7 * i) % 16
UpperCamelCase :Dict = (f + a + added_consts[i] + block_words[g]) % 2**32
UpperCamelCase :Tuple = d
UpperCamelCase :str = c
UpperCamelCase :Tuple = b
UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , left_rotate_aa(__magic_name__ , shift_amounts[i] ) )
# Add hashed chunk to running total
UpperCamelCase :List[str] = sum_aa(__magic_name__ , __magic_name__ )
UpperCamelCase :str = sum_aa(__magic_name__ , __magic_name__ )
UpperCamelCase :int = sum_aa(__magic_name__ , __magic_name__ )
UpperCamelCase :Optional[Any] = sum_aa(__magic_name__ , __magic_name__ )
UpperCamelCase :Optional[Any] = reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ ) + reformat_hex(__magic_name__ )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 0 |
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def __A ( __lowerCAmelCase )-> str:
"""simple docstring"""
return "".join(sorted(__lowerCAmelCase ) )
def __A ( __lowerCAmelCase )-> list[str]:
"""simple docstring"""
return word_by_signature[signature(__lowerCAmelCase )]
_a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
_a = sorted({word.strip().lower() for word in data.splitlines()})
_a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
_a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 39 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__lowercase = logging.get_logger(__name__)
__lowercase = {"""vocab_file""": """sentencepiece.bpe.model"""}
__lowercase = {
"""vocab_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""",
}
}
__lowercase = {
"""camembert-base""": 512,
}
__lowercase = """▁"""
class _A ( _a ):
"""simple docstring"""
UpperCAmelCase : List[str] = VOCAB_FILES_NAMES
UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Dict = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple="<s>" , __UpperCAmelCase : List[str]="</s>" , __UpperCAmelCase : int="</s>" , __UpperCAmelCase : List[Any]="<s>" , __UpperCAmelCase : Optional[int]="<unk>" , __UpperCAmelCase : Any="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Tuple=["<s>NOTUSED", "</s>NOTUSED"] , __UpperCAmelCase : Optional[Dict[str, Any]] = None , **__UpperCAmelCase : List[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
a : Any = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else mask_token
a : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
a : str = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(str(__UpperCAmelCase))
a : List[Any] = vocab_file
# HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual
# sentencepiece vocabulary (this is the case for <s> and </s>
a : Optional[int] = {"<s>NOTUSED": 0, "<pad>": 1, "</s>NOTUSED": 2, "<unk>": 3}
a : int = len(self.fairseq_tokens_to_ids)
a : Union[str, Any] = len(self.sp_model) + len(self.fairseq_tokens_to_ids)
a : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __snake_case ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
a : int = [self.cls_token_id]
a : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __snake_case ( self : str , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase)
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase)) + [1]
return [1] + ([0] * len(__UpperCAmelCase)) + [1, 1] + ([0] * len(__UpperCAmelCase)) + [1]
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None):
a : List[str] = [self.sep_token_id]
a : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
@property
def __snake_case ( self : str):
return len(self.fairseq_tokens_to_ids) + len(self.sp_model)
def __snake_case ( self : Union[str, Any]):
a : Any = {self.convert_ids_to_tokens(__UpperCAmelCase): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __snake_case ( self : str , __UpperCAmelCase : str):
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase)
def __snake_case ( self : List[Any] , __UpperCAmelCase : Dict):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
elif self.sp_model.PieceToId(__UpperCAmelCase) == 0:
# Convert sentence piece unk token to fairseq unk token index
return self.unk_token_id
return self.fairseq_offset + self.sp_model.PieceToId(__UpperCAmelCase)
def __snake_case ( self : Dict , __UpperCAmelCase : Optional[int]):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset)
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Tuple):
a : int = []
a : Dict = ""
a : List[Any] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__UpperCAmelCase) + token
a : str = True
a : str = []
else:
current_sub_tokens.append(__UpperCAmelCase)
a : str = False
out_string += self.sp_model.decode(__UpperCAmelCase)
return out_string.strip()
def __getstate__( self : Tuple):
a : Any = self.__dict__.copy()
a : Optional[Any] = None
return state
def __setstate__( self : Optional[int] , __UpperCAmelCase : List[str]):
a : Dict = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
a : Any = {}
a : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def __snake_case ( self : int , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None):
if not os.path.isdir(__UpperCAmelCase):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
a : Optional[Any] = os.path.join(
__UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__UpperCAmelCase) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , __UpperCAmelCase)
elif not os.path.isfile(self.vocab_file):
with open(__UpperCAmelCase , "wb") as fi:
a : List[Any] = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase)
return (out_vocab_file,)
| 40 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 0 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float:
if digit_amount > 0:
return round(number - int(UpperCamelCase ) , UpperCamelCase )
return number - int(UpperCamelCase )
if __name__ == "__main__":
print(decimal_isolate(1.53, 0))
print(decimal_isolate(35.345, 1))
print(decimal_isolate(35.345, 2))
print(decimal_isolate(35.345, 3))
print(decimal_isolate(-14.789, 3))
print(decimal_isolate(0, 2))
print(decimal_isolate(-14.123, 1))
print(decimal_isolate(-14.123, 2))
print(decimal_isolate(-14.123, 3))
| 41 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 0 |
'''simple docstring'''
import math
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> float:
if (
not isinstance(__A , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * power_factor
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> float:
if (
not isinstance(__A , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError('power_factor must be a valid float value between -1 and 1.' )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 42 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 0 |
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
__lowercase = 5_0000
__lowercase = 5000
__lowercase , __lowercase = os.path.split(__file__)
__lowercase = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json'''))
@get_duration
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for i in range(SCREAMING_SNAKE_CASE ):
__UpperCamelCase :int = dataset[i]
@get_duration
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for i in range(0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ):
__UpperCamelCase :str = dataset[i : i + batch_size]
@get_duration
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
with dataset.formatted_as(type=SCREAMING_SNAKE_CASE ):
for i in range(SCREAMING_SNAKE_CASE ):
__UpperCamelCase :List[str] = dataset[i]
@get_duration
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
with dataset.formatted_as(type=SCREAMING_SNAKE_CASE ):
for i in range(0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCamelCase :List[Any] = dataset[i : i + batch_size]
def lowerCamelCase ( ):
'''simple docstring'''
__UpperCamelCase :Optional[Any] = {'''num examples''': SPEED_TEST_N_EXAMPLES}
__UpperCamelCase :Optional[Any] = [
(read, {'''length''': SMALL_TEST}),
(read, {'''length''': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}),
(read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}),
(read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}),
(read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}),
(read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}),
(read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}),
(read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}),
(read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}),
(read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}),
]
__UpperCamelCase :List[str] = [
(read, {'''length''': SMALL_TEST}),
(read, {'''length''': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}),
(read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}),
(read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}),
(read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}),
(read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}),
(read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print('''generating dataset''' )
__UpperCamelCase :Any = datasets.Features(
{'''list''': datasets.Sequence(datasets.Value('''float32''' ) ), '''numbers''': datasets.Value('''float32''' )} )
__UpperCamelCase :int = generate_example_dataset(
os.path.join(SCREAMING_SNAKE_CASE , '''dataset.arrow''' ) , SCREAMING_SNAKE_CASE , num_examples=SCREAMING_SNAKE_CASE , seq_shapes={'''list''': (100,)} , )
print('''first set of iterations''' )
for func, kwargs in functions:
print(func.__name__ , str(SCREAMING_SNAKE_CASE ) )
__UpperCamelCase :Union[str, Any] = func(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
print('''shuffling dataset''' )
__UpperCamelCase :Union[str, Any] = dataset.shuffle()
print('''Second set of iterations (after shuffling''' )
for func, kwargs in functions_shuffled:
print('''shuffled ''' , func.__name__ , str(SCREAMING_SNAKE_CASE ) )
__UpperCamelCase :List[Any] = func(
SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
with open(SCREAMING_SNAKE_CASE , '''wb''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating()
| 43 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 0 |
"""simple docstring"""
from math import ceil
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ,_lowerCamelCase : Union[str, Any] ) -> int:
_lowerCAmelCase : Dict = list(range(0 ,_lowerCamelCase ) )
_lowerCAmelCase : Tuple = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
_lowerCAmelCase : Union[str, Any] = []
for i in device_map_blocks:
if device_map_blocks.count(_lowerCamelCase ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(_lowerCamelCase )
# Missing blocks
_lowerCAmelCase : int = [i for i in blocks if i not in device_map_blocks]
_lowerCAmelCase : List[Any] = [i for i in device_map_blocks if i not in blocks]
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device."""
""" These attention blocks were specified more than once: """ + str(_lowerCamelCase ) )
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""There are attention blocks for this model that are not specified in the device_map. Add these attention """
"""blocks to a device on the device_map: """ + str(_lowerCamelCase ) )
if len(_lowerCamelCase ) != 0:
raise ValueError(
"""The device_map contains more attention blocks than this model has. Remove these from the device_map:"""
+ str(_lowerCamelCase ) )
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : Tuple ) -> str:
_lowerCAmelCase : Optional[Any] = list(range(_lowerCamelCase ) )
_lowerCAmelCase : Optional[Any] = int(ceil(n_layers / len(_lowerCamelCase ) ) )
_lowerCAmelCase : Optional[int] = [layers[i : i + n_blocks] for i in range(0 ,_lowerCamelCase ,_lowerCamelCase )]
return dict(zip(_lowerCamelCase ,_lowerCamelCase ) )
| 44 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 0 |
"""simple docstring"""
import math
import os
import sys
def lowercase ( lowerCAmelCase__ : str ) -> str:
__a = ''''''
try:
with open(lowerCAmelCase__ , '''rb''' ) as binary_file:
__a = binary_file.read()
for dat in data:
__a = f'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print('''File not accessible''' )
sys.exit()
def lowercase ( lowerCAmelCase__ : dict[str, str] , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : str ) -> None:
lexicon.pop(lowerCAmelCase__ )
__a = last_match_id
if math.loga(lowerCAmelCase__ ).is_integer():
for curr_key in lexicon:
__a = '''0''' + lexicon[curr_key]
__a = bin(lowerCAmelCase__ )[2:]
def lowercase ( lowerCAmelCase__ : str ) -> str:
__a = {'''0''': '''0''', '''1''': '''1'''}
__a , __a = '''''', ''''''
__a = len(lowerCAmelCase__ )
for i in range(len(lowerCAmelCase__ ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__a = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
index += 1
__a = ''''''
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__a = lexicon[curr_string]
result += last_match_id
return result
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> str:
__a = os.path.getsize(lowerCAmelCase__ )
__a = bin(lowerCAmelCase__ )[2:]
__a = len(lowerCAmelCase__ )
return "0" * (length_length - 1) + file_length_binary + compressed
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None:
__a = 8
try:
with open(lowerCAmelCase__ , '''wb''' ) as opened_file:
__a = [
to_write[i : i + byte_length]
for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('''10000000''' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(lowerCAmelCase__ , 2 ).to_bytes(1 , byteorder='''big''' ) )
except OSError:
print('''File not accessible''' )
sys.exit()
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> None:
__a = read_file_binary(lowerCAmelCase__ )
__a = compress_data(lowerCAmelCase__ )
__a = add_file_length(lowerCAmelCase__ , lowerCAmelCase__ )
write_file_binary(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 45 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 0 |
"""simple docstring"""
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowercase :
def __init__( self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=False , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ) -> Tuple:
lowerCAmelCase = parent
lowerCAmelCase = batch_size
lowerCAmelCase = seq_length
lowerCAmelCase = is_training
lowerCAmelCase = use_input_mask
lowerCAmelCase = use_token_type_ids
lowerCAmelCase = use_labels
lowerCAmelCase = vocab_size
lowerCAmelCase = hidden_size
lowerCAmelCase = num_hidden_layers
lowerCAmelCase = num_attention_heads
lowerCAmelCase = intermediate_size
lowerCAmelCase = hidden_act
lowerCAmelCase = hidden_dropout_prob
lowerCAmelCase = attention_probs_dropout_prob
lowerCAmelCase = max_position_embeddings
lowerCAmelCase = type_vocab_size
lowerCAmelCase = type_sequence_label_size
lowerCAmelCase = initializer_range
lowerCAmelCase = num_labels
lowerCAmelCase = num_choices
lowerCAmelCase = scope
def _snake_case ( self ) -> int:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCAmelCase = None
if self.use_input_mask:
lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase = None
if self.use_token_type_ids:
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCAmelCase = None
lowerCAmelCase = None
lowerCAmelCase = None
if self.use_labels:
lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
lowerCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self ) -> Dict:
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> str:
lowerCAmelCase = BioGptModel(config=lowercase )
model.to(lowercase )
model.eval()
lowerCAmelCase = model(lowercase , attention_mask=lowercase )
lowerCAmelCase = model(lowercase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Any:
lowerCAmelCase = BioGptForCausalLM(config=lowercase )
model.to(lowercase )
model.eval()
lowerCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Optional[Any]:
lowerCAmelCase = BioGptModel(config=lowercase )
model.to(lowercase )
model.eval()
# create attention mask
lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase )
lowerCAmelCase = self.seq_length // 2
lowerCAmelCase = 0
# first forward pass
lowerCAmelCase , lowerCAmelCase = model(lowercase , attention_mask=lowercase ).to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
lowerCAmelCase = ids_tensor((1,) , lowercase ).item() + 1
lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
lowerCAmelCase = random_other_next_tokens
# append to next input_ids and attn_mask
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase )] , dim=1 , )
# get two different outputs
lowerCAmelCase = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""]
lowerCAmelCase = model(lowercase , past_key_values=lowercase , attention_mask=lowercase )["""last_hidden_state"""]
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Optional[Any]:
lowerCAmelCase = BioGptModel(config=lowercase ).to(lowercase ).eval()
lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase )
# first forward pass
lowerCAmelCase = model(lowercase , attention_mask=lowercase , use_cache=lowercase )
lowerCAmelCase , lowerCAmelCase = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
lowerCAmelCase = model(lowercase , attention_mask=lowercase )["""last_hidden_state"""]
lowerCAmelCase = model(lowercase , attention_mask=lowercase , past_key_values=lowercase )[
"""last_hidden_state"""
]
# select random slice
lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase , lowercase=False ) -> Optional[Any]:
lowerCAmelCase = BioGptForCausalLM(lowercase )
model.to(lowercase )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
lowerCAmelCase = model(lowercase , labels=lowercase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def _snake_case ( self , lowercase , *lowercase ) -> List[str]:
lowerCAmelCase = BioGptModel(lowercase )
lowerCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , *lowercase ) -> Optional[int]:
lowerCAmelCase = self.num_labels
lowerCAmelCase = BioGptForTokenClassification(lowercase )
model.to(lowercase )
model.eval()
lowerCAmelCase = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self ) -> Dict:
lowerCAmelCase = self.prepare_config_and_inputs()
(
(
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) , (
lowerCAmelCase
) ,
) = config_and_inputs
lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
_SCREAMING_SNAKE_CASE = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
_SCREAMING_SNAKE_CASE = (BioGptForCausalLM,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE = (
{
'feature-extraction': BioGptModel,
'text-classification': BioGptForSequenceClassification,
'text-generation': BioGptForCausalLM,
'token-classification': BioGptForTokenClassification,
'zero-shot': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE = False
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase = BioGptModelTester(self )
lowerCAmelCase = ConfigTester(self , config_class=lowercase , hidden_size=37 )
def _snake_case ( self ) -> Any:
self.config_tester.run_common_tests()
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def _snake_case ( self ) -> Dict:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCAmelCase = type
self.model_tester.create_and_check_model(*lowercase )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*lowercase , gradient_checkpointing=lowercase )
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase )
@slow
def _snake_case ( self ) -> List[str]:
lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(lowercase )
lowerCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
lowerCAmelCase = """left"""
# Define PAD Token = EOS Token = 50256
lowerCAmelCase = tokenizer.eos_token
lowerCAmelCase = model.config.eos_token_id
# use different length sentences to test batching
lowerCAmelCase = [
"""Hello, my dog is a little""",
"""Today, I""",
]
lowerCAmelCase = tokenizer(lowercase , return_tensors="""pt""" , padding=lowercase )
lowerCAmelCase = inputs["""input_ids"""].to(lowercase )
lowerCAmelCase = model.generate(
input_ids=lowercase , attention_mask=inputs["""attention_mask"""].to(lowercase ) , )
lowerCAmelCase = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(lowercase )
lowerCAmelCase = model.generate(input_ids=lowercase )
lowerCAmelCase = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item()
lowerCAmelCase = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(lowercase )
lowerCAmelCase = model.generate(input_ids=lowercase , max_length=model.config.max_length - num_paddings )
lowerCAmelCase = tokenizer.batch_decode(lowercase , skip_special_tokens=lowercase )
lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase )
lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase )
lowerCAmelCase = [
"""Hello, my dog is a little bit bigger than a little bit.""",
"""Today, I have a good idea of how to use the information""",
]
self.assertListEqual(lowercase , lowercase )
self.assertListEqual(lowercase , [non_padded_sentence, padded_sentence] )
@slow
def _snake_case ( self ) -> Optional[int]:
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase = BioGptModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
def _snake_case ( self ) -> Tuple:
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = input_dict["""input_ids"""]
lowerCAmelCase = input_ids.ne(1 ).to(lowercase )
lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
lowerCAmelCase = BioGptForSequenceClassification(lowercase )
model.to(lowercase )
model.eval()
lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
lowerCAmelCase = 3
lowerCAmelCase = """multi_label_classification"""
lowerCAmelCase = input_dict["""input_ids"""]
lowerCAmelCase = input_ids.ne(1 ).to(lowercase )
lowerCAmelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
lowerCAmelCase = BioGptForSequenceClassification(lowercase )
model.to(lowercase )
model.eval()
lowerCAmelCase = model(lowercase , attention_mask=lowercase , labels=lowercase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class lowercase ( unittest.TestCase ):
@slow
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
lowerCAmelCase = torch.tensor([[2, 4_805, 9, 656, 21]] )
lowerCAmelCase = model(lowercase )[0]
lowerCAmelCase = 42_384
lowerCAmelCase = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , lowercase )
lowerCAmelCase = torch.tensor(
[[[-9.5_236, -9.8_918, 10.4_557], [-11.0_469, -9.6_423, 8.1_022], [-8.8_664, -7.8_826, 5.5_325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase , atol=1e-4 ) )
@slow
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" )
lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" )
model.to(lowercase )
torch.manual_seed(0 )
lowerCAmelCase = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(lowercase )
lowerCAmelCase = model.generate(
**lowercase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=lowercase , )
lowerCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase )
lowerCAmelCase = (
"""COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the"""
""" causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and"""
""" territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),"""
""" and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and"""
""" more than 800,000 deaths."""
)
self.assertEqual(lowercase , lowercase )
| 46 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 0 |
'''simple docstring'''
def _lowerCAmelCase ( _UpperCamelCase : int ) -> int:
"""simple docstring"""
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
raise ValueError('Input must be an integer' )
if input_num <= 0:
raise ValueError('Input must be positive' )
return sum(
divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 47 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 0 |
import string
def A ( _SCREAMING_SNAKE_CASE ) -> None:
for key in range(len(string.ascii_uppercase ) ):
lowerCamelCase : Optional[int] = ""
for symbol in message:
if symbol in string.ascii_uppercase:
lowerCamelCase : Any = string.ascii_uppercase.find(_SCREAMING_SNAKE_CASE )
lowerCamelCase : Optional[int] = num - key
if num < 0:
lowerCamelCase : Union[str, Any] = num + len(string.ascii_uppercase )
lowerCamelCase : str = translated + string.ascii_uppercase[num]
else:
lowerCamelCase : Optional[Any] = translated + symbol
print(f'''Decryption using Key #{key}: {translated}''' )
def A ( ) -> None:
lowerCamelCase : List[Any] = input("Encrypted message: " )
lowerCamelCase : int = message.upper()
decrypt(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 48 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__snake_case :int = logging.get_logger(__name__)
__snake_case :Tuple = {
'''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''',
}
class _A ( __UpperCAmelCase ):
UpperCamelCase__ : Union[str, Any] = '''data2vec-text'''
def __init__( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=30_522 , __SCREAMING_SNAKE_CASE : Dict=768 , __SCREAMING_SNAKE_CASE : Union[str, Any]=12 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : str=3_072 , __SCREAMING_SNAKE_CASE : Any="gelu" , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.02 , __SCREAMING_SNAKE_CASE : int=1E-12 , __SCREAMING_SNAKE_CASE : Tuple=1 , __SCREAMING_SNAKE_CASE : Tuple=0 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Dict="absolute" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : List[str]=None , **__SCREAMING_SNAKE_CASE : Union[str, Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = position_embedding_type
__a = use_cache
__a = classifier_dropout
class _A ( __UpperCAmelCase ):
@property
def _lowerCamelCase ( self : Tuple):
'''simple docstring'''
if self.task == "multiple-choice":
__a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__a = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
])
| 49 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class lowerCAmelCase ( __UpperCamelCase ):
UpperCAmelCase__ = 42
class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase ):
@register_to_config
def __init__( self : List[str] , UpperCAmelCase : int = 65536 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 2 , UpperCAmelCase : int = 0 , UpperCAmelCase : str = "fourier" , UpperCAmelCase : bool = True , UpperCAmelCase : bool = False , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase : str = None , UpperCAmelCase : Tuple[int] = (32, 32, 64) , UpperCAmelCase : str = None , UpperCAmelCase : int = 8 , UpperCAmelCase : int = 1 , UpperCAmelCase : bool = False , ) -> List[Any]:
super().__init__()
lowerCamelCase__ : Optional[int] = sample_size
# time
if time_embedding_type == "fourier":
lowerCamelCase__ : Optional[Any] = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=UpperCAmelCase , log=UpperCAmelCase , flip_sin_to_cos=UpperCAmelCase )
lowerCamelCase__ : Any = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
lowerCamelCase__ : List[Any] = Timesteps(
block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase , downscale_freq_shift=UpperCAmelCase )
lowerCamelCase__ : Dict = block_out_channels[0]
if use_timestep_embedding:
lowerCamelCase__ : str = block_out_channels[0] * 4
lowerCamelCase__ : List[Any] = TimestepEmbedding(
in_channels=UpperCAmelCase , time_embed_dim=UpperCAmelCase , act_fn=UpperCAmelCase , out_dim=block_out_channels[0] , )
lowerCamelCase__ : Any = nn.ModuleList([] )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = nn.ModuleList([] )
lowerCamelCase__ : Optional[int] = None
# down
lowerCamelCase__ : Optional[int] = in_channels
for i, down_block_type in enumerate(UpperCAmelCase ):
lowerCamelCase__ : Union[str, Any] = output_channel
lowerCamelCase__ : Tuple = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
lowerCamelCase__ : Union[str, Any] = i == len(UpperCAmelCase ) - 1
lowerCamelCase__ : Optional[int] = get_down_block(
UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(UpperCAmelCase )
# mid
lowerCamelCase__ : Optional[int] = get_mid_block(
UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase , add_downsample=UpperCAmelCase , )
# up
lowerCamelCase__ : Optional[int] = list(reversed(UpperCAmelCase ) )
lowerCamelCase__ : Optional[int] = reversed_block_out_channels[0]
if out_block_type is None:
lowerCamelCase__ : List[str] = out_channels
else:
lowerCamelCase__ : Any = block_out_channels[0]
for i, up_block_type in enumerate(UpperCAmelCase ):
lowerCamelCase__ : Tuple = output_channel
lowerCamelCase__ : Union[str, Any] = (
reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase ) - 1 else final_upsample_channels
)
lowerCamelCase__ : List[str] = i == len(UpperCAmelCase ) - 1
lowerCamelCase__ : Dict = get_up_block(
UpperCAmelCase , num_layers=UpperCAmelCase , in_channels=UpperCAmelCase , out_channels=UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(UpperCAmelCase )
lowerCamelCase__ : int = output_channel
# out
lowerCamelCase__ : int = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 )
lowerCamelCase__ : List[Any] = get_out_block(
out_block_type=UpperCAmelCase , num_groups_out=UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase , act_fn=UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , )
def A_ ( self : List[Any] , UpperCAmelCase : torch.FloatTensor , UpperCAmelCase : Union[torch.Tensor, float, int] , UpperCAmelCase : bool = True , ) -> Union[UNetaDOutput, Tuple]:
lowerCamelCase__ : Optional[Any] = timestep
if not torch.is_tensor(UpperCAmelCase ):
lowerCamelCase__ : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device )
elif torch.is_tensor(UpperCAmelCase ) and len(timesteps.shape ) == 0:
lowerCamelCase__ : List[str] = timesteps[None].to(sample.device )
lowerCamelCase__ : Optional[int] = self.time_proj(UpperCAmelCase )
if self.config.use_timestep_embedding:
lowerCamelCase__ : str = self.time_mlp(UpperCAmelCase )
else:
lowerCamelCase__ : List[str] = timestep_embed[..., None]
lowerCamelCase__ : str = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype )
lowerCamelCase__ : str = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) )
# 2. down
lowerCamelCase__ : str = ()
for downsample_block in self.down_blocks:
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = downsample_block(hidden_states=UpperCAmelCase , temb=UpperCAmelCase )
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
lowerCamelCase__ : Optional[Any] = self.mid_block(UpperCAmelCase , UpperCAmelCase )
# 4. up
for i, upsample_block in enumerate(self.up_blocks ):
lowerCamelCase__ : Dict = down_block_res_samples[-1:]
lowerCamelCase__ : Optional[Any] = down_block_res_samples[:-1]
lowerCamelCase__ : Any = upsample_block(UpperCAmelCase , res_hidden_states_tuple=UpperCAmelCase , temb=UpperCAmelCase )
# 5. post-process
if self.out_block:
lowerCamelCase__ : Any = self.out_block(UpperCAmelCase , UpperCAmelCase )
if not return_dict:
return (sample,)
return UNetaDOutput(sample=UpperCAmelCase )
| 50 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 0 |
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 51 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 0 |
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
__lowerCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name
class A__ ( __snake_case ):
def __init__( self , A_ , A_ ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=A_ , scheduler=A_ )
@torch.no_grad()
def __call__( self , A_ = 1 , A_ = 100 , A_ = None , A_ = None , A_ = True , ):
'''simple docstring'''
if audio_length_in_s is None:
UpperCamelCase : str = self.unet.config.sample_size / self.unet.config.sample_rate
UpperCamelCase : Optional[Any] = audio_length_in_s * self.unet.config.sample_rate
UpperCamelCase : Any = 2 ** len(self.unet.up_blocks )
if sample_size < 3 * down_scale_factor:
raise ValueError(
F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to"""
F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" )
UpperCamelCase : Union[str, Any] = int(A_ )
if sample_size % down_scale_factor != 0:
UpperCamelCase : List[str] = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled"""
F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising"""
" process." )
UpperCamelCase : Any = int(A_ )
UpperCamelCase : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype
UpperCamelCase : Optional[int] = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(A_ , A_ ) and len(A_ ) != batch_size:
raise ValueError(
F"""You have passed a list of generators of length {len(A_ )}, but requested an effective batch"""
F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
UpperCamelCase : Optional[Any] = randn_tensor(A_ , generator=A_ , device=self.device , dtype=A_ )
# set step values
self.scheduler.set_timesteps(A_ , device=audio.device )
UpperCamelCase : Optional[int] = self.scheduler.timesteps.to(A_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
UpperCamelCase : Dict = self.unet(A_ , A_ ).sample
# 2. compute previous image: x_t -> t_t-1
UpperCamelCase : int = self.scheduler.step(A_ , A_ , A_ ).prev_sample
UpperCamelCase : Optional[Any] = audio.clamp(-1 , 1 ).float().cpu().numpy()
UpperCamelCase : Dict = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=A_ )
| 52 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
a__ : Union[str, Any] ={
'''configuration_audio_spectrogram_transformer''': [
'''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''ASTConfig''',
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Union[str, Any] =[
'''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ASTForAudioClassification''',
'''ASTModel''',
'''ASTPreTrainedModel''',
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Optional[int] =['''ASTFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
a__ : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 53 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 0 |
"""simple docstring"""
a__ : Any = frozenset(
[
'''prompt''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
a__ : Optional[int] = frozenset(['''prompt''', '''negative_prompt'''])
a__ : Dict = frozenset([])
a__ : int = frozenset(['''image'''])
a__ : Union[str, Any] = frozenset(
[
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
a__ : Optional[Any] = frozenset(['''image'''])
a__ : List[Any] = frozenset(
[
'''prompt''',
'''image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
a__ : str = frozenset(['''prompt''', '''image''', '''negative_prompt'''])
a__ : int = frozenset(
[
# Text guided image variation with an image mask
'''prompt''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
]
)
a__ : Any = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt'''])
a__ : Optional[int] = frozenset(
[
# image variation with an image mask
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
a__ : Optional[int] = frozenset(['''image''', '''mask_image'''])
a__ : str = frozenset(
[
'''example_image''',
'''image''',
'''mask_image''',
'''height''',
'''width''',
'''guidance_scale''',
]
)
a__ : str = frozenset(['''example_image''', '''image''', '''mask_image'''])
a__ : List[str] = frozenset(['''class_labels'''])
a__ : Any = frozenset(['''class_labels'''])
a__ : List[str] = frozenset(['''batch_size'''])
a__ : Optional[int] = frozenset([])
a__ : List[Any] = frozenset(['''batch_size'''])
a__ : List[Any] = frozenset([])
a__ : int = frozenset(
[
'''prompt''',
'''audio_length_in_s''',
'''guidance_scale''',
'''negative_prompt''',
'''prompt_embeds''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
]
)
a__ : Union[str, Any] = frozenset(['''prompt''', '''negative_prompt'''])
a__ : str = frozenset(['''input_tokens'''])
a__ : Optional[int] = frozenset(['''input_tokens'''])
| 54 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ : Optional[Any] = {
"""configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ : str = [
"""TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TimesformerModel""",
"""TimesformerForVideoClassification""",
"""TimesformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
a_ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 55 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class a ( _lowerCamelCase ):
snake_case_ = 42
class a ( nn.Module ):
def __init__( self : int , lowercase_ : List[Any]=3 , lowercase_ : str=3 , lowercase_ : Union[str, Any]=("DownEncoderBlock2D",) , lowercase_ : str=(64,) , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=32 , lowercase_ : Optional[int]="silu" , lowercase_ : Optional[int]=True , ):
super().__init__()
snake_case_ = layers_per_block
snake_case_ = torch.nn.Convad(
lowercase_ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
snake_case_ = None
snake_case_ = nn.ModuleList([] )
# down
snake_case_ = block_out_channels[0]
for i, down_block_type in enumerate(lowercase_ ):
snake_case_ = output_channel
snake_case_ = block_out_channels[i]
snake_case_ = i == len(lowercase_ ) - 1
snake_case_ = get_down_block(
lowercase_ , num_layers=self.layers_per_block , in_channels=lowercase_ , out_channels=lowercase_ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=lowercase_ , resnet_groups=lowercase_ , attention_head_dim=lowercase_ , temb_channels=lowercase_ , )
self.down_blocks.append(lowercase_ )
# mid
snake_case_ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowercase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase_ , temb_channels=lowercase_ , )
# out
snake_case_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=lowercase_ , eps=1e-6 )
snake_case_ = nn.SiLU()
snake_case_ = 2 * out_channels if double_z else out_channels
snake_case_ = nn.Convad(block_out_channels[-1] , lowercase_ , 3 , padding=1 )
snake_case_ = False
def A_ ( self : Union[str, Any] , lowercase_ : Tuple ):
snake_case_ = x
snake_case_ = self.conv_in(lowercase_ )
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowercase_ : Tuple ):
def custom_forward(*lowercase_ : Optional[int] ):
return module(*lowercase_ )
return custom_forward
# down
if is_torch_version('''>=''' , '''1.11.0''' ):
for down_block in self.down_blocks:
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowercase_ ) , lowercase_ , use_reentrant=lowercase_ )
# middle
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase_ , use_reentrant=lowercase_ )
else:
for down_block in self.down_blocks:
snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase_ ) , lowercase_ )
# middle
snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , lowercase_ )
else:
# down
for down_block in self.down_blocks:
snake_case_ = down_block(lowercase_ )
# middle
snake_case_ = self.mid_block(lowercase_ )
# post-process
snake_case_ = self.conv_norm_out(lowercase_ )
snake_case_ = self.conv_act(lowercase_ )
snake_case_ = self.conv_out(lowercase_ )
return sample
class a ( nn.Module ):
def __init__( self : Any , lowercase_ : Tuple=3 , lowercase_ : int=3 , lowercase_ : Dict=("UpDecoderBlock2D",) , lowercase_ : Tuple=(64,) , lowercase_ : Tuple=2 , lowercase_ : Union[str, Any]=32 , lowercase_ : str="silu" , lowercase_ : List[str]="group" , ):
super().__init__()
snake_case_ = layers_per_block
snake_case_ = nn.Convad(
lowercase_ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
snake_case_ = None
snake_case_ = nn.ModuleList([] )
snake_case_ = in_channels if norm_type == '''spatial''' else None
# mid
snake_case_ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=lowercase_ , output_scale_factor=1 , resnet_time_scale_shift='''default''' if norm_type == '''group''' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=lowercase_ , temb_channels=lowercase_ , )
# up
snake_case_ = list(reversed(lowercase_ ) )
snake_case_ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(lowercase_ ):
snake_case_ = output_channel
snake_case_ = reversed_block_out_channels[i]
snake_case_ = i == len(lowercase_ ) - 1
snake_case_ = get_up_block(
lowercase_ , num_layers=self.layers_per_block + 1 , in_channels=lowercase_ , out_channels=lowercase_ , prev_output_channel=lowercase_ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=lowercase_ , resnet_groups=lowercase_ , attention_head_dim=lowercase_ , temb_channels=lowercase_ , resnet_time_scale_shift=lowercase_ , )
self.up_blocks.append(lowercase_ )
snake_case_ = output_channel
# out
if norm_type == "spatial":
snake_case_ = SpatialNorm(block_out_channels[0] , lowercase_ )
else:
snake_case_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=lowercase_ , eps=1e-6 )
snake_case_ = nn.SiLU()
snake_case_ = nn.Convad(block_out_channels[0] , lowercase_ , 3 , padding=1 )
snake_case_ = False
def A_ ( self : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int]=None ):
snake_case_ = z
snake_case_ = self.conv_in(lowercase_ )
snake_case_ = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(lowercase_ : int ):
def custom_forward(*lowercase_ : Any ):
return module(*lowercase_ )
return custom_forward
if is_torch_version('''>=''' , '''1.11.0''' ):
# middle
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase_ , lowercase_ , use_reentrant=lowercase_ )
snake_case_ = sample.to(lowercase_ )
# up
for up_block in self.up_blocks:
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(lowercase_ ) , lowercase_ , lowercase_ , use_reentrant=lowercase_ )
else:
# middle
snake_case_ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , lowercase_ , lowercase_ )
snake_case_ = sample.to(lowercase_ )
# up
for up_block in self.up_blocks:
snake_case_ = torch.utils.checkpoint.checkpoint(create_custom_forward(lowercase_ ) , lowercase_ , lowercase_ )
else:
# middle
snake_case_ = self.mid_block(lowercase_ , lowercase_ )
snake_case_ = sample.to(lowercase_ )
# up
for up_block in self.up_blocks:
snake_case_ = up_block(lowercase_ , lowercase_ )
# post-process
if latent_embeds is None:
snake_case_ = self.conv_norm_out(lowercase_ )
else:
snake_case_ = self.conv_norm_out(lowercase_ , lowercase_ )
snake_case_ = self.conv_act(lowercase_ )
snake_case_ = self.conv_out(lowercase_ )
return sample
class a ( nn.Module ):
def __init__( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : str , lowercase_ : Any=None , lowercase_ : Optional[int]="random" , lowercase_ : Optional[int]=False , lowercase_ : int=True ):
super().__init__()
snake_case_ = n_e
snake_case_ = vq_embed_dim
snake_case_ = beta
snake_case_ = legacy
snake_case_ = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
snake_case_ = remap
if self.remap is not None:
self.register_buffer('''used''' , torch.tensor(np.load(self.remap ) ) )
snake_case_ = self.used.shape[0]
snake_case_ = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
snake_case_ = self.re_embed
snake_case_ = self.re_embed + 1
print(
F"Remapping {self.n_e} indices to {self.re_embed} indices. "
F"Using {self.unknown_index} for unknown indices." )
else:
snake_case_ = n_e
snake_case_ = sane_index_shape
def A_ ( self : str , lowercase_ : List[str] ):
snake_case_ = inds.shape
assert len(lowercase_ ) > 1
snake_case_ = inds.reshape(ishape[0] , -1 )
snake_case_ = self.used.to(lowercase_ )
snake_case_ = (inds[:, :, None] == used[None, None, ...]).long()
snake_case_ = match.argmax(-1 )
snake_case_ = match.sum(2 ) < 1
if self.unknown_index == "random":
snake_case_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
snake_case_ = self.unknown_index
return new.reshape(lowercase_ )
def A_ ( self : int , lowercase_ : Tuple ):
snake_case_ = inds.shape
assert len(lowercase_ ) > 1
snake_case_ = inds.reshape(ishape[0] , -1 )
snake_case_ = self.used.to(lowercase_ )
if self.re_embed > self.used.shape[0]: # extra token
snake_case_ = 0 # simply set to zero
snake_case_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , lowercase_ )
return back.reshape(lowercase_ )
def A_ ( self : str , lowercase_ : Any ):
# reshape z -> (batch, height, width, channel) and flatten
snake_case_ = z.permute(0 , 2 , 3 , 1 ).contiguous()
snake_case_ = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
snake_case_ = torch.argmin(torch.cdist(lowercase_ , self.embedding.weight ) , dim=1 )
snake_case_ = self.embedding(lowercase_ ).view(z.shape )
snake_case_ = None
snake_case_ = None
# compute loss for embedding
if not self.legacy:
snake_case_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
snake_case_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
snake_case_ = z + (z_q - z).detach()
# reshape back to match original input shape
snake_case_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
snake_case_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
snake_case_ = self.remap_to_used(lowercase_ )
snake_case_ = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
snake_case_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def A_ ( self : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
snake_case_ = indices.reshape(shape[0] , -1 ) # add batch axis
snake_case_ = self.unmap_to_all(lowercase_ )
snake_case_ = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
snake_case_ = self.embedding(lowercase_ )
if shape is not None:
snake_case_ = z_q.view(lowercase_ )
# reshape back to match original input shape
snake_case_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class a ( _lowerCamelCase ):
def __init__( self : Tuple , lowercase_ : List[str] , lowercase_ : Any=False ):
snake_case_ = parameters
snake_case_ ,snake_case_ = torch.chunk(lowercase_ , 2 , dim=1 )
snake_case_ = torch.clamp(self.logvar , -30.0 , 20.0 )
snake_case_ = deterministic
snake_case_ = torch.exp(0.5 * self.logvar )
snake_case_ = torch.exp(self.logvar )
if self.deterministic:
snake_case_ = snake_case_ = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def A_ ( self : List[Any] , lowercase_ : Optional[torch.Generator] = None ):
# make sure sample is on the same device as the parameters and has same dtype
snake_case_ = randn_tensor(
self.mean.shape , generator=lowercase_ , device=self.parameters.device , dtype=self.parameters.dtype )
snake_case_ = self.mean + self.std * sample
return x
def A_ ( self : Dict , lowercase_ : Any=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def A_ ( self : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any]=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
snake_case_ = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=lowercase_ )
def A_ ( self : Dict ):
return self.mean
| 56 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 0 |
"""simple docstring"""
import warnings
from typing import Dict, List, Optional, Tuple
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A : str = logging.get_logger(__name__)
class _UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
__UpperCAmelCase : str =["""input_ids""", """attention_mask"""]
def __init__( self , __a="</s>" , __a="<unk>" , __a="<pad>" , __a=1_25 , __a=None , **__a , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
__lowerCAmelCase = [f"<extra_id_{i}>" for i in range(__a )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
__lowerCAmelCase = len(set(filter(lambda __a : bool("extra_id" in str(__a ) ) , __a ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to ByT5Tokenizer. In this case the additional_special_tokens must include the"
" extra_ids tokens" )
__lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else pad_token
__lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else eos_token
__lowerCAmelCase = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else unk_token
super().__init__(
eos_token=__a , unk_token=__a , pad_token=__a , extra_ids=__a , additional_special_tokens=__a , **__a , )
__lowerCAmelCase = extra_ids
__lowerCAmelCase = 2**8 # utf is 8 bits
# define special tokens dict
__lowerCAmelCase = {
self.pad_token: 0,
self.eos_token: 1,
self.unk_token: 2,
}
__lowerCAmelCase = len(self.special_tokens_encoder )
__lowerCAmelCase = len(__a )
for i, token in enumerate(__a ):
__lowerCAmelCase = self.vocab_size + i - n
__lowerCAmelCase = {v: k for k, v in self.special_tokens_encoder.items()}
@property
def snake_case ( self ):
return self._utf_vocab_size + self._num_special_tokens + self._extra_ids
def snake_case ( self , __a , __a = None , __a = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__a )) + [1]
return ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1]
def snake_case ( self , __a ):
if len(__a ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
" eos tokens being added." )
return token_ids
else:
return token_ids + [self.eos_token_id]
def snake_case ( self , __a , __a = None ):
__lowerCAmelCase = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def snake_case ( self , __a , __a = None ):
__lowerCAmelCase = self._add_eos_if_not_present(__a )
if token_ids_a is None:
return token_ids_a
else:
__lowerCAmelCase = self._add_eos_if_not_present(__a )
return token_ids_a + token_ids_a
def snake_case ( self , __a ):
__lowerCAmelCase = [chr(__a ) for i in text.encode("utf-8" )]
return tokens
def snake_case ( self , __a ):
if token in self.special_tokens_encoder:
__lowerCAmelCase = self.special_tokens_encoder[token]
elif token in self.added_tokens_encoder:
__lowerCAmelCase = self.added_tokens_encoder[token]
elif len(__a ) != 1:
__lowerCAmelCase = self.unk_token_id
else:
__lowerCAmelCase = ord(__a ) + self._num_special_tokens
return token_id
def snake_case ( self , __a ):
if index in self.special_tokens_decoder:
__lowerCAmelCase = self.special_tokens_decoder[index]
else:
__lowerCAmelCase = chr(index - self._num_special_tokens )
return token
def snake_case ( self , __a ):
__lowerCAmelCase = B""
for token in tokens:
if token in self.special_tokens_decoder:
__lowerCAmelCase = self.special_tokens_decoder[token].encode("utf-8" )
elif token in self.added_tokens_decoder:
__lowerCAmelCase = self.special_tokens_decoder[token].encode("utf-8" )
elif token in self.special_tokens_encoder:
__lowerCAmelCase = token.encode("utf-8" )
elif token in self.added_tokens_encoder:
__lowerCAmelCase = token.encode("utf-8" )
else:
__lowerCAmelCase = bytes([ord(__a )] )
bstring += tok_string
__lowerCAmelCase = bstring.decode("utf-8" , errors="ignore" )
return string
def snake_case ( self , __a , __a = None ):
return ()
| 57 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class a_ :
'''simple docstring'''
UpperCamelCase = 42 # [batch_size x 3]
UpperCamelCase = 42 # [batch_size x 3]
UpperCamelCase = 42 # [batch_size x 3]
UpperCamelCase = 42 # [batch_size x 3]
UpperCamelCase = 42
UpperCamelCase = 42
UpperCamelCase = 42
UpperCamelCase = 42
UpperCamelCase = 42
def snake_case_( self ) -> int:
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def snake_case_( self ) -> str:
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def snake_case_( self ) -> List[str]:
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def snake_case_( self ) -> torch.Tensor:
_SCREAMING_SNAKE_CASE = torch.arange(self.height * self.width )
_SCREAMING_SNAKE_CASE = torch.stack(
[
pixel_indices % self.width,
torch.div(A , self.width , rounding_mode="""trunc""" ),
] , axis=1 , )
return coords
@property
def snake_case_( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE = self.shape
_SCREAMING_SNAKE_CASE = int(np.prod(A ) )
_SCREAMING_SNAKE_CASE = self.get_image_coords()
_SCREAMING_SNAKE_CASE = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_SCREAMING_SNAKE_CASE = self.get_camera_rays(A )
_SCREAMING_SNAKE_CASE = rays.view(A , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def snake_case_( self , A ) -> torch.Tensor:
_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_SCREAMING_SNAKE_CASE = coords.view(A , -1 , 2 )
_SCREAMING_SNAKE_CASE = self.resolution()
_SCREAMING_SNAKE_CASE = self.fov()
_SCREAMING_SNAKE_CASE = (flat.float() / (res - 1)) * 2 - 1
_SCREAMING_SNAKE_CASE = fracs * torch.tan(fov / 2 )
_SCREAMING_SNAKE_CASE = fracs.view(A , -1 , 2 )
_SCREAMING_SNAKE_CASE = (
self.z.view(A , 1 , 3 )
+ self.x.view(A , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(A , 1 , 3 ) * fracs[:, :, 1:]
)
_SCREAMING_SNAKE_CASE = directions / directions.norm(dim=-1 , keepdim=A )
_SCREAMING_SNAKE_CASE = torch.stack(
[
torch.broadcast_to(self.origin.view(A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(A , *A , 2 , 3 )
def snake_case_( self , A , A ) -> "DifferentiableProjectiveCamera":
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=A , height=A , x_fov=self.x_fov , y_fov=self.y_fov , )
def lowerCamelCase ( __lowerCamelCase : int ) ->DifferentiableProjectiveCamera:
_SCREAMING_SNAKE_CASE = []
_SCREAMING_SNAKE_CASE = []
_SCREAMING_SNAKE_CASE = []
_SCREAMING_SNAKE_CASE = []
for theta in np.linspace(0 , 2 * np.pi , num=20 ):
_SCREAMING_SNAKE_CASE = np.array([np.sin(__lowerCamelCase ), np.cos(__lowerCamelCase ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_SCREAMING_SNAKE_CASE = -z * 4
_SCREAMING_SNAKE_CASE = np.array([np.cos(__lowerCamelCase ), -np.sin(__lowerCamelCase ), 0.0] )
_SCREAMING_SNAKE_CASE = np.cross(__lowerCamelCase , __lowerCamelCase )
origins.append(__lowerCamelCase )
xs.append(__lowerCamelCase )
ys.append(__lowerCamelCase )
zs.append(__lowerCamelCase )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , x=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , y=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , z=torch.from_numpy(np.stack(__lowerCamelCase , axis=0 ) ).float() , width=__lowerCamelCase , height=__lowerCamelCase , x_fov=0.7 , y_fov=0.7 , shape=(1, len(__lowerCamelCase )) , )
| 58 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 0 |
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__lowerCamelCase = """
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = \"A Call for Clarity in Reporting {BLEU} Scores\",
author = \"Post, Matt\",
booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",
month = oct,
year = \"2018\",
address = \"Belgium, Brussels\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W18-6319\",
pages = \"186--191\",
}
"""
__lowerCamelCase = """\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
"""
__lowerCamelCase = """
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=[\"About 95 species are currently accepted .\"]
>>> predictions=[\"About 95 you now get in .\"]
>>> references=[[\"About 95 species are currently known .\"]]
>>> wiki_split = datasets.load_metric(\"wiki_split\")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}
"""
def UpperCamelCase ( __lowerCamelCase : int ):
def remove_articles(__lowerCamelCase : Dict ):
snake_case : Dict = re.compile(r"\b(a|an|the)\b" , re.UNICODE )
return re.sub(__lowerCamelCase , " " , __lowerCamelCase )
def white_space_fix(__lowerCamelCase : Dict ):
return " ".join(text.split() )
def remove_punc(__lowerCamelCase : Optional[int] ):
snake_case : List[Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__lowerCamelCase : Optional[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__lowerCamelCase ) ) ) )
def UpperCamelCase ( __lowerCamelCase : Any , __lowerCamelCase : Dict ):
return int(normalize_answer(__lowerCamelCase ) == normalize_answer(__lowerCamelCase ) )
def UpperCamelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ):
snake_case : Optional[int] = [any(compute_exact(__lowerCamelCase , __lowerCamelCase ) for ref in refs ) for pred, refs in zip(__lowerCamelCase , __lowerCamelCase )]
return (sum(__lowerCamelCase ) / len(__lowerCamelCase )) * 100
def UpperCamelCase ( __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ):
snake_case : Any = [rgram for rgrams in rgramslist for rgram in rgrams]
snake_case : Optional[int] = Counter(__lowerCamelCase )
snake_case : Union[str, Any] = Counter(__lowerCamelCase )
snake_case : List[Any] = Counter()
for sgram, scount in sgramcounter.items():
snake_case : Optional[int] = scount * numref
snake_case : Dict = Counter(__lowerCamelCase )
snake_case : Optional[int] = Counter()
for cgram, ccount in cgramcounter.items():
snake_case : int = ccount * numref
# KEEP
snake_case : List[Any] = sgramcounter_rep & cgramcounter_rep
snake_case : Optional[Any] = keepgramcounter_rep & rgramcounter
snake_case : List[Any] = sgramcounter_rep & rgramcounter
snake_case : int = 0
snake_case : List[Any] = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case : Optional[int] = 1
snake_case : Optional[Any] = 1
if len(__lowerCamelCase ) > 0:
snake_case : Tuple = keeptmpscorea / len(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
snake_case : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() )
snake_case : int = 0
if keepscore_precision > 0 or keepscore_recall > 0:
snake_case : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
snake_case : Optional[Any] = sgramcounter_rep - cgramcounter_rep
snake_case : Optional[int] = delgramcounter_rep - rgramcounter
snake_case : Optional[int] = sgramcounter_rep - rgramcounter
snake_case : int = 0
snake_case : Tuple = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case : Any = 1
if len(__lowerCamelCase ) > 0:
snake_case : Tuple = deltmpscorea / len(__lowerCamelCase )
# ADDITION
snake_case : Any = set(__lowerCamelCase ) - set(__lowerCamelCase )
snake_case : str = set(__lowerCamelCase ) & set(__lowerCamelCase )
snake_case : str = set(__lowerCamelCase ) - set(__lowerCamelCase )
snake_case : int = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
snake_case : List[str] = 1
snake_case : List[Any] = 1
if len(__lowerCamelCase ) > 0:
snake_case : Union[str, Any] = addtmpscore / len(__lowerCamelCase )
if len(__lowerCamelCase ) > 0:
snake_case : Tuple = addtmpscore / len(__lowerCamelCase )
snake_case : Optional[Any] = 0
if addscore_precision > 0 or addscore_recall > 0:
snake_case : str = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ):
snake_case : List[str] = len(__lowerCamelCase )
snake_case : Optional[int] = ssent.split(" " )
snake_case : Optional[int] = csent.split(" " )
snake_case : Any = []
snake_case : Dict = []
snake_case : Union[str, Any] = []
snake_case : List[str] = []
snake_case : Any = []
snake_case : List[Any] = []
snake_case : Tuple = []
snake_case : str = []
snake_case : int = []
snake_case : str = []
for rsent in rsents:
snake_case : Tuple = rsent.split(" " )
snake_case : Dict = []
snake_case : int = []
snake_case : Optional[Any] = []
ragramslist.append(__lowerCamelCase )
for i in range(0 , len(__lowerCamelCase ) - 1 ):
if i < len(__lowerCamelCase ) - 1:
snake_case : Any = ragrams[i] + " " + ragrams[i + 1]
ragrams.append(__lowerCamelCase )
if i < len(__lowerCamelCase ) - 2:
snake_case : str = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2]
ragrams.append(__lowerCamelCase )
if i < len(__lowerCamelCase ) - 3:
snake_case : List[Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3]
ragrams.append(__lowerCamelCase )
ragramslist.append(__lowerCamelCase )
ragramslist.append(__lowerCamelCase )
ragramslist.append(__lowerCamelCase )
for i in range(0 , len(__lowerCamelCase ) - 1 ):
if i < len(__lowerCamelCase ) - 1:
snake_case : List[str] = sagrams[i] + " " + sagrams[i + 1]
sagrams.append(__lowerCamelCase )
if i < len(__lowerCamelCase ) - 2:
snake_case : Dict = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2]
sagrams.append(__lowerCamelCase )
if i < len(__lowerCamelCase ) - 3:
snake_case : Any = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3]
sagrams.append(__lowerCamelCase )
for i in range(0 , len(__lowerCamelCase ) - 1 ):
if i < len(__lowerCamelCase ) - 1:
snake_case : Tuple = cagrams[i] + " " + cagrams[i + 1]
cagrams.append(__lowerCamelCase )
if i < len(__lowerCamelCase ) - 2:
snake_case : Optional[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2]
cagrams.append(__lowerCamelCase )
if i < len(__lowerCamelCase ) - 3:
snake_case : Any = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3]
cagrams.append(__lowerCamelCase )
((snake_case) , (snake_case) , (snake_case)) : int = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
((snake_case) , (snake_case) , (snake_case)) : Optional[int] = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
((snake_case) , (snake_case) , (snake_case)) : int = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
((snake_case) , (snake_case) , (snake_case)) : Tuple = SARIngram(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
snake_case : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
snake_case : Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4
snake_case : Tuple = sum([addascore, addascore, addascore, addascore] ) / 4
snake_case : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : str = "13a" , __lowerCamelCase : bool = True ):
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
snake_case : str = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
snake_case : Dict = sacrebleu.metrics.bleu._get_tokenizer(__lowerCamelCase )()(__lowerCamelCase )
else:
snake_case : List[Any] = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCamelCase )
elif tokenizer == "moses":
snake_case : List[Any] = sacremoses.MosesTokenizer().tokenize(__lowerCamelCase , return_str=__lowerCamelCase , escape=__lowerCamelCase )
elif tokenizer == "penn":
snake_case : Union[str, Any] = sacremoses.MosesTokenizer().penn_tokenize(__lowerCamelCase , return_str=__lowerCamelCase )
else:
snake_case : List[str] = sentence
if not return_str:
snake_case : Any = normalized_sent.split()
return normalized_sent
def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple ):
if not (len(__lowerCamelCase ) == len(__lowerCamelCase ) == len(__lowerCamelCase )):
raise ValueError("Sources length must match predictions and references lengths." )
snake_case : int = 0
for src, pred, refs in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
sari_score += SARIsent(normalize(__lowerCamelCase ) , normalize(__lowerCamelCase ) , [normalize(__lowerCamelCase ) for sent in refs] )
snake_case : Optional[int] = sari_score / len(__lowerCamelCase )
return 100 * sari_score
def UpperCamelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]="exp" , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Optional[int]=False , ):
snake_case : Dict = len(references[0] )
if any(len(__lowerCamelCase ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
snake_case : Union[str, Any] = [[refs[i] for refs in references] for i in range(__lowerCamelCase )]
snake_case : Optional[int] = sacrebleu.corpus_bleu(
__lowerCamelCase , __lowerCamelCase , smooth_method=__lowerCamelCase , smooth_value=__lowerCamelCase , force=__lowerCamelCase , lowercase=__lowerCamelCase , use_effective_order=__lowerCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=[
"https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py",
"https://github.com/cocoxu/simplification/blob/master/SARI.py",
"https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py",
"https://github.com/mjpost/sacreBLEU",
] , reference_urls=[
"https://www.aclweb.org/anthology/Q16-1029.pdf",
"https://github.com/mjpost/sacreBLEU",
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] ) -> int:
'''simple docstring'''
snake_case : str = {}
result.update({"sari": compute_sari(sources=snake_case__ , predictions=snake_case__ , references=snake_case__ )} )
result.update({"sacrebleu": compute_sacrebleu(predictions=snake_case__ , references=snake_case__ )} )
result.update({"exact": compute_em(predictions=snake_case__ , references=snake_case__ )} )
return result
| 59 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class snake_case_:
__UpperCamelCase = 42
__UpperCamelCase = None
# Automatically constructed
__UpperCamelCase = "dict"
__UpperCamelCase = None
__UpperCamelCase = field(default='''Translation''' , init=a__ , repr=a__ )
def __call__( self : Union[str, Any] ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def lowerCamelCase__ ( self : List[Any] ):
from .features import Value
return {k: Value('''string''' ) for k in sorted(self.languages )}
@dataclass
class snake_case_:
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
# Automatically constructed
__UpperCamelCase = "dict"
__UpperCamelCase = None
__UpperCamelCase = field(default='''TranslationVariableLanguages''' , init=a__ , repr=a__ )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : List[Any] = sorted(set(self.languages ) ) if self.languages else None
lowerCAmelCase : int = len(self.languages ) if self.languages else None
def __call__( self : List[Any] ):
return pa.struct({'''language''': pa.list_(pa.string() ), '''translation''': pa.list_(pa.string() )} )
def lowerCamelCase__ ( self : int , UpperCamelCase_ : List[Any] ):
lowerCAmelCase : List[Any] = set(self.languages )
if self.languages and set(UpperCamelCase_ ) - lang_set:
raise ValueError(
F'''Some languages in example ({", ".join(sorted(set(UpperCamelCase_ ) - lang_set ) )}) are not in valid set ({", ".join(UpperCamelCase_ )}).''' )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
lowerCAmelCase : List[str] = []
for lang, text in translation_dict.items():
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
lowerCAmelCase, lowerCAmelCase : Optional[Any] = zip(*sorted(UpperCamelCase_ ) )
return {"language": languages, "translation": translations}
def lowerCamelCase__ ( self : Dict ):
from .features import Sequence, Value
return {
"language": Sequence(Value('''string''' ) ),
"translation": Sequence(Value('''string''' ) ),
}
| 60 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 0 |
"""simple docstring"""
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
for param, grad_param in zip(model_a.parameters(), model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad, grad_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad, grad_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})"""
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=True ):
model.train()
UpperCAmelCase_ : int = model(__lowerCamelCase )
UpperCAmelCase_ : List[str] = F.mse_loss(__lowerCamelCase, target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(__lowerCamelCase )
def __a ( __lowerCamelCase, __lowerCamelCase=False ):
set_seed(42 )
UpperCAmelCase_ : Dict = RegressionModel()
UpperCAmelCase_ : Optional[Any] = deepcopy(__lowerCamelCase )
UpperCAmelCase_ : Tuple = RegressionDataset(length=80 )
UpperCAmelCase_ : List[Any] = DataLoader(__lowerCamelCase, batch_size=16 )
model.to(accelerator.device )
if sched:
UpperCAmelCase_ : Any = AdamW(params=model.parameters(), lr=1E-3 )
UpperCAmelCase_ : str = AdamW(params=ddp_model.parameters(), lr=1E-3 )
UpperCAmelCase_ : str = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 )
UpperCAmelCase_ : List[str] = LambdaLR(__lowerCamelCase, lr_lambda=lambda __lowerCamelCase : epoch**0.65 )
# Make a copy of `model`
if sched:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = accelerator.prepare(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
else:
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.prepare(__lowerCamelCase, __lowerCamelCase )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def __a ( __lowerCamelCase ):
# Test when on a single CPU or GPU that the context manager does nothing
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = get_training_setup(__lowerCamelCase )
# Use a single batch
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = next(iter(__lowerCamelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase_ , UpperCAmelCase_ : str = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__lowerCamelCase ):
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
else:
# Sync grads
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad, ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase_ : Optional[Any] = ddp_input[torch.randperm(len(__lowerCamelCase ) )]
def __a ( __lowerCamelCase ):
# Test on distributed setup that context manager behaves properly
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = get_training_setup(__lowerCamelCase )
# Use a single batch
UpperCAmelCase_ , UpperCAmelCase_ : int = next(iter(__lowerCamelCase ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase_ , UpperCAmelCase_ : Dict = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(__lowerCamelCase ):
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
else:
# Sync grads
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is False
), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
else:
# Grads should be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is True
), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase_ : Dict = ddp_input[torch.randperm(len(__lowerCamelCase ) )]
def __a ( __lowerCamelCase=False, __lowerCamelCase=False ):
UpperCAmelCase_ : Tuple = Accelerator(
split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = get_training_setup(__lowerCamelCase )
for iteration, batch in enumerate(__lowerCamelCase ):
UpperCAmelCase_ , UpperCAmelCase_ : int = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase_ , UpperCAmelCase_ : Dict = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(__lowerCamelCase ):
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters(), ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(__lowerCamelCase ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is True
), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})"""
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad, ddp_param.grad ) is False
), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})"""
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
UpperCAmelCase_ : int = ddp_input[torch.randperm(len(__lowerCamelCase ) )]
GradientState._reset_state()
def __a ( __lowerCamelCase=False, __lowerCamelCase=False ):
UpperCAmelCase_ : List[Any] = Accelerator(
split_batches=__lowerCamelCase, dispatch_batches=__lowerCamelCase, gradient_accumulation_steps=2 )
# Test that context manager behaves properly
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = get_training_setup(__lowerCamelCase, __lowerCamelCase )
for iteration, batch in enumerate(__lowerCamelCase ):
UpperCAmelCase_ , UpperCAmelCase_ : str = batch.values()
# Gather the distributed inputs and targs for the base model
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = accelerator.gather((ddp_input, ddp_target) )
UpperCAmelCase_ , UpperCAmelCase_ : str = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(__lowerCamelCase )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(__lowerCamelCase ):
step_model(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n"""
UpperCAmelCase_ : str = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(__lowerCamelCase ))
if accelerator.num_processes > 1:
check_model_parameters(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase )
# Shuffle ddp_input on each iteration
torch.manual_seed(1337 + iteration )
GradientState._reset_state()
def __a ( ):
UpperCAmelCase_ : Dict = Accelerator()
UpperCAmelCase_ : Tuple = RegressionDataset(length=80 )
UpperCAmelCase_ : str = DataLoader(__lowerCamelCase, batch_size=16 )
UpperCAmelCase_ : Optional[Any] = RegressionDataset(length=96 )
UpperCAmelCase_ : List[Any] = DataLoader(__lowerCamelCase, batch_size=16 )
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = accelerator.prepare(__lowerCamelCase, __lowerCamelCase )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(__lowerCamelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase )
if iteration < len(__lowerCamelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(__lowerCamelCase ):
assert id(accelerator.gradient_state.active_dataloader ) == id(__lowerCamelCase )
if batch_num < len(__lowerCamelCase ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def __a ( ):
UpperCAmelCase_ : str = Accelerator()
UpperCAmelCase_ : int = accelerator.state
if state.local_process_index == 0:
print("**Test `accumulate` gradient accumulation with dataloader break**" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("**Test NOOP `no_sync` context manager**" )
test_noop_sync(__lowerCamelCase )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("**Test Distributed `no_sync` context manager**" )
test_distributed_sync(__lowerCamelCase )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", )
test_gradient_accumulation(__lowerCamelCase, __lowerCamelCase )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("<", "2.0" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ", "`split_batches=False`, `dispatch_batches=False`**", )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"**Test `accumulate` gradient accumulation with optimizer and scheduler, ", f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""", )
test_gradient_accumulation_with_opt_and_scheduler(__lowerCamelCase, __lowerCamelCase )
def __a ( __lowerCamelCase ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 61 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 0 |
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
_A = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
_A = 25_6047
_A = 25_6145
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__ ( A_ , unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Tuple = NllbTokenizer
UpperCAmelCase__ : Any = NllbTokenizerFast
UpperCAmelCase__ : str = True
UpperCAmelCase__ : Optional[Any] = True
UpperCAmelCase__ : Dict = {}
def _a ( self ) -> Optional[Any]:
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCamelCase =NllbTokenizer(A_ , keep_accents=A_ )
tokenizer.save_pretrained(self.tmpdirname )
def _a ( self ) -> Optional[int]:
__UpperCamelCase =NllbTokenizer(A_ , keep_accents=A_ )
__UpperCamelCase =tokenizer.tokenize('This is a test' )
self.assertListEqual(A_ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(A_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
__UpperCamelCase =tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
A_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
__UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ )
self.assertListEqual(
A_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__UpperCamelCase =tokenizer.convert_ids_to_tokens(A_ )
self.assertListEqual(
A_ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
def _a ( self ) -> int:
__UpperCamelCase =(self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-nllb', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ )
__UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ )
__UpperCamelCase =tempfile.mkdtemp()
__UpperCamelCase =tokenizer_r.save_pretrained(A_ )
__UpperCamelCase =tokenizer_p.save_pretrained(A_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
__UpperCamelCase =tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(A_ , A_ )
# Checks everything loads correctly in the same way
__UpperCamelCase =tokenizer_r.from_pretrained(A_ )
__UpperCamelCase =tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_ , A_ ) )
shutil.rmtree(A_ )
# Save tokenizer rust, legacy_format=True
__UpperCamelCase =tempfile.mkdtemp()
__UpperCamelCase =tokenizer_r.save_pretrained(A_ , legacy_format=A_ )
__UpperCamelCase =tokenizer_p.save_pretrained(A_ )
# Checks it save with the same files
self.assertSequenceEqual(A_ , A_ )
# Checks everything loads correctly in the same way
__UpperCamelCase =tokenizer_r.from_pretrained(A_ )
__UpperCamelCase =tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_ , A_ ) )
shutil.rmtree(A_ )
# Save tokenizer rust, legacy_format=False
__UpperCamelCase =tempfile.mkdtemp()
__UpperCamelCase =tokenizer_r.save_pretrained(A_ , legacy_format=A_ )
__UpperCamelCase =tokenizer_p.save_pretrained(A_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__UpperCamelCase =tokenizer_r.from_pretrained(A_ )
__UpperCamelCase =tokenizer_p.from_pretrained(A_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(A_ , A_ ) )
shutil.rmtree(A_ )
@require_torch
def _a ( self ) -> List[Any]:
if not self.test_seqaseq:
return
__UpperCamelCase =self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'{tokenizer.__class__.__name__}' ):
# Longer text that will definitely require truncation.
__UpperCamelCase =[
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'
' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'
' will only worsen the violence and misery for millions of people.',
]
__UpperCamelCase =[
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'
' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
try:
__UpperCamelCase =tokenizer.prepare_seqaseq_batch(
src_texts=A_ , tgt_texts=A_ , max_length=3 , max_target_length=10 , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='ron_Latn' , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 10 )
# max_target_length will default to max_length if not specified
__UpperCamelCase =tokenizer.prepare_seqaseq_batch(
A_ , tgt_texts=A_ , max_length=3 , return_tensors='pt' )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 3 )
__UpperCamelCase =tokenizer.prepare_seqaseq_batch(
src_texts=A_ , max_length=3 , max_target_length=10 , return_tensors='pt' )
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 )
self.assertNotIn('decoder_input_ids' , A_ )
@unittest.skip('Unfortunately way too slow to build a BPE with SentencePiece.' )
def _a ( self ) -> List[Any]:
pass
def _a ( self ) -> List[str]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__UpperCamelCase =[AddedToken('<special>' , lstrip=A_ )]
__UpperCamelCase =self.rust_tokenizer_class.from_pretrained(
A_ , additional_special_tokens=A_ , **A_ )
__UpperCamelCase =tokenizer_r.encode('Hey this is a <special> token' )
__UpperCamelCase =tokenizer_r.encode('<special>' , add_special_tokens=A_ )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
__UpperCamelCase =self.rust_tokenizer_class.from_pretrained(
A_ , additional_special_tokens=A_ , **A_ , )
__UpperCamelCase =self.tokenizer_class.from_pretrained(
A_ , additional_special_tokens=A_ , **A_ )
__UpperCamelCase =tokenizer_p.encode('Hey this is a <special> token' )
__UpperCamelCase =tokenizer_cr.encode('Hey this is a <special> token' )
self.assertEqual(A_ , A_ )
self.assertEqual(A_ , A_ )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ : Optional[int] = "facebook/nllb-200-distilled-600M"
UpperCAmelCase__ : int = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
UpperCAmelCase__ : List[str] = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
UpperCAmelCase__ : Optional[Any] = [
2_5_6_0_4_7,
1_6_2_9_7,
1_3_4_4_0_8,
8_1_6_5,
2_4_8_0_6_6,
1_4_7_3_4,
9_5_0,
1_1_3_5,
1_0_5_7_2_1,
3_5_7_3,
8_3,
2_7_3_5_2,
1_0_8,
4_9_4_8_6,
2,
]
@classmethod
def _a ( cls ) -> List[Any]:
__UpperCamelCase =NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='eng_Latn' , tgt_lang='ron_Latn' )
__UpperCamelCase =1
return cls
def _a ( self ) -> Tuple:
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Arab'] , 256001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ace_Latn'] , 256002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['fra_Latn'] , 256057 )
def _a ( self ) -> Dict:
__UpperCamelCase =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , A_ )
def _a ( self ) -> List[str]:
self.assertIn(A_ , self.tokenizer.all_special_ids )
# fmt: off
__UpperCamelCase =[RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047]
# fmt: on
__UpperCamelCase =self.tokenizer.decode(A_ , skip_special_tokens=A_ )
__UpperCamelCase =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_ )
self.assertEqual(A_ , A_ )
self.assertNotIn(self.tokenizer.eos_token , A_ )
def _a ( self ) -> Any:
__UpperCamelCase =['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , A_ )
__UpperCamelCase =10
__UpperCamelCase =self.tokenizer(A_ , max_length=A_ , truncation=A_ ).input_ids[0]
self.assertEqual(ids[-1] , 2 )
self.assertEqual(ids[0] , A_ )
self.assertEqual(len(A_ ) , A_ )
def _a ( self ) -> List[str]:
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [256203, 3] )
def _a ( self ) -> Optional[Any]:
__UpperCamelCase =tempfile.mkdtemp()
__UpperCamelCase =self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(A_ )
__UpperCamelCase =NllbTokenizer.from_pretrained(A_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_ )
@require_torch
def _a ( self ) -> Dict:
__UpperCamelCase =self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
__UpperCamelCase =shift_tokens_right(
batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['ron_Latn'] )
self.assertIsInstance(A_ , A_ )
self.assertEqual((2, 15) , batch.input_ids.shape )
self.assertEqual((2, 15) , batch.attention_mask.shape )
__UpperCamelCase =batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , A_ )
self.assertEqual(A_ , batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def _a ( self ) -> Any:
__UpperCamelCase =self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors='pt' )
__UpperCamelCase =self.tokenizer(
text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=10 , return_tensors='pt' )
__UpperCamelCase =targets['input_ids']
__UpperCamelCase =shift_tokens_right(
A_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def _a ( self ) -> Optional[Any]:
__UpperCamelCase =self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
nested_simplify(A_ ) , {
# A, test, EOS, en_XX
'input_ids': [[256047, 70, 7356, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 256057,
} , )
@require_torch
def _a ( self ) -> Optional[int]:
__UpperCamelCase =True
__UpperCamelCase =self.tokenizer(
'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
inputs.input_ids , [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047] )
__UpperCamelCase =False
__UpperCamelCase =self.tokenizer(
'UN Chief says there is no military solution in Syria' , src_lang='eng_Latn' , tgt_lang='fra_Latn' )
self.assertEqual(
inputs.input_ids , [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2] )
| 62 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 0 |
'''simple docstring'''
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowerCAmelCase_ : List[str] = 'platform'
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =PegasusConfig
__a ={}
__a ='gelu'
def __init__( self : Optional[Any] , __a : str , __a : List[str]=13 , __a : Union[str, Any]=7 , __a : List[str]=True , __a : Optional[int]=False , __a : Tuple=99 , __a : Dict=32 , __a : str=5 , __a : Any=4 , __a : Optional[int]=37 , __a : Optional[int]=0.1 , __a : Tuple=0.1 , __a : Optional[Any]=20 , __a : List[str]=2 , __a : Optional[Any]=1 , __a : Optional[int]=0 , ):
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = eos_token_id
_a = pad_token_id
_a = bos_token_id
def UpperCamelCase__ ( self : Any ):
_a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_a = np.concatenate([input_ids, eos_tensor] , axis=1 )
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_a = prepare_pegasus_inputs_dict(__a , __a , __a )
return config, inputs_dict
def UpperCamelCase__ ( self : str , __a : Tuple , __a : List[Any] , __a : Optional[int] ):
_a = 20
_a = model_class_name(__a )
_a = model.encode(inputs_dict["input_ids"] )
_a , _a = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
_a = model.init_cache(decoder_input_ids.shape[0] , __a , __a )
_a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" )
_a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a = model.decode(
decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , )
_a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
_a = model.decode(
decoder_input_ids[:, -1:] , __a , decoder_attention_mask=__a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__a , )
_a = model.decode(__a , __a )
_a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' )
def UpperCamelCase__ ( self : Tuple , __a : Tuple , __a : int , __a : Dict ):
_a = 20
_a = model_class_name(__a )
_a = model.encode(inputs_dict["input_ids"] )
_a , _a = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
_a = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_a = model.init_cache(decoder_input_ids.shape[0] , __a , __a )
_a = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_a = model.decode(
decoder_input_ids[:, :-1] , __a , decoder_attention_mask=__a , past_key_values=__a , decoder_position_ids=__a , )
_a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" )
_a = model.decode(
decoder_input_ids[:, -1:] , __a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__a , decoder_position_ids=__a , )
_a = model.decode(__a , __a , decoder_attention_mask=__a )
_a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f'Max diff is {diff}' )
def _lowerCamelCase ( lowercase : Tuple , lowercase : Optional[int] , lowercase : int , lowercase : str=None , lowercase : Any=None , ) -> Union[str, Any]:
if attention_mask is None:
_a = np.not_equal(lowercase , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_a = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ):
"""simple docstring"""
__a =(
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
__a =(FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
__a =True
__a =False
__a =False
__a =False
def UpperCamelCase__ ( self : Tuple ):
_a = FlaxPegasusModelTester(self )
_a = ConfigTester(self , config_class=__a )
def UpperCamelCase__ ( self : Dict ):
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self : List[Any] ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__a , __a , __a )
def UpperCamelCase__ ( self : str ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__a , __a , __a )
def UpperCamelCase__ ( self : Any ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = self._prepare_for_class(__a , __a )
_a = model_class(__a )
@jax.jit
def encode_jitted(__a : Dict , __a : Dict=None , **__a : str ):
return model.encode(input_ids=__a , attention_mask=__a )
with self.subTest("JIT Enabled" ):
_a = encode_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_a = encode_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
def UpperCamelCase__ ( self : Optional[int] ):
_a , _a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_a = model_class(__a )
_a = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] )
_a = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(__a : Dict , __a : List[str] , __a : str ):
return model.decode(
decoder_input_ids=__a , decoder_attention_mask=__a , encoder_outputs=__a , )
with self.subTest("JIT Enabled" ):
_a = decode_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
_a = decode_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def UpperCamelCase__ ( self : List[Any] ):
for model_class_name in self.all_model_classes:
_a = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__a )
_a = np.ones((1, 1) )
_a = model(__a )
self.assertIsNotNone(__a )
@slow
def UpperCamelCase__ ( self : str ):
_a = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" )
_a = PegasusTokenizer.from_pretrained("google/pegasus-xsum" )
_a = [
" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.",
" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ",
]
_a = [
"California's largest electricity provider has turned off power to hundreds of thousands of customers.",
"Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.",
]
_a = tokenizer(__a , return_tensors="np" , truncation=__a , max_length=5_12 , padding=__a )
_a = model.generate(**__a , num_beams=2 ).sequences
_a = tokenizer.batch_decode(__a , skip_special_tokens=__a )
assert tgt_text == decoded
| 63 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 0 |
"""simple docstring"""
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def UpperCAmelCase__ (snake_case__ : List[Any] ):
"""simple docstring"""
if not is_accelerate_available():
return method
_snake_case : Union[str, Any] = version.parse(accelerate.__version__ ).base_version
if version.parse(snake_case__ ) < version.parse("""0.17.0""" ):
return method
def wrapper(self : Union[str, Any] , *snake_case__ : List[Any] , **snake_case__ : str ):
if hasattr(self , """_hf_hook""" ) and hasattr(self._hf_hook , """pre_forward""" ):
self._hf_hook.pre_forward(self )
return method(self , *snake_case__ , **snake_case__ )
return wrapper
| 64 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 0 |
import logging
import os
import quant_trainer
import torch
from torch.utils.data import DataLoader
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput
UpperCamelCase__ = logging.getLogger(__name__)
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class A ( UpperCAmelCase_ ):
def __init__(self : Any , *__UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Any=None , __UpperCAmelCase : Optional[int]=None , **__UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
UpperCAmelCase__ = eval_examples
UpperCAmelCase__ = post_process_function
UpperCAmelCase__ = quant_trainer_args
UpperCAmelCase__ = 1_2_8 # default number of calibration samples
def lowercase_ (self : int , __UpperCAmelCase : str=None ) -> Union[str, Any]:
"""simple docstring"""
if calib_dataset is None and self.calib_dataset is None:
raise ValueError("Trainer: calibration requires an calib_dataset." )
UpperCAmelCase__ = calib_dataset if calib_dataset is not None else self.calib_dataset
UpperCAmelCase__ = self._remove_unused_columns(__UpperCAmelCase , description="Calibration" )
return DataLoader(
__UpperCAmelCase , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=__UpperCAmelCase , )
def lowercase_ (self : int , __UpperCAmelCase : int=None ) -> Optional[Any]:
"""simple docstring"""
UpperCAmelCase__ = self.train_dataset if calib_dataset is None else calib_dataset
UpperCAmelCase__ = self.get_calib_dataloader(__UpperCAmelCase )
UpperCAmelCase__ = self.model
quant_trainer.configure_model(__UpperCAmelCase , self.quant_trainer_args , calib=__UpperCAmelCase )
model.eval()
quant_trainer.enable_calibration(__UpperCAmelCase )
logger.info("***** Running calibration *****" )
logger.info(f""" Num examples = {self.calib_num}""" )
logger.info(f""" Batch size = {calib_dataloader.batch_size}""" )
for step, inputs in enumerate(__UpperCAmelCase ):
# Prediction step
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.prediction_step(__UpperCAmelCase , __UpperCAmelCase , prediction_loss_only=__UpperCAmelCase )
if (step + 1) * calib_dataloader.batch_size >= self.calib_num:
break
quant_trainer.finish_calibration(__UpperCAmelCase , self.quant_trainer_args )
UpperCAmelCase__ = model
def lowercase_ (self : List[Any] , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : str=None , __UpperCAmelCase : str = "eval" ) -> int:
"""simple docstring"""
UpperCAmelCase__ = self.eval_dataset if eval_dataset is None else eval_dataset
UpperCAmelCase__ = self.get_eval_dataloader(__UpperCAmelCase )
UpperCAmelCase__ = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase__ = self.compute_metrics
UpperCAmelCase__ = None
UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase__ = eval_loop(
__UpperCAmelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , )
finally:
UpperCAmelCase__ = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
UpperCAmelCase__ = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , output.predictions )
UpperCAmelCase__ = self.compute_metrics(__UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
UpperCAmelCase__ = metrics.pop(__UpperCAmelCase )
self.log(__UpperCAmelCase )
else:
UpperCAmelCase__ = {}
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
UpperCAmelCase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase )
return metrics
def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : str = "test" ) -> Dict:
"""simple docstring"""
UpperCAmelCase__ = self.get_test_dataloader(__UpperCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
UpperCAmelCase__ = self.compute_metrics
UpperCAmelCase__ = None
UpperCAmelCase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
UpperCAmelCase__ = eval_loop(
__UpperCAmelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , )
finally:
UpperCAmelCase__ = compute_metrics
if self.post_process_function is None or self.compute_metrics is None:
return output
UpperCAmelCase__ = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , output.predictions , "predict" )
UpperCAmelCase__ = self.compute_metrics(__UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f"""{metric_key_prefix}_""" ):
UpperCAmelCase__ = metrics.pop(__UpperCAmelCase )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase )
def lowercase_ (self : Optional[int] , __UpperCAmelCase : int="./" ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = self.eval_dataset
UpperCAmelCase__ = self.get_eval_dataloader(__UpperCAmelCase )
UpperCAmelCase__ = next(iter(__UpperCAmelCase ) )
# saving device - to make it consistent
UpperCAmelCase__ = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
# convert to tuple
UpperCAmelCase__ = tuple(v.to(__UpperCAmelCase ) for k, v in batch.items() )
logger.info("Converting model to be onnx compatible" )
from pytorch_quantization.nn import TensorQuantizer
UpperCAmelCase__ = True
UpperCAmelCase__ = self.model.to(__UpperCAmelCase )
model.eval()
model.float()
UpperCAmelCase__ = model.module if hasattr(__UpperCAmelCase , "module" ) else model
quant_trainer.configure_model(__UpperCAmelCase , self.quant_trainer_args )
UpperCAmelCase__ = os.path.join(__UpperCAmelCase , "model.onnx" )
logger.info(f"""exporting model to {output_model_file}""" )
UpperCAmelCase__ = {0: "batch_size", 1: "seq_len"}
torch.onnx.export(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , export_params=__UpperCAmelCase , opset_version=1_3 , do_constant_folding=__UpperCAmelCase , input_names=["input_ids", "attention_mask", "token_type_ids"] , output_names=["output_start_logits", "output_end_logits"] , dynamic_axes={
"input_ids": axes,
"attention_mask": axes,
"token_type_ids": axes,
"output_start_logits": axes,
"output_end_logits": axes,
} , verbose=__UpperCAmelCase , )
logger.info("onnx export finished" )
| 65 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 0 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self: Union[str, Any] , snake_case: Optional[Any] , snake_case: List[str]=7 , snake_case: List[str]=3 , snake_case: Tuple=18 , snake_case: Optional[int]=30 , snake_case: Optional[Any]=400 , snake_case: Tuple=True , snake_case: int=None , snake_case: Optional[int]=True , snake_case: int=None , ) -> Dict:
snake_case_ :Optional[Any] = size if size is not None else {"""shortest_edge""": 20}
snake_case_ :int = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
snake_case_ :List[Any] = parent
snake_case_ :Any = batch_size
snake_case_ :List[Any] = num_channels
snake_case_ :Any = image_size
snake_case_ :Tuple = min_resolution
snake_case_ :Optional[Any] = max_resolution
snake_case_ :Tuple = do_resize
snake_case_ :Any = size
snake_case_ :List[str] = do_center_crop
snake_case_ :Dict = crop_size
def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[str]:
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class lowerCamelCase ( _lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
_A : Any = MobileNetVaImageProcessor if is_vision_available() else None
def lowerCAmelCase_ ( self: str ) -> Dict:
snake_case_ :Any = MobileNetVaImageProcessingTester(self )
@property
def lowerCAmelCase_ ( self: Dict ) -> str:
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase_ ( self: List[str] ) -> List[Any]:
snake_case_ :Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case , """do_resize""" ) )
self.assertTrue(hasattr(snake_case , """size""" ) )
self.assertTrue(hasattr(snake_case , """do_center_crop""" ) )
self.assertTrue(hasattr(snake_case , """crop_size""" ) )
def lowerCAmelCase_ ( self: Dict ) -> Tuple:
snake_case_ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 20} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
snake_case_ :Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def lowerCAmelCase_ ( self: Tuple ) -> Tuple:
pass
def lowerCAmelCase_ ( self: Tuple ) -> List[Any]:
# Initialize image_processing
snake_case_ :str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ :int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case )
for image in image_inputs:
self.assertIsInstance(snake_case , Image.Image )
# Test not batched input
snake_case_ :int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ :List[Any] = image_processing(snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase_ ( self: Any ) -> Tuple:
# Initialize image_processing
snake_case_ :List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case )
for image in image_inputs:
self.assertIsInstance(snake_case , np.ndarray )
# Test not batched input
snake_case_ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ :int = image_processing(snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def lowerCAmelCase_ ( self: str ) -> List[str]:
# Initialize image_processing
snake_case_ :Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ :Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case )
for image in image_inputs:
self.assertIsInstance(snake_case , torch.Tensor )
# Test not batched input
snake_case_ :List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
snake_case_ :int = image_processing(snake_case , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 66 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 0 |
'''simple docstring'''
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> str:
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError('''iterations must be defined as integers''' )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1:
raise ValueError(
'''starting number must be
and integer and be more than 0''' )
if not iterations >= 1:
raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' )
__lowerCamelCase = ''''''
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(UpperCamelCase__ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 67 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 0 |
import os
import unittest
from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class a__ ( snake_case , unittest.TestCase ):
"""simple docstring"""
__lowerCamelCase = TransfoXLTokenizer
__lowerCamelCase = False
__lowerCamelCase = False
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
A__ = [
"<unk>",
"[CLS]",
"[SEP]",
"want",
"unwanted",
"wa",
"un",
"running",
",",
"low",
"l",
]
A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def UpperCamelCase ( self , **lowercase ) -> Union[str, Any]:
'''simple docstring'''
A__ = True
return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **lowercase )
def UpperCamelCase ( self , lowercase ) -> List[Any]:
'''simple docstring'''
A__ = "<unk> UNwanted , running"
A__ = "<unk> unwanted, running"
return input_text, output_text
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
A__ = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=lowercase )
A__ = tokenizer.tokenize("<unk> UNwanted , running" )
self.assertListEqual(lowercase , ["<unk>", "unwanted", ",", "running"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [0, 4, 8, 7] )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = TransfoXLTokenizer(lower_case=lowercase )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["hello", "!", "how", "are", "you", "?"] )
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
A__ = TransfoXLTokenizer(lower_case=lowercase )
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo ! how \n Are yoU ? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
A__ = TransfoXLTokenizer(lower_case=lowercase )
A__ = "Hello (bracket) and side-scrolled [and] Henry's $5,000 with 3.34 m. What's up!?"
A__ = [
"Hello",
"(",
"bracket",
")",
"and",
"side",
"@-@",
"scrolled",
"[",
"and",
"]",
"Henry",
"'s",
"$",
"5",
"@,@",
"000",
"with",
"3",
"@.@",
"34",
"m",
".",
"What",
"'s",
"up",
"!",
"?",
]
self.assertListEqual(tokenizer.tokenize(lowercase ) , lowercase )
self.assertEqual(tokenizer.convert_tokens_to_string(lowercase ) , lowercase )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
A__ = self.get_tokenizer()
A__ = len(lowercase )
tokenizer.add_tokens(["new1", "new2"] )
tokenizer.move_added_token("new1" , 1 )
# Check that moved token is not copied (duplicate)
self.assertEqual(len(lowercase ) , original_len + 2 )
# Check that token is moved to specified id
self.assertEqual(tokenizer.encode("new1" ) , [1] )
self.assertEqual(tokenizer.decode([1] ) , "new1" )
| 68 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 0 |
"""simple docstring"""
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True)
os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True)
def UpperCAmelCase ( UpperCAmelCase ) -> Dict:
if hor == 128:
snake_case_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D')
snake_case_ = (32, 128, 256)
snake_case_ = ('UpResnetBlock1D', 'UpResnetBlock1D')
elif hor == 32:
snake_case_ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D')
snake_case_ = (32, 64, 128, 256)
snake_case_ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D')
snake_case_ = torch.load(f'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' )
snake_case_ = model.state_dict()
snake_case_ = {
'down_block_types': down_block_types,
'block_out_channels': block_out_channels,
'up_block_types': up_block_types,
'layers_per_block': 1,
'use_timestep_embedding': True,
'out_block_type': 'OutConv1DBlock',
'norm_num_groups': 8,
'downsample_each_block': False,
'in_channels': 14,
'out_channels': 14,
'extra_in_channels': 0,
'time_embedding_type': 'positional',
'flip_sin_to_cos': False,
'freq_shift': 1,
'sample_size': 65536,
'mid_block_type': 'MidResTemporalBlock1D',
'act_fn': 'mish',
}
snake_case_ = UNetaDModel(**UpperCAmelCase )
print(f'length of state dict: {len(state_dict.keys() )}' )
print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' )
snake_case_ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
snake_case_ = state_dict.pop(UpperCAmelCase )
hf_value_function.load_state_dict(UpperCAmelCase )
torch.save(hf_value_function.state_dict() , f'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' )
with open(f'hub/hopper-medium-v2/unet/hor{hor}/config.json' , 'w' ) as f:
json.dump(UpperCAmelCase , UpperCAmelCase )
def UpperCAmelCase ( ) -> int:
snake_case_ = {
'in_channels': 14,
'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'),
'up_block_types': (),
'out_block_type': 'ValueFunction',
'mid_block_type': 'ValueFunctionMidBlock1D',
'block_out_channels': (32, 64, 128, 256),
'layers_per_block': 1,
'downsample_each_block': True,
'sample_size': 65536,
'out_channels': 14,
'extra_in_channels': 0,
'time_embedding_type': 'positional',
'use_timestep_embedding': True,
'flip_sin_to_cos': False,
'freq_shift': 1,
'norm_num_groups': 8,
'act_fn': 'mish',
}
snake_case_ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' )
snake_case_ = model
snake_case_ = UNetaDModel(**UpperCAmelCase )
print(f'length of state dict: {len(state_dict.keys() )}' )
print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' )
snake_case_ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
snake_case_ = state_dict.pop(UpperCAmelCase )
hf_value_function.load_state_dict(UpperCAmelCase )
torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' )
with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f:
json.dump(UpperCAmelCase , UpperCAmelCase )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 69 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 0 |
'''simple docstring'''
from queue import PriorityQueue
from typing import Any
import numpy as np
def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ):
"""simple docstring"""
for nxt, d in graph[v]:
if nxt in visited_forward:
continue
_lowerCAmelCase = cst_fwd.get(lowerCAmelCase , np.inf )
_lowerCAmelCase = cst_fwd[v] + d
if new_cost_f < old_cost_f:
queue.put((new_cost_f, nxt) )
_lowerCAmelCase = new_cost_f
_lowerCAmelCase = v
if nxt in visited_backward:
if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance:
_lowerCAmelCase = cst_fwd[v] + d + cst_bwd[nxt]
return shortest_distance
def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ):
"""simple docstring"""
_lowerCAmelCase = -1
_lowerCAmelCase = set()
_lowerCAmelCase = set()
_lowerCAmelCase = {source: 0}
_lowerCAmelCase = {destination: 0}
_lowerCAmelCase = {source: None}
_lowerCAmelCase = {destination: None}
_lowerCAmelCase = PriorityQueue()
_lowerCAmelCase = PriorityQueue()
_lowerCAmelCase = np.inf
queue_forward.put((0, source) )
queue_backward.put((0, destination) )
if source == destination:
return 0
while not queue_forward.empty() and not queue_backward.empty():
_lowerCAmelCase , _lowerCAmelCase = queue_forward.get()
visited_forward.add(lowerCAmelCase )
_lowerCAmelCase , _lowerCAmelCase = queue_backward.get()
visited_backward.add(lowerCAmelCase )
_lowerCAmelCase = pass_and_relaxation(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , )
_lowerCAmelCase = pass_and_relaxation(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , )
if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance:
break
if shortest_distance != np.inf:
_lowerCAmelCase = shortest_distance
return shortest_path_distance
A__ : Optional[int] ={
'''B''': [['''C''', 1]],
'''C''': [['''D''', 1]],
'''D''': [['''F''', 1]],
'''E''': [['''B''', 1], ['''G''', 2]],
'''F''': [],
'''G''': [['''F''', 1]],
}
A__ : int ={
'''B''': [['''E''', 1]],
'''C''': [['''B''', 1]],
'''D''': [['''C''', 1]],
'''F''': [['''D''', 1], ['''G''', 1]],
'''E''': [[None, np.inf]],
'''G''': [['''E''', 2]],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 70 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 0 |
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class __A ( a , a ):
"""simple docstring"""
@register_to_config
def __init__( self , lowerCamelCase__ = 128 , lowerCamelCase__ = 256 , lowerCamelCase__ = 2_000.0 , lowerCamelCase__ = 768 , lowerCamelCase__ = 12 , lowerCamelCase__ = 12 , lowerCamelCase__ = 64 , lowerCamelCase__ = 2048 , lowerCamelCase__ = 0.1 , ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : str =nn.Sequential(
nn.Linear(lowerCamelCase__ , d_model * 4 , bias=lowerCamelCase__ ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=lowerCamelCase__ ) , nn.SiLU() , )
__UpperCamelCase : Any =nn.Embedding(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Optional[int] =False
__UpperCamelCase : Dict =nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =nn.Dropout(p=lowerCamelCase__ )
__UpperCamelCase : int =nn.ModuleList()
for lyr_num in range(lowerCamelCase__ ):
# FiLM conditional T5 decoder
__UpperCamelCase : Tuple =DecoderLayer(d_model=lowerCamelCase__ , d_kv=lowerCamelCase__ , num_heads=lowerCamelCase__ , d_ff=lowerCamelCase__ , dropout_rate=lowerCamelCase__ )
self.decoders.append(lowerCamelCase__ )
__UpperCamelCase : List[str] =TaLayerNorm(lowerCamelCase__ )
__UpperCamelCase : Optional[int] =nn.Dropout(p=lowerCamelCase__ )
__UpperCamelCase : Optional[int] =nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] =decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
__UpperCamelCase : Tuple =get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
__UpperCamelCase : Union[str, Any] =self.conditioning_emb(lowerCamelCase__ ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
__UpperCamelCase : Optional[int] =decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
__UpperCamelCase : List[Any] =torch.broadcast_to(
torch.arange(lowerCamelCase__ , device=decoder_input_tokens.device ) , (batch, seq_length) , )
__UpperCamelCase : Any =self.position_encoding(lowerCamelCase__ )
__UpperCamelCase : Any =self.continuous_inputs_projection(lowerCamelCase__ )
inputs += position_encodings
__UpperCamelCase : Optional[Any] =self.dropout(lowerCamelCase__ )
# decoder: No padding present.
__UpperCamelCase : Any =torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
__UpperCamelCase : str =[(x, self.encoder_decoder_mask(lowerCamelCase__ , lowerCamelCase__ )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
__UpperCamelCase : Any =torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
__UpperCamelCase : List[Any] =torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
__UpperCamelCase : Optional[Any] =lyr(
lowerCamelCase__ , conditioning_emb=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , encoder_attention_mask=lowerCamelCase__ , )[0]
__UpperCamelCase : Tuple =self.decoder_norm(lowerCamelCase__ )
__UpperCamelCase : Tuple =self.post_dropout(lowerCamelCase__ )
__UpperCamelCase : Dict =self.spec_out(lowerCamelCase__ )
return spec_out
class __A ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1E-6 ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : Optional[int] =nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=lowerCamelCase__ , d_kv=lowerCamelCase__ , num_heads=lowerCamelCase__ , dropout_rate=lowerCamelCase__ ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=lowerCamelCase__ , d_kv=lowerCamelCase__ , num_heads=lowerCamelCase__ , dropout_rate=lowerCamelCase__ , layer_norm_epsilon=lowerCamelCase__ , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=lowerCamelCase__ , d_ff=lowerCamelCase__ , dropout_rate=lowerCamelCase__ , layer_norm_epsilon=lowerCamelCase__ ) )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =self.layer[0](
lowerCamelCase__ , conditioning_emb=lowerCamelCase__ , attention_mask=lowerCamelCase__ , )
if encoder_hidden_states is not None:
__UpperCamelCase : str =torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to(
encoder_hidden_states.dtype )
__UpperCamelCase : int =self.layer[1](
lowerCamelCase__ , key_value_states=lowerCamelCase__ , attention_mask=lowerCamelCase__ , )
# Apply Film Conditional Feed Forward layer
__UpperCamelCase : Union[str, Any] =self.layer[-1](lowerCamelCase__ , lowerCamelCase__ )
return (hidden_states,)
class __A ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : Any =TaLayerNorm(lowerCamelCase__ )
__UpperCamelCase : Tuple =TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =Attention(query_dim=lowerCamelCase__ , heads=lowerCamelCase__ , dim_head=lowerCamelCase__ , out_bias=lowerCamelCase__ , scale_qk=lowerCamelCase__ )
__UpperCamelCase : List[str] =nn.Dropout(lowerCamelCase__ )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ):
"""simple docstring"""
__UpperCamelCase : int =self.layer_norm(lowerCamelCase__ )
if conditioning_emb is not None:
__UpperCamelCase : str =self.FiLMLayer(lowerCamelCase__ , lowerCamelCase__ )
# Self-attention block
__UpperCamelCase : int =self.attention(lowerCamelCase__ )
__UpperCamelCase : Any =hidden_states + self.dropout(lowerCamelCase__ )
return hidden_states
class __A ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : Tuple =Attention(query_dim=lowerCamelCase__ , heads=lowerCamelCase__ , dim_head=lowerCamelCase__ , out_bias=lowerCamelCase__ , scale_qk=lowerCamelCase__ )
__UpperCamelCase : List[str] =TaLayerNorm(lowerCamelCase__ , eps=lowerCamelCase__ )
__UpperCamelCase : Any =nn.Dropout(lowerCamelCase__ )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , ):
"""simple docstring"""
__UpperCamelCase : List[Any] =self.layer_norm(lowerCamelCase__ )
__UpperCamelCase : Tuple =self.attention(
lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , attention_mask=attention_mask.squeeze(1 ) , )
__UpperCamelCase : int =hidden_states + self.dropout(lowerCamelCase__ )
return layer_output
class __A ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : Any =TaDenseGatedActDense(d_model=lowerCamelCase__ , d_ff=lowerCamelCase__ , dropout_rate=lowerCamelCase__ )
__UpperCamelCase : Tuple =TaFiLMLayer(in_features=d_model * 4 , out_features=lowerCamelCase__ )
__UpperCamelCase : Dict =TaLayerNorm(lowerCamelCase__ , eps=lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =nn.Dropout(lowerCamelCase__ )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=None ):
"""simple docstring"""
__UpperCamelCase : List[str] =self.layer_norm(lowerCamelCase__ )
if conditioning_emb is not None:
__UpperCamelCase : List[str] =self.film(lowerCamelCase__ , lowerCamelCase__ )
__UpperCamelCase : Union[str, Any] =self.DenseReluDense(lowerCamelCase__ )
__UpperCamelCase : Any =hidden_states + self.dropout(lowerCamelCase__ )
return hidden_states
class __A ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : List[str] =nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ )
__UpperCamelCase : Optional[int] =nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ )
__UpperCamelCase : List[Any] =nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ )
__UpperCamelCase : List[Any] =nn.Dropout(lowerCamelCase__ )
__UpperCamelCase : Any =NewGELUActivation()
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Any =self.act(self.wi_a(lowerCamelCase__ ) )
__UpperCamelCase : Union[str, Any] =self.wi_a(lowerCamelCase__ )
__UpperCamelCase : Any =hidden_gelu * hidden_linear
__UpperCamelCase : List[str] =self.dropout(lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =self.wo(lowerCamelCase__ )
return hidden_states
class __A ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__=1E-6 ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : Any =nn.Parameter(torch.ones(lowerCamelCase__ ) )
__UpperCamelCase : str =eps
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Any =hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=lowerCamelCase__ )
__UpperCamelCase : Dict =hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
__UpperCamelCase : List[str] =hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class __A ( nn.Module ):
"""simple docstring"""
def __lowercase ( self , lowerCamelCase__ ):
"""simple docstring"""
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(lowerCamelCase__ , 3.0 )) ))
class __A ( nn.Module ):
"""simple docstring"""
def __init__( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
super().__init__()
__UpperCamelCase : Optional[int] =nn.Linear(lowerCamelCase__ , out_features * 2 , bias=lowerCamelCase__ )
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
__UpperCamelCase : Optional[int] =self.scale_bias(lowerCamelCase__ )
__UpperCamelCase , __UpperCamelCase : Optional[int] =torch.chunk(lowerCamelCase__ , 2 , -1 )
__UpperCamelCase : int =x * (1 + scale) + shift
return x
| 71 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __snake_case ( _lowercase , unittest.TestCase):
snake_case__ : Any = KandinskyVaaImgaImgPipeline
snake_case__ : int = ["image_embeds", "negative_image_embeds", "image"]
snake_case__ : Optional[int] = [
"image_embeds",
"negative_image_embeds",
"image",
]
snake_case__ : Tuple = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case__ : Any = False
@property
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return 3_2
@property
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return 3_2
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.time_input_dim
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return 1_0_0
@property
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCamelCase : List[str] = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
_lowerCamelCase : List[Any] = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs )
return model
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
_lowerCamelCase : List[Any] = self.dummy_unet
_lowerCamelCase : Union[str, Any] = self.dummy_movq
_lowerCamelCase : Any = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.0_00_85,
'''beta_end''': 0.0_12,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
_lowerCamelCase : Optional[Any] = DDIMScheduler(**__lowerCAmelCase )
_lowerCamelCase : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple=0 ):
"""simple docstring"""
_lowerCamelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowerCamelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCAmelCase )
# create init_image
_lowerCamelCase : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowerCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCamelCase : int = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) )
if str(__lowerCAmelCase ).startswith('''mps''' ):
_lowerCamelCase : Any = torch.manual_seed(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_lowerCamelCase : int = {
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 6_4,
'''width''': 6_4,
'''num_inference_steps''': 1_0,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = '''cpu'''
_lowerCamelCase : Dict = self.get_dummy_components()
_lowerCamelCase : Dict = self.pipeline_class(**__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : int = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = output.images
_lowerCamelCase : str = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
_lowerCamelCase : Tuple = image[0, -3:, -3:, -1]
_lowerCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
_lowerCamelCase : Optional[int] = np.array(
[0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase):
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
_lowerCamelCase : int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_img2img_frog.npy''' )
_lowerCamelCase : str = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
_lowerCamelCase : int = '''A red cartoon frog, 4k'''
_lowerCamelCase : List[str] = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = KandinskyVaaImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa )
_lowerCamelCase : Tuple = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : str = torch.Generator(device='''cpu''' ).manual_seed(0 )
_lowerCamelCase , _lowerCamelCase : Any = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
_lowerCamelCase : Union[str, Any] = pipeline(
image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , )
_lowerCamelCase : int = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 72 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 0 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
a =logging.get_logger(__name__)
a ={"""vocab_file""": """spiece.model"""}
a ={
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
}
}
a ={
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
a ="""▁"""
class A_ ( SCREAMING_SNAKE_CASE ):
_UpperCAmelCase : List[Any] = VOCAB_FILES_NAMES
_UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : str ,SCREAMING_SNAKE_CASE__ : Optional[int] ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : str=True ,SCREAMING_SNAKE_CASE__ : List[str]=False ,SCREAMING_SNAKE_CASE__ : Any="[CLS]" ,SCREAMING_SNAKE_CASE__ : Optional[int]="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[Any]="<unk>" ,SCREAMING_SNAKE_CASE__ : Any="[SEP]" ,SCREAMING_SNAKE_CASE__ : Optional[int]="<pad>" ,SCREAMING_SNAKE_CASE__ : Any="[CLS]" ,SCREAMING_SNAKE_CASE__ : Union[str, Any]="[MASK]" ,SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None ,**SCREAMING_SNAKE_CASE__ : Dict ,):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__lowerCamelCase : Dict = (
AddedToken(SCREAMING_SNAKE_CASE__ ,lstrip=SCREAMING_SNAKE_CASE__ ,rstrip=SCREAMING_SNAKE_CASE__ ,normalized=SCREAMING_SNAKE_CASE__)
if isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__)
else mask_token
)
__lowerCamelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=SCREAMING_SNAKE_CASE__ ,remove_space=SCREAMING_SNAKE_CASE__ ,keep_accents=SCREAMING_SNAKE_CASE__ ,bos_token=SCREAMING_SNAKE_CASE__ ,eos_token=SCREAMING_SNAKE_CASE__ ,unk_token=SCREAMING_SNAKE_CASE__ ,sep_token=SCREAMING_SNAKE_CASE__ ,pad_token=SCREAMING_SNAKE_CASE__ ,cls_token=SCREAMING_SNAKE_CASE__ ,mask_token=SCREAMING_SNAKE_CASE__ ,sp_model_kwargs=self.sp_model_kwargs ,**SCREAMING_SNAKE_CASE__ ,)
__lowerCamelCase : Any = do_lower_case
__lowerCamelCase : Union[str, Any] = remove_space
__lowerCamelCase : Tuple = keep_accents
__lowerCamelCase : Dict = vocab_file
__lowerCamelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(SCREAMING_SNAKE_CASE__)
@property
def lowerCAmelCase ( self : Optional[Any]):
return len(self.sp_model)
def lowerCAmelCase ( self : Optional[Any]):
__lowerCamelCase : Optional[int] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Union[str, Any]):
__lowerCamelCase : str = self.__dict__.copy()
__lowerCamelCase : Tuple = None
return state
def __setstate__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str):
__lowerCamelCase : List[str] = d
# for backward compatibility
if not hasattr(self ,'sp_model_kwargs'):
__lowerCamelCase : List[str] = {}
__lowerCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]):
if self.remove_space:
__lowerCamelCase : Dict = ' '.join(inputs.strip().split())
else:
__lowerCamelCase : Optional[Any] = inputs
__lowerCamelCase : Tuple = outputs.replace('``' ,'"').replace('\'\'' ,'"')
if not self.keep_accents:
__lowerCamelCase : List[str] = unicodedata.normalize('NFKD' ,SCREAMING_SNAKE_CASE__)
__lowerCamelCase : str = ''.join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE__)])
if self.do_lower_case:
__lowerCamelCase : Optional[Any] = outputs.lower()
return outputs
def lowerCAmelCase ( self : List[Any] ,SCREAMING_SNAKE_CASE__ : str):
__lowerCamelCase : Tuple = self.preprocess_text(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[Any] = self.sp_model.encode(SCREAMING_SNAKE_CASE__ ,out_type=SCREAMING_SNAKE_CASE__)
__lowerCamelCase : Tuple = []
for piece in pieces:
if len(SCREAMING_SNAKE_CASE__) > 1 and piece[-1] == str(',') and piece[-2].isdigit():
__lowerCamelCase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE__ ,''))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
__lowerCamelCase : Union[str, Any] = cur_pieces[1:]
else:
__lowerCamelCase : Dict = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(SCREAMING_SNAKE_CASE__)
else:
new_pieces.append(SCREAMING_SNAKE_CASE__)
return new_pieces
def lowerCAmelCase ( self : Any ,SCREAMING_SNAKE_CASE__ : List[str]):
return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE__)
def lowerCAmelCase ( self : str ,SCREAMING_SNAKE_CASE__ : Any):
return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__)
def lowerCAmelCase ( self : Tuple ,SCREAMING_SNAKE_CASE__ : int):
__lowerCamelCase : Optional[Any] = []
__lowerCamelCase : int = ''
__lowerCamelCase : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__) + token
__lowerCamelCase : List[Any] = True
__lowerCamelCase : Any = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE__)
__lowerCamelCase : List[Any] = False
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__)
return out_string.strip()
def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None):
__lowerCamelCase : Union[str, Any] = [self.sep_token_id]
__lowerCamelCase : int = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ,SCREAMING_SNAKE_CASE__ : bool = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE__ ,token_ids_a=SCREAMING_SNAKE_CASE__ ,already_has_special_tokens=SCREAMING_SNAKE_CASE__)
if token_ids_a is not None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE__)) + [1]
def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : List[int] ,SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None):
__lowerCamelCase : Tuple = [self.sep_token_id]
__lowerCamelCase : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def lowerCAmelCase ( self : Optional[int] ,SCREAMING_SNAKE_CASE__ : str ,SCREAMING_SNAKE_CASE__ : Optional[str] = None):
if not os.path.isdir(SCREAMING_SNAKE_CASE__):
logger.error(F"Vocabulary path ({save_directory}) should be a directory")
return
__lowerCamelCase : List[str] = os.path.join(
SCREAMING_SNAKE_CASE__ ,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE__) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file ,SCREAMING_SNAKE_CASE__)
elif not os.path.isfile(self.vocab_file):
with open(SCREAMING_SNAKE_CASE__ ,'wb') as fi:
__lowerCamelCase : str = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE__)
return (out_vocab_file,)
| 73 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 0 |
"""simple docstring"""
import argparse
import struct
import unittest
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Tuple ,A_ : bytes ) -> None:
A = data
# Initialize hash values
A = [
0X6_A_0_9_E_6_6_7,
0XB_B_6_7_A_E_8_5,
0X3_C_6_E_F_3_7_2,
0XA_5_4_F_F_5_3_A,
0X5_1_0_E_5_2_7_F,
0X9_B_0_5_6_8_8_C,
0X1_F_8_3_D_9_A_B,
0X5_B_E_0_C_D_1_9,
]
# Initialize round constants
A = [
0X4_2_8_A_2_F_9_8,
0X7_1_3_7_4_4_9_1,
0XB_5_C_0_F_B_C_F,
0XE_9_B_5_D_B_A_5,
0X3_9_5_6_C_2_5_B,
0X5_9_F_1_1_1_F_1,
0X9_2_3_F_8_2_A_4,
0XA_B_1_C_5_E_D_5,
0XD_8_0_7_A_A_9_8,
0X1_2_8_3_5_B_0_1,
0X2_4_3_1_8_5_B_E,
0X5_5_0_C_7_D_C_3,
0X7_2_B_E_5_D_7_4,
0X8_0_D_E_B_1_F_E,
0X9_B_D_C_0_6_A_7,
0XC_1_9_B_F_1_7_4,
0XE_4_9_B_6_9_C_1,
0XE_F_B_E_4_7_8_6,
0X0_F_C_1_9_D_C_6,
0X2_4_0_C_A_1_C_C,
0X2_D_E_9_2_C_6_F,
0X4_A_7_4_8_4_A_A,
0X5_C_B_0_A_9_D_C,
0X7_6_F_9_8_8_D_A,
0X9_8_3_E_5_1_5_2,
0XA_8_3_1_C_6_6_D,
0XB_0_0_3_2_7_C_8,
0XB_F_5_9_7_F_C_7,
0XC_6_E_0_0_B_F_3,
0XD_5_A_7_9_1_4_7,
0X0_6_C_A_6_3_5_1,
0X1_4_2_9_2_9_6_7,
0X2_7_B_7_0_A_8_5,
0X2_E_1_B_2_1_3_8,
0X4_D_2_C_6_D_F_C,
0X5_3_3_8_0_D_1_3,
0X6_5_0_A_7_3_5_4,
0X7_6_6_A_0_A_B_B,
0X8_1_C_2_C_9_2_E,
0X9_2_7_2_2_C_8_5,
0XA_2_B_F_E_8_A_1,
0XA_8_1_A_6_6_4_B,
0XC_2_4_B_8_B_7_0,
0XC_7_6_C_5_1_A_3,
0XD_1_9_2_E_8_1_9,
0XD_6_9_9_0_6_2_4,
0XF_4_0_E_3_5_8_5,
0X1_0_6_A_A_0_7_0,
0X1_9_A_4_C_1_1_6,
0X1_E_3_7_6_C_0_8,
0X2_7_4_8_7_7_4_C,
0X3_4_B_0_B_C_B_5,
0X3_9_1_C_0_C_B_3,
0X4_E_D_8_A_A_4_A,
0X5_B_9_C_C_A_4_F,
0X6_8_2_E_6_F_F_3,
0X7_4_8_F_8_2_E_E,
0X7_8_A_5_6_3_6_F,
0X8_4_C_8_7_8_1_4,
0X8_C_C_7_0_2_0_8,
0X9_0_B_E_F_F_F_A,
0XA_4_5_0_6_C_E_B,
0XB_E_F_9_A_3_F_7,
0XC_6_7_1_7_8_F_2,
]
A = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def _SCREAMING_SNAKE_CASE ( A_ : bytes ) -> bytes:
A = B'\x80' + (B'\x00' * (63 - (len(A_ ) + 8) % 64))
A = struct.pack('>Q' ,(len(A_ ) * 8) )
return data + padding + big_endian_integer
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> None:
# Convert into blocks of 64 bytes
A = [
self.preprocessed_data[x : x + 64]
for x in range(0 ,len(self.preprocessed_data ) ,64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
A = list(struct.unpack('>16L' ,A_ ) )
# add 48 0-ed integers
words += [0] * 48
A , A , A , A , A , A , A , A = self.hashes
for index in range(0 ,64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
A = (
self.ror(words[index - 15] ,7 )
^ self.ror(words[index - 15] ,18 )
^ (words[index - 15] >> 3)
)
A = (
self.ror(words[index - 2] ,17 )
^ self.ror(words[index - 2] ,19 )
^ (words[index - 2] >> 10)
)
A = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X1_0_0_0_0_0_0_0_0
# Compression
A = self.ror(A_ ,6 ) ^ self.ror(A_ ,11 ) ^ self.ror(A_ ,25 )
A = (e & f) ^ ((~e & 0XF_F_F_F_F_F_F_F) & g)
A = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_0_0_0_0_0_0_0_0
A = self.ror(A_ ,2 ) ^ self.ror(A_ ,13 ) ^ self.ror(A_ ,22 )
A = (a & b) ^ (a & c) ^ (b & c)
A = (sa + maj) % 0X1_0_0_0_0_0_0_0_0
A , A , A , A , A , A , A , A = (
g,
f,
e,
((d + tempa) % 0X1_0_0_0_0_0_0_0_0),
c,
b,
a,
((tempa + tempa) % 0X1_0_0_0_0_0_0_0_0),
)
A = [a, b, c, d, e, f, g, h]
# Modify final values
A = [
((element + mutated_hash_values[index]) % 0X1_0_0_0_0_0_0_0_0)
for index, element in enumerate(self.hashes )
]
A = ''.join([hex(A_ )[2:].zfill(8 ) for value in self.hashes] )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : int ,A_ : int ) -> int:
return 0XF_F_F_F_F_F_F_F & (value << (32 - rotations)) | (value >> rotations)
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> None:
import hashlib
A = bytes('Test String' ,'utf-8' )
self.assertEqual(SHAaaa(A_ ).hash ,hashlib.shaaaa(A_ ).hexdigest() )
def _snake_case ( ):
import doctest
doctest.testmod()
A = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
A = parser.parse_args()
A = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
A = f.read()
else:
A = bytes(snake_case__ , 'utf-8' )
print(SHAaaa(snake_case__ ).hash )
if __name__ == "__main__":
main() | 74 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 0 |
'''simple docstring'''
from math import loga
def a_ ( __snake_case : int ) -> int:
"""simple docstring"""
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(__snake_case , __snake_case ):
raise TypeError('''Input value must be a \'int\' type''' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 75 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 0 |
from __future__ import annotations
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , a : int = 0 ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = key
def __UpperCamelCase ( self : Optional[int] , a : str , a : int ) -> list[str]:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
SCREAMING_SNAKE_CASE : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(a ) ^ key ) for ch in content]
def __UpperCamelCase ( self : List[Any] , a : str , a : int ) -> list[str]:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
SCREAMING_SNAKE_CASE : Optional[int] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(a ) ^ key ) for ch in content]
def __UpperCamelCase ( self : Optional[Any] , a : str , a : int = 0 ) -> str:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
SCREAMING_SNAKE_CASE : Dict = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
SCREAMING_SNAKE_CASE : Optional[Any] = ""
for ch in content:
ans += chr(ord(a ) ^ key )
return ans
def __UpperCamelCase ( self : int , a : str , a : int = 0 ) -> str:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
SCREAMING_SNAKE_CASE : str = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
SCREAMING_SNAKE_CASE : int = ""
for ch in content:
ans += chr(ord(a ) ^ key )
return ans
def __UpperCamelCase ( self : str , a : str , a : int = 0 ) -> bool:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
try:
with open(a ) as fin, open("encrypt.out" , "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(a , a ) )
except OSError:
return False
return True
def __UpperCamelCase ( self : Optional[int] , a : str , a : int ) -> bool:
"""simple docstring"""
assert isinstance(a , a ) and isinstance(a , a )
try:
with open(a ) as fin, open("decrypt.out" , "w+" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(a , a ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful") | 76 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 0 |
"""simple docstring"""
def a_ ( _lowerCAmelCase : int ):
'''simple docstring'''
lowercase__ : Union[str, Any] = abs(_lowerCAmelCase )
lowercase__ : Union[str, Any] = 0
while n > 0:
res += n % 10
n //= 10
return res
def a_ ( _lowerCAmelCase : int ):
'''simple docstring'''
lowercase__ : Optional[Any] = abs(_lowerCAmelCase )
return n if n < 10 else n % 10 + sum_of_digits(n // 10 )
def a_ ( _lowerCAmelCase : int ):
'''simple docstring'''
return sum(int(_lowerCAmelCase ) for c in str(abs(_lowerCAmelCase ) ) )
def a_ ( ):
'''simple docstring'''
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(_lowerCAmelCase : Callable , _lowerCAmelCase : int ) -> None:
lowercase__ : str = f"""{func.__name__}({value})"""
lowercase__ : Union[str, Any] = timeit(f"""__main__.{call}""" , setup='import __main__' )
print(f"""{call:56} = {func(_lowerCAmelCase )} -- {timing:.4f} seconds""" )
for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(_lowerCAmelCase , _lowerCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 77 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 0 |
"""simple docstring"""
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ):
return round(float(moles / volume ) * nfactor )
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ):
return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) )
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ):
return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) )
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ):
return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 78 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 0 |
'''simple docstring'''
from __future__ import annotations
def __lowercase ( __lowercase , __lowercase = None , __lowercase = None ) -> None:
'''simple docstring'''
if start is None:
_A = 0
if end is None:
_A = len(__lowercase ) - 1
if start >= end:
return
_A = (start + end) // 2
slowsort(__lowercase , __lowercase , __lowercase )
slowsort(__lowercase , mid + 1 , __lowercase )
if sequence[end] < sequence[mid]:
_A , _A = sequence[mid], sequence[end]
slowsort(__lowercase , __lowercase , end - 1 )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 79 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 0 |
'''simple docstring'''
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _UpperCamelCase ( ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
UpperCamelCase__ = Image.open(requests.get(__A , stream=__A ).raw ).convert("RGB" )
return image
def _UpperCamelCase ( __A ) -> List[str]:
'''simple docstring'''
UpperCamelCase__ = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") )
# fmt: on
return rename_keys
def _UpperCamelCase ( __A , __A , __A ) -> int:
'''simple docstring'''
UpperCamelCase__ = dct.pop(__A )
UpperCamelCase__ = val
def _UpperCamelCase ( __A , __A ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
UpperCamelCase__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' )
UpperCamelCase__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
UpperCamelCase__ = torch.cat((q_bias, torch.zeros_like(__A , requires_grad=__A ), v_bias) )
UpperCamelCase__ = qkv_bias
def _UpperCamelCase ( __A ) -> Dict:
'''simple docstring'''
UpperCamelCase__ = 364 if "coco" in model_name else 224
UpperCamelCase__ = InstructBlipVisionConfig(image_size=__A ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
UpperCamelCase__ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
UpperCamelCase__ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
UpperCamelCase__ = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32001 ).to_dict()
elif "vicuna-13b" in model_name:
UpperCamelCase__ = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32001 ).to_dict()
else:
raise ValueError("Model name not supported" )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
UpperCamelCase__ = InstructBlipQFormerConfig(vocab_size=30523 ).to_dict()
UpperCamelCase__ = InstructBlipConfig(vision_config=__A , text_config=__A , qformer_config=__A )
return config, image_size
@torch.no_grad()
def _UpperCamelCase ( __A , __A=None , __A=False ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase__ = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" )
qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} )
if "t5" in model_name:
UpperCamelCase__ = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
UpperCamelCase__ = LlamaTokenizerFast.from_pretrained(
"huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" )
tokenizer.add_special_tokens({"pad_token": "[PAD]"} )
UpperCamelCase__ , UpperCamelCase__ = get_blipa_config(__A )
UpperCamelCase__ = InstructBlipForConditionalGeneration(__A ).eval()
UpperCamelCase__ = {
"instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"),
"instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"),
"instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"),
"instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"),
}
UpperCamelCase__ , UpperCamelCase__ = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
UpperCamelCase__ = "cuda:1" if torch.cuda.is_available() else "cpu"
UpperCamelCase__ = "cuda:2" if torch.cuda.is_available() else "cpu"
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = load_model_and_preprocess(
name=__A , model_type=__A , is_eval=__A , device=__A )
original_model.eval()
print("Done!" )
# update state dict keys
UpperCamelCase__ = original_model.state_dict()
UpperCamelCase__ = create_rename_keys(__A )
for src, dest in rename_keys:
rename_key(__A , __A , __A )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
UpperCamelCase__ = state_dict.pop(__A )
if key.startswith("Qformer.bert" ):
UpperCamelCase__ = key.replace("Qformer.bert" , "qformer" )
if "attention.self" in key:
UpperCamelCase__ = key.replace("self" , "attention" )
if "llm_proj" in key:
UpperCamelCase__ = key.replace("llm_proj" , "language_projection" )
if "t5_proj" in key:
UpperCamelCase__ = key.replace("t5_proj" , "language_projection" )
if key.startswith("llm_model" ):
UpperCamelCase__ = key.replace("llm_model" , "language_model" )
if key.startswith("t5" ):
UpperCamelCase__ = key.replace("t5" , "language" )
UpperCamelCase__ = val
# read in qv biases
read_in_q_v_bias(__A , __A )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(__A , strict=__A )
UpperCamelCase__ = load_demo_image()
UpperCamelCase__ = "What is unusual about this image?"
# create processor
UpperCamelCase__ = BlipImageProcessor(
size={"height": image_size, "width": image_size} , image_mean=__A , image_std=__A )
UpperCamelCase__ = InstructBlipProcessor(
image_processor=__A , tokenizer=__A , qformer_tokenizer=__A , )
UpperCamelCase__ = processor(images=__A , text=__A , return_tensors="pt" ).to(__A )
# make sure processor creates exact same pixel values
UpperCamelCase__ = vis_processors["eval"](__A ).unsqueeze(0 ).to(__A )
UpperCamelCase__ = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __A )
original_model.to(__A )
hf_model.to(__A )
with torch.no_grad():
if "vicuna" in model_name:
UpperCamelCase__ = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits
UpperCamelCase__ = hf_model(**__A ).logits
else:
UpperCamelCase__ = original_model(
{"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits
UpperCamelCase__ = tokenizer("\n" , return_tensors="pt" ).input_ids.to(__A )
UpperCamelCase__ = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 )
UpperCamelCase__ = hf_model(**__A , labels=__A ).logits
print("First values of original logits:" , original_logits[0, :3, :3] )
print("First values of HF logits:" , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
UpperCamelCase__ = 1E-4 if "vicuna" in model_name else 1E-5
assert torch.allclose(original_logits.to(logits.device ) , __A , atol=__A )
print("Looks ok!" )
print("Generating with original model..." )
UpperCamelCase__ = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print("Generating with HF model..." )
UpperCamelCase__ = hf_model.generate(
**__A , do_sample=__A , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
UpperCamelCase__ = 2
print("Original generation:" , __A )
UpperCamelCase__ = processor.batch_decode(__A , skip_special_tokens=__A )
UpperCamelCase__ = [text.strip() for text in output_text]
print("HF generation:" , __A )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(__A )
hf_model.save_pretrained(__A )
if push_to_hub:
processor.push_to_hub(F'''Salesforce/{model_name}''' )
hf_model.push_to_hub(F'''Salesforce/{model_name}''' )
if __name__ == "__main__":
a__ : int = argparse.ArgumentParser()
a__ : int = [
'instructblip-vicuna-7b',
'instructblip-vicuna-13b',
'instructblip-flan-t5-xl',
'instructblip-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='instructblip-flan-t5-xl',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
a__ : int = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 80 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 0 |
"""simple docstring"""
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __A ( _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase = StableDiffusionDiffEditPipeline
__lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"height", "width", "image"} | {"image_latents"}
__lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {"image"} | {"image_latents"}
__lowerCAmelCase = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__lowerCAmelCase = frozenset([] )
def SCREAMING_SNAKE_CASE ( self ) -> Dict:
torch.manual_seed(0 )
a =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__A , )
a =DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__A , set_alpha_to_one=__A , )
a =DDIMInverseScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__A , set_alpha_to_zero=__A , )
torch.manual_seed(0 )
a =AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
a =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , )
a =CLIPTextModel(__A )
a =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
a ={
'''unet''': unet,
'''scheduler''': scheduler,
'''inverse_scheduler''': inverse_scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def SCREAMING_SNAKE_CASE ( self , __A , __A=0 ) -> str:
a =floats_tensor((1, 16, 16) , rng=random.Random(__A ) ).to(__A )
a =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__A ) ).to(__A )
if str(__A ).startswith('''mps''' ):
a =torch.manual_seed(__A )
else:
a =torch.Generator(device=__A ).manual_seed(__A )
a ={
'''prompt''': '''a dog and a newt''',
'''mask_image''': mask,
'''image_latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self , __A , __A=0 ) -> Optional[Any]:
a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A )
a =image.cpu().permute(0 , 2 , 3 , 1 )[0]
a =Image.fromarray(np.uinta(__A ) ).convert('''RGB''' )
if str(__A ).startswith('''mps''' ):
a =torch.manual_seed(__A )
else:
a =torch.Generator(device=__A ).manual_seed(__A )
a ={
'''image''': image,
'''source_prompt''': '''a cat and a frog''',
'''target_prompt''': '''a dog and a newt''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''num_maps_per_mask''': 2,
'''mask_encode_strength''': 1.0,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self , __A , __A=0 ) -> str:
a =floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A )
a =image.cpu().permute(0 , 2 , 3 , 1 )[0]
a =Image.fromarray(np.uinta(__A ) ).convert('''RGB''' )
if str(__A ).startswith('''mps''' ):
a =torch.manual_seed(__A )
else:
a =torch.Generator(device=__A ).manual_seed(__A )
a ={
'''image''': image,
'''prompt''': '''a cat and a frog''',
'''generator''': generator,
'''num_inference_steps''': 2,
'''inpaint_strength''': 1.0,
'''guidance_scale''': 6.0,
'''decode_latents''': True,
'''output_type''': '''numpy''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
if not hasattr(self.pipeline_class , '''_optional_components''' ):
return
a =self.get_dummy_components()
a =self.pipeline_class(**__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(__A , __A , __A )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
a =self.get_dummy_inputs(__A )
a =pipe(**__A )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__A )
a =self.pipeline_class.from_pretrained(__A )
pipe_loaded.to(__A )
pipe_loaded.set_progress_bar_config(disable=__A )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(__A , __A ) is None , f'''`{optional_component}` did not stay set to None after loading.''' , )
a =self.get_dummy_inputs(__A )
a =pipe_loaded(**__A )[0]
a =np.abs(output - output_loaded ).max()
self.assertLess(__A , 1E-4 )
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
a ='''cpu'''
a =self.get_dummy_components()
a =self.pipeline_class(**__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
a =self.get_dummy_mask_inputs(__A )
a =pipe.generate_mask(**__A )
a =mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
a =np.array([0] * 9 )
a =np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__A , 1E-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def SCREAMING_SNAKE_CASE ( self ) -> Any:
a ='''cpu'''
a =self.get_dummy_components()
a =self.pipeline_class(**__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
a =self.get_dummy_inversion_inputs(__A )
a =pipe.invert(**__A ).images
a =image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
a =np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
a =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__A , 1E-3 )
def SCREAMING_SNAKE_CASE ( self ) -> Dict:
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
a ='''cpu'''
a =self.get_dummy_components()
a ={'''beta_start''': 0.00_085, '''beta_end''': 0.012, '''beta_schedule''': '''scaled_linear'''}
a =DPMSolverMultistepScheduler(**__A )
a =DPMSolverMultistepInverseScheduler(**__A )
a =self.pipeline_class(**__A )
pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
a =self.get_dummy_inversion_inputs(__A )
a =pipe.invert(**__A ).images
a =image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
a =np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
a =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__A , 1E-3 )
@require_torch_gpu
@slow
class __A ( unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE ( self ) -> List[str]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def SCREAMING_SNAKE_CASE ( cls ) -> List[Any]:
a =load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png''' )
a =raw_image.convert('''RGB''' ).resize((768, 768) )
a =raw_image
def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
a =torch.manual_seed(0 )
a =StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=__A , torch_dtype=torch.floataa )
a =DDIMScheduler.from_config(pipe.scheduler.config )
a =DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__A )
a ='''a bowl of fruit'''
a ='''a bowl of pears'''
a =pipe.generate_mask(
image=self.raw_image , source_prompt=__A , target_prompt=__A , generator=__A , )
a =pipe.invert(
prompt=__A , image=self.raw_image , inpaint_strength=0.7 , generator=__A ).latents
a =pipe(
prompt=__A , mask_image=__A , image_latents=__A , generator=__A , negative_prompt=__A , inpaint_strength=0.7 , output_type='''numpy''' , ).images[0]
a =(
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
a =torch.manual_seed(0 )
a =StableDiffusionDiffEditPipeline.from_pretrained(
'''stabilityai/stable-diffusion-2-1''' , safety_checker=__A , torch_dtype=torch.floataa )
a =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
a =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__A )
a ='''a bowl of fruit'''
a ='''a bowl of pears'''
a =pipe.generate_mask(
image=self.raw_image , source_prompt=__A , target_prompt=__A , generator=__A , )
a =pipe.invert(
prompt=__A , image=self.raw_image , inpaint_strength=0.7 , generator=__A , num_inference_steps=25 , ).latents
a =pipe(
prompt=__A , mask_image=__A , image_latents=__A , generator=__A , negative_prompt=__A , inpaint_strength=0.7 , num_inference_steps=25 , output_type='''numpy''' , ).images[0]
a =(
np.array(
load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/diffedit/pears.png''' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1 | 81 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A__ = {
"""configuration_clip""": [
"""CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""CLIPConfig""",
"""CLIPOnnxConfig""",
"""CLIPTextConfig""",
"""CLIPVisionConfig""",
],
"""processing_clip""": ["""CLIPProcessor"""],
"""tokenization_clip""": ["""CLIPTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = ["""CLIPTokenizerFast"""]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = ["""CLIPFeatureExtractor"""]
A__ = ["""CLIPImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
"""CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CLIPModel""",
"""CLIPPreTrainedModel""",
"""CLIPTextModel""",
"""CLIPTextModelWithProjection""",
"""CLIPVisionModel""",
"""CLIPVisionModelWithProjection""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
"""TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFCLIPModel""",
"""TFCLIPPreTrainedModel""",
"""TFCLIPTextModel""",
"""TFCLIPVisionModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ = [
"""FlaxCLIPModel""",
"""FlaxCLIPPreTrainedModel""",
"""FlaxCLIPTextModel""",
"""FlaxCLIPTextPreTrainedModel""",
"""FlaxCLIPVisionModel""",
"""FlaxCLIPVisionPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 82 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 0 |
'''simple docstring'''
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ : Optional[Any] = logging.get_logger(__name__)
snake_case_ : int = {
'microsoft/xprophetnet-large-wiki100-cased': (
'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json'
),
}
class lowercase__ ( lowercase ):
lowercase__ = """xlm-prophetnet"""
lowercase__ = ["""past_key_values"""]
lowercase__ = {
"""num_attention_heads""": """num_encoder_attention_heads""",
}
def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[Union[str, Callable]] = "gelu" ,lowerCamelCase__ : Optional[int] = 30522 ,lowerCamelCase__ : Optional[int] = 1024 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[int] = 512 ,lowerCamelCase__ : Optional[float] = 0.0_2 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 2 ,lowerCamelCase__ : Optional[int] = 32 ,lowerCamelCase__ : Optional[int] = 128 ,lowerCamelCase__ : Optional[bool] = False ,lowerCamelCase__ : Optional[float] = 0.0 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 1 ,lowerCamelCase__ : Optional[int] = 2 ,**lowerCamelCase__ : Union[str, Any] ,):
'''simple docstring'''
_UpperCamelCase : List[Any] = vocab_size
_UpperCamelCase : Union[str, Any] = hidden_size
_UpperCamelCase : str = encoder_ffn_dim
_UpperCamelCase : List[Any] = num_encoder_layers
_UpperCamelCase : Tuple = num_encoder_attention_heads
_UpperCamelCase : Optional[int] = decoder_ffn_dim
_UpperCamelCase : List[Any] = num_decoder_layers
_UpperCamelCase : List[Any] = num_decoder_attention_heads
_UpperCamelCase : Optional[Any] = max_position_embeddings
_UpperCamelCase : str = init_std # Normal(0, this parameter)
_UpperCamelCase : List[str] = activation_function
# parameters for xlmprophetnet
_UpperCamelCase : Tuple = ngram
_UpperCamelCase : Optional[Any] = num_buckets
_UpperCamelCase : Tuple = relative_max_distance
_UpperCamelCase : str = disable_ngram_loss
_UpperCamelCase : str = eps
# 3 Types of Dropout
_UpperCamelCase : Union[str, Any] = attention_dropout
_UpperCamelCase : str = activation_dropout
_UpperCamelCase : List[str] = dropout
_UpperCamelCase : Tuple = use_cache
super().__init__(
pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,add_cross_attention=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,)
@property
def UpperCamelCase_ ( self : Optional[int] ):
'''simple docstring'''
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Union[str, Any] ):
'''simple docstring'''
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and'
' `num_decoder_layers`.' )
| 83 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 0 |
"""simple docstring"""
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def _snake_case ( lowercase__ : int ) -> int:
'''simple docstring'''
lowerCAmelCase_ :str = prime_factors(lowercase__ )
if is_square_free(lowercase__ ):
return -1 if len(lowercase__ ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 84 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 0 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
class _snake_case ( lowercase_ ):
lowerCAmelCase_ : List[Any] = ["input_values", "padding_mask"]
def __init__( self , a__ = 1 , a__ = 24_000 , a__ = 0.0 , a__ = None , a__ = None , **a__ , ) -> Any:
'''simple docstring'''
super().__init__(feature_size=a__ , sampling_rate=a__ , padding_value=a__ , **a__ )
snake_case_ = chunk_length_s
snake_case_ = overlap
@property
def lowerCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def lowerCAmelCase__ ( self ) -> Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , a__ , a__ = None , a__ = False , a__ = None , a__ = None , a__ = None , ) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
if padding and truncation:
raise ValueError("Both padding and truncation were set. Make sure you only set one." )
elif padding is None:
# by default let's pad the inputs
snake_case_ = True
snake_case_ = bool(
isinstance(a__ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
snake_case_ = [np.asarray(a__ , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(a__ , np.ndarray ):
snake_case_ = np.asarray(a__ , dtype=np.floataa )
elif isinstance(a__ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
snake_case_ = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
snake_case_ = [np.asarray(a__ ).T]
# verify inputs are valid
for idx, example in enumerate(a__ ):
if example.ndim > 2:
raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' )
snake_case_ = None
snake_case_ = BatchFeature({"input_values": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
snake_case_ = min(array.shape[0] for array in raw_audio )
snake_case_ = int(np.floor(max_length / self.chunk_stride ) )
snake_case_ = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
snake_case_ = max(array.shape[0] for array in raw_audio )
snake_case_ = int(np.ceil(max_length / self.chunk_stride ) )
snake_case_ = (nb_step - 1) * self.chunk_stride + self.chunk_length
snake_case_ = "max_length"
else:
snake_case_ = input_values
# normal padding on batch
if padded_inputs is None:
snake_case_ = self.pad(
a__ , max_length=a__ , truncation=a__ , padding=a__ , return_attention_mask=a__ , )
if padding:
snake_case_ = padded_inputs.pop("attention_mask" )
snake_case_ = []
for example in padded_inputs.pop("input_values" ):
if self.feature_size == 1:
snake_case_ = example[..., None]
input_values.append(example.T )
snake_case_ = input_values
if return_tensors is not None:
snake_case_ = padded_inputs.convert_to_tensors(a__ )
return padded_inputs
| 85 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase__ = {
"""configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""],
"""tokenization_mvp""": ["""MvpTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = ["""MvpTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase__ = [
"""MVP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MvpForCausalLM""",
"""MvpForConditionalGeneration""",
"""MvpForQuestionAnswering""",
"""MvpForSequenceClassification""",
"""MvpModel""",
"""MvpPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
from .tokenization_mvp import MvpTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mvp_fast import MvpTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mvp import (
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
MvpForCausalLM,
MvpForConditionalGeneration,
MvpForQuestionAnswering,
MvpForSequenceClassification,
MvpModel,
MvpPreTrainedModel,
)
else:
import sys
lowerCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 86 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 0 |
import argparse
import os
import re
UpperCamelCase = '''src/transformers'''
# Pattern that looks at the indentation in a line.
UpperCamelCase = re.compile(R'''^(\s*)\S''')
# Pattern that matches `"key":" and puts `key` in group 0.
UpperCamelCase = re.compile(R'''^\s*"([^"]+)":''')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
UpperCamelCase = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''')
# Pattern that matches `"key",` and puts `key` in group 0.
UpperCamelCase = re.compile(R'''^\s*"([^"]+)",\s*$''')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
UpperCamelCase = re.compile(R'''\[([^\]]+)\]''')
def lowercase_ ( _lowerCamelCase : int):
lowercase__ : str = _re_indent.search(_lowerCamelCase)
return "" if search is None else search.groups()[0]
def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple="" , _lowerCamelCase : Any=None , _lowerCamelCase : Tuple=None):
lowercase__ : Optional[Any] = 0
lowercase__ : Optional[int] = code.split("\n")
if start_prompt is not None:
while not lines[index].startswith(_lowerCamelCase):
index += 1
lowercase__ : str = ["\n".join(lines[:index])]
else:
lowercase__ : List[Any] = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowercase__ : Any = [lines[index]]
index += 1
while index < len(_lowerCamelCase) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase)):
if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level:
if len(_lowerCamelCase) > 0 and get_indent(current_block[-1]).startswith(indent_level + " "):
current_block.append(lines[index])
blocks.append("\n".join(_lowerCamelCase))
if index < len(_lowerCamelCase) - 1:
lowercase__ : List[str] = [lines[index + 1]]
index += 1
else:
lowercase__ : List[str] = []
else:
blocks.append("\n".join(_lowerCamelCase))
lowercase__ : List[str] = [lines[index]]
else:
current_block.append(lines[index])
index += 1
# Adds current block if it's nonempty.
if len(_lowerCamelCase) > 0:
blocks.append("\n".join(_lowerCamelCase))
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_lowerCamelCase):
blocks.append("\n".join(lines[index:]))
return blocks
def lowercase_ ( _lowerCamelCase : Optional[int]):
def _inner(_lowerCamelCase : str):
return key(_lowerCamelCase).lower().replace("_" , "")
return _inner
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : Any=None):
# If no key is provided, we use a noop.
def noop(_lowerCamelCase : str):
return x
if key is None:
lowercase__ : Any = noop
# Constants are all uppercase, they go first.
lowercase__ : Tuple = [obj for obj in objects if key(_lowerCamelCase).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowercase__ : str = [obj for obj in objects if key(_lowerCamelCase)[0].isupper() and not key(_lowerCamelCase).isupper()]
# Functions begin with a lowercase, they go last.
lowercase__ : Any = [obj for obj in objects if not key(_lowerCamelCase)[0].isupper()]
lowercase__ : Dict = ignore_underscore(_lowerCamelCase)
return sorted(_lowerCamelCase , key=_lowerCamelCase) + sorted(_lowerCamelCase , key=_lowerCamelCase) + sorted(_lowerCamelCase , key=_lowerCamelCase)
def lowercase_ ( _lowerCamelCase : str):
# This inner function sort imports between [ ].
def _replace(_lowerCamelCase : List[Any]):
lowercase__ : Optional[Any] = match.groups()[0]
if "," not in imports:
return f'''[{imports}]'''
lowercase__ : Optional[int] = [part.strip().replace("\"" , "") for part in imports.split(",")]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1]) == 0:
lowercase__ : Optional[int] = keys[:-1]
return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(_lowerCamelCase)]) + "]"
lowercase__ : List[Any] = import_statement.split("\n")
if len(_lowerCamelCase) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowercase__ : Dict = 2 if lines[1].strip() == "[" else 1
lowercase__ : Optional[Any] = [(i, _re_strip_line.search(_lowerCamelCase).groups()[0]) for i, line in enumerate(lines[idx:-idx])]
lowercase__ : Any = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase: x[1])
lowercase__ : List[str] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:])
elif len(_lowerCamelCase) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1]) is not None:
lowercase__ : Any = _re_bracket_content.sub(_replace , lines[1])
else:
lowercase__ : List[Any] = [part.strip().replace("\"" , "") for part in lines[1].split(",")]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1]) == 0:
lowercase__ : Optional[Any] = keys[:-1]
lowercase__ : Optional[Any] = get_indent(lines[1]) + ", ".join([f'''"{k}"''' for k in sort_objects(_lowerCamelCase)])
return "\n".join(_lowerCamelCase)
else:
# Finally we have to deal with imports fitting on one line
lowercase__ : Any = _re_bracket_content.sub(_replace , _lowerCamelCase)
return import_statement
def lowercase_ ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]=True):
with open(_lowerCamelCase , encoding="utf-8") as f:
lowercase__ : Any = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowercase__ : List[Any] = split_code_in_indented_blocks(
_lowerCamelCase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:")
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_lowerCamelCase) - 1):
# Check if the block contains some `_import_structure`s thingy to sort.
lowercase__ : Optional[int] = main_blocks[block_idx]
lowercase__ : Any = block.split("\n")
# Get to the start of the imports.
lowercase__ : int = 0
while line_idx < len(_lowerCamelCase) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowercase__ : List[str] = len(_lowerCamelCase)
else:
line_idx += 1
if line_idx >= len(_lowerCamelCase):
continue
# Ignore beginning and last line: they don't contain anything.
lowercase__ : str = "\n".join(block_lines[line_idx:-1])
lowercase__ : Optional[Any] = get_indent(block_lines[1])
# Slit the internal block into blocks of indent level 1.
lowercase__ : List[Any] = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase)
# We have two categories of import key: list or _import_structure[key].append/extend
lowercase__ : Optional[int] = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowercase__ : Dict = [(pattern.search(_lowerCamelCase).groups()[0] if pattern.search(_lowerCamelCase) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowercase__ : Optional[int] = [(i, key) for i, key in enumerate(_lowerCamelCase) if key is not None]
lowercase__ : List[Any] = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase: x[1])]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowercase__ : Tuple = 0
lowercase__ : Tuple = []
for i in range(len(_lowerCamelCase)):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i])
else:
lowercase__ : int = sort_objects_in_import(internal_blocks[sorted_indices[count]])
reorderded_blocks.append(_lowerCamelCase)
count += 1
# And we put our main block back together with its first and last line.
lowercase__ : Any = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]])
if code != "\n".join(_lowerCamelCase):
if check_only:
return True
else:
print(f'''Overwriting {file}.''')
with open(_lowerCamelCase , "w" , encoding="utf-8") as f:
f.write("\n".join(_lowerCamelCase))
def lowercase_ ( _lowerCamelCase : List[Any]=True):
lowercase__ : Optional[int] = []
for root, _, files in os.walk(_lowerCamelCase):
if "__init__.py" in files:
lowercase__ : Optional[int] = sort_imports(os.path.join(_lowerCamelCase , "__init__.py") , check_only=_lowerCamelCase)
if result:
lowercase__ : List[str] = [os.path.join(_lowerCamelCase , "__init__.py")]
if len(_lowerCamelCase) > 0:
raise ValueError(f'''Would overwrite {len(_lowerCamelCase)} files, run `make style`.''')
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''')
UpperCamelCase = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 87 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 0 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
__lowerCAmelCase : Any = _symbol_database.Default()
__lowerCAmelCase : Union[str, Any] = _descriptor_pool.Default().AddSerializedFile(
b'\n\x19sentencepiece_model.proto\x12\rsentencepiece"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03'
)
__lowerCAmelCase : Tuple = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, 'sentencepiece_model_pb2', _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
__lowerCAmelCase : Any = None
__lowerCAmelCase : Any = b'H\003'
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
__lowerCAmelCase : str = 45
__lowerCAmelCase : List[str] = 1581
__lowerCAmelCase : Optional[int] = 1517
__lowerCAmelCase : List[Any] = 1570
__lowerCAmelCase : List[Any] = 1584
__lowerCAmelCase : Optional[int] = 1793
__lowerCAmelCase : List[str] = 1795
__lowerCAmelCase : str = 1916
__lowerCAmelCase : int = 1864
__lowerCAmelCase : List[Any] = 1905
__lowerCAmelCase : Optional[int] = 1919
__lowerCAmelCase : Dict = 2429
__lowerCAmelCase : Optional[Any] = 2208
__lowerCAmelCase : Optional[int] = 2418
__lowerCAmelCase : List[Any] = 2323
__lowerCAmelCase : List[Any] = 2407
# @@protoc_insertion_point(module_scope)
| 88 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 0 |
'''simple docstring'''
from __future__ import annotations
import math
import random
from typing import Any
class __magic_name__ :
def __init__( self : Dict ):
_a : list[Any] = []
_a : int = 0
_a : int = 0
def __lowercase ( self : Optional[Any] ):
return self.head == self.tail
def __lowercase ( self : List[Any] ,_UpperCAmelCase : Any ):
self.data.append(_UpperCAmelCase )
_a : Dict = self.tail + 1
def __lowercase ( self : int ):
_a : str = self.data[self.head]
_a : List[Any] = self.head + 1
return ret
def __lowercase ( self : Dict ):
return self.tail - self.head
def __lowercase ( self : List[Any] ):
print(self.data )
print('**************' )
print(self.data[self.head : self.tail] )
class __magic_name__ :
def __init__( self : List[str] ,_UpperCAmelCase : Any ):
_a : Dict = data
_a : MyNode | None = None
_a : MyNode | None = None
_a : int = 1
def __lowercase ( self : Dict ):
return self.data
def __lowercase ( self : Tuple ):
return self.left
def __lowercase ( self : Optional[Any] ):
return self.right
def __lowercase ( self : Optional[Any] ):
return self.height
def __lowercase ( self : str ,_UpperCAmelCase : Any ):
_a : str = data
def __lowercase ( self : str ,_UpperCAmelCase : MyNode | None ):
_a : Tuple = node
def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : MyNode | None ):
_a : Tuple = node
def __lowercase ( self : Dict ,_UpperCAmelCase : int ):
_a : Dict = height
def __lowerCamelCase ( lowerCAmelCase_ ) -> int:
if node is None:
return 0
return node.get_height()
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int:
if a > b:
return a
return b
def __lowerCamelCase ( lowerCAmelCase_ ) -> MyNode:
print('left rotation node:' , node.get_data() )
_a : str = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(lowerCAmelCase_ )
_a : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCAmelCase_ )
_a : str = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(lowerCAmelCase_ )
return ret
def __lowerCamelCase ( lowerCAmelCase_ ) -> MyNode:
print('right rotation node:' , node.get_data() )
_a : Optional[Any] = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(lowerCAmelCase_ )
_a : Tuple = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCAmelCase_ )
_a : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(lowerCAmelCase_ )
return ret
def __lowerCamelCase ( lowerCAmelCase_ ) -> MyNode:
_a : Union[str, Any] = node.get_left()
assert left_child is not None
node.set_left(left_rotation(lowerCAmelCase_ ) )
return right_rotation(lowerCAmelCase_ )
def __lowerCamelCase ( lowerCAmelCase_ ) -> MyNode:
_a : str = node.get_right()
assert right_child is not None
node.set_right(right_rotation(lowerCAmelCase_ ) )
return left_rotation(lowerCAmelCase_ )
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> MyNode | None:
if node is None:
return MyNode(lowerCAmelCase_ )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , lowerCAmelCase_ ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
_a : Any = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
_a : Union[str, Any] = right_rotation(lowerCAmelCase_ )
else:
_a : List[str] = lr_rotation(lowerCAmelCase_ )
else:
node.set_right(insert_node(node.get_right() , lowerCAmelCase_ ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
_a : str = node.get_right()
assert right_child is not None
if data < right_child.get_data():
_a : Any = rl_rotation(lowerCAmelCase_ )
else:
_a : str = left_rotation(lowerCAmelCase_ )
_a : str = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(lowerCAmelCase_ )
return node
def __lowerCamelCase ( lowerCAmelCase_ ) -> Any:
while True:
_a : Tuple = root.get_right()
if right_child is None:
break
_a : Any = right_child
return root.get_data()
def __lowerCamelCase ( lowerCAmelCase_ ) -> Any:
while True:
_a : Any = root.get_left()
if left_child is None:
break
_a : Optional[int] = left_child
return root.get_data()
def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> MyNode | None:
_a : Optional[int] = root.get_left()
_a : Optional[int] = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
_a : int = get_left_most(lowerCAmelCase_ )
root.set_data(lowerCAmelCase_ )
root.set_right(del_node(lowerCAmelCase_ , lowerCAmelCase_ ) )
elif left_child is not None:
_a : Optional[int] = left_child
elif right_child is not None:
_a : Optional[int] = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print('No such data' )
return root
else:
root.set_left(del_node(lowerCAmelCase_ , lowerCAmelCase_ ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(lowerCAmelCase_ , lowerCAmelCase_ ) )
if get_height(lowerCAmelCase_ ) - get_height(lowerCAmelCase_ ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
_a : Union[str, Any] = left_rotation(lowerCAmelCase_ )
else:
_a : Dict = rl_rotation(lowerCAmelCase_ )
elif get_height(lowerCAmelCase_ ) - get_height(lowerCAmelCase_ ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
_a : Any = right_rotation(lowerCAmelCase_ )
else:
_a : int = lr_rotation(lowerCAmelCase_ )
_a : Tuple = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(lowerCAmelCase_ )
return root
class __magic_name__ :
def __init__( self : Tuple ):
_a : MyNode | None = None
def __lowercase ( self : List[Any] ):
return get_height(self.root )
def __lowercase ( self : Tuple ,_UpperCAmelCase : Any ):
print('insert:' + str(_UpperCAmelCase ) )
_a : List[Any] = insert_node(self.root ,_UpperCAmelCase )
def __lowercase ( self : Any ,_UpperCAmelCase : Any ):
print('delete:' + str(_UpperCAmelCase ) )
if self.root is None:
print('Tree is empty!' )
return
_a : Union[str, Any] = del_node(self.root ,_UpperCAmelCase )
def __str__( self : int ,): # a level traversale, gives a more intuitive look on the tree
_a : Optional[Any] = ''
_a : Tuple = MyQueue()
q.push(self.root )
_a : Dict = self.get_height()
if layer == 0:
return output
_a : int = 0
while not q.is_empty():
_a : List[str] = q.pop()
_a : Optional[int] = ' ' * int(math.pow(2 ,layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(_UpperCAmelCase )
q.push(_UpperCAmelCase )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
_a : Dict = cnt + 1
for i in range(100 ):
if cnt == math.pow(2 ,_UpperCAmelCase ) - 1:
_a : List[Any] = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def __lowerCamelCase ( ) -> None:
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
__lowerCAmelCase = AVLtree()
__lowerCAmelCase = list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 89 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 0 |
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
__A = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n"
__A = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n"
__A = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n"
def lowerCamelCase_ ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ) -> Optional[int]:
"""simple docstring"""
return float((preds == labels).mean() )
def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple ) -> Any:
"""simple docstring"""
__lowerCamelCase = simple_accuracy(UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = float(fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ ) )
return {
"accuracy": acc,
"f1": fa,
}
def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any] ) -> Any:
"""simple docstring"""
__lowerCamelCase = float(pearsonr(UpperCamelCase__ , UpperCamelCase__ )[0] )
__lowerCamelCase = float(spearmanr(UpperCamelCase__ , UpperCamelCase__ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
"""simple docstring"""
def lowercase_ ( self ) -> Dict:
'''simple docstring'''
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ),
} ) , codebase_urls=[] , reference_urls=[] , format='numpy' , )
def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
'''simple docstring'''
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ )}
elif self.config_name == "stsb":
return pearson_and_spearman(lowerCamelCase__ , lowerCamelCase__ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )}
else:
raise KeyError(
'You should supply a configuration name selected in '
'["sst2", "mnli", "mnli_mismatched", "mnli_matched", '
'"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
| 90 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 0 |
"""simple docstring"""
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def _A (__a , __a ) -> Dict:
"""simple docstring"""
assert isinstance(__a , __a )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def _A (__a , __a , __a ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = tmp_path / '''cache'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ParquetDatasetReader(__a , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def _A (__a , __a , __a ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = tmp_path / '''cache'''
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
SCREAMING_SNAKE_CASE_ : List[str] = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE_ : int = (
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
SCREAMING_SNAKE_CASE_ : Dict = ParquetDatasetReader(__a , features=__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def _A (__a , __a , __a ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = tmp_path / '''cache'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
SCREAMING_SNAKE_CASE_ : Optional[Any] = ParquetDatasetReader(__a , cache_dir=__a , split=__a ).read()
_check_parquet_dataset(__a , __a )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('''path_type''' , [str, list] )
def _A (__a , __a , __a ) -> Dict:
"""simple docstring"""
if issubclass(__a , __a ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = parquet_path
elif issubclass(__a , __a ):
SCREAMING_SNAKE_CASE_ : int = [parquet_path]
SCREAMING_SNAKE_CASE_ : Dict = tmp_path / '''cache'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
SCREAMING_SNAKE_CASE_ : Optional[Any] = ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_dataset(__a , __a )
def _A (__a , __a , __a=("train",) ) -> Any:
"""simple docstring"""
assert isinstance(__a , __a )
for split in splits:
SCREAMING_SNAKE_CASE_ : Any = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('''keep_in_memory''' , [False, True] )
def _A (__a , __a , __a ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = tmp_path / '''cache'''
SCREAMING_SNAKE_CASE_ : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
SCREAMING_SNAKE_CASE_ : int = ParquetDatasetReader(
{'''train''': parquet_path} , cache_dir=__a , keep_in_memory=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize(
'''features''' , [
None,
{'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''},
{'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''},
{'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''},
{'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''},
] , )
def _A (__a , __a , __a ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / '''cache'''
SCREAMING_SNAKE_CASE_ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
SCREAMING_SNAKE_CASE_ : List[Any] = features.copy() if features else default_expected_features
SCREAMING_SNAKE_CASE_ : str = (
Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None
)
SCREAMING_SNAKE_CASE_ : Dict = ParquetDatasetReader({'''train''': parquet_path} , features=__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a )
@pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] )
def _A (__a , __a , __a ) -> Dict:
"""simple docstring"""
if split:
SCREAMING_SNAKE_CASE_ : Any = {split: parquet_path}
else:
SCREAMING_SNAKE_CASE_ : Dict = '''train'''
SCREAMING_SNAKE_CASE_ : List[str] = {'''train''': parquet_path, '''test''': parquet_path}
SCREAMING_SNAKE_CASE_ : List[Any] = tmp_path / '''cache'''
SCREAMING_SNAKE_CASE_ : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}
SCREAMING_SNAKE_CASE_ : Tuple = ParquetDatasetReader(__a , cache_dir=__a ).read()
_check_parquet_datasetdict(__a , __a , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def _A (__a , __a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = ParquetDatasetWriter(__a , tmp_path / '''foo.parquet''' )
assert writer.write() > 0
SCREAMING_SNAKE_CASE_ : Any = pq.ParquetFile(tmp_path / '''foo.parquet''' )
SCREAMING_SNAKE_CASE_ : Tuple = pf.read()
assert dataset.data.table == output_table
def _A (__a , __a ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = str(shared_datadir / '''test_image_rgb.jpg''' )
SCREAMING_SNAKE_CASE_ : Optional[int] = {'''image''': [image_path]}
SCREAMING_SNAKE_CASE_ : Dict = Features({'''image''': Image()} )
SCREAMING_SNAKE_CASE_ : Optional[int] = Dataset.from_dict(__a , features=__a )
SCREAMING_SNAKE_CASE_ : Any = ParquetDatasetWriter(__a , tmp_path / '''foo.parquet''' )
assert writer.write() > 0
SCREAMING_SNAKE_CASE_ : Any = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) )
assert dataset.features == reloaded_dataset.features
SCREAMING_SNAKE_CASE_ : str = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=__a ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'''feature, expected''' , [
(Features({'''foo''': Value('''int32''' )} ), None),
(Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def _A (__a , __a ) -> str:
"""simple docstring"""
assert get_writer_batch_size(__a ) == expected
| 91 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 0 |
def _a ( SCREAMING_SNAKE_CASE_ : int ): # noqa: E741
__lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = 0
__lowerCAmelCase = [0] * n
__lowerCAmelCase = [False] * n
__lowerCAmelCase = [False] * n
def dfs(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] ):
if parent == root:
out_edge_count += 1
__lowerCAmelCase = True
__lowerCAmelCase = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
__lowerCAmelCase = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
__lowerCAmelCase = True
# AP found via cycle
if at == low[to]:
__lowerCAmelCase = True
else:
__lowerCAmelCase = min(low[at] , SCREAMING_SNAKE_CASE_ )
return out_edge_count
for i in range(SCREAMING_SNAKE_CASE_ ):
if not visited[i]:
__lowerCAmelCase = 0
__lowerCAmelCase = dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , -1 , SCREAMING_SNAKE_CASE_ )
__lowerCAmelCase = out_edge_count > 1
for x in range(len(SCREAMING_SNAKE_CASE_ ) ):
if is_art[x] is True:
print(SCREAMING_SNAKE_CASE_ )
# Adjacency list of graph
UpperCamelCase__ = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 92 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class lowerCAmelCase__ ( lowerCamelCase_ , unittest.TestCase ):
# FIXME: add fast tests
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
@property
def _snake_case ( self ):
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Optional[int] = ort.SessionOptions()
lowercase_ : List[Any] = False
return options
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
lowercase_ : str = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
lowercase_ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowercase_ : Any = '''A red cat sitting on a park bench'''
lowercase_ : Optional[Any] = np.random.RandomState(0 )
lowercase_ : str = pipe(
prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=10 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , )
lowercase_ : int = output.images
lowercase_ : Dict = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
lowercase_ : int = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def _snake_case ( self ):
"""simple docstring"""
lowercase_ : Optional[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo.png''' )
lowercase_ : str = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' )
lowercase_ : Optional[Any] = LMSDiscreteScheduler.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' )
lowercase_ : int = OnnxStableDiffusionInpaintPipeline.from_pretrained(
'''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , feature_extractor=__SCREAMING_SNAKE_CASE , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
lowercase_ : Tuple = '''A red cat sitting on a park bench'''
lowercase_ : Dict = np.random.RandomState(0 )
lowercase_ : int = pipe(
prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , mask_image=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , num_inference_steps=20 , generator=__SCREAMING_SNAKE_CASE , output_type='''np''' , )
lowercase_ : Optional[Any] = output.images
lowercase_ : List[Any] = images[0, 2_55:2_58, 2_55:2_58, -1]
assert images.shape == (1, 5_12, 5_12, 3)
lowercase_ : List[str] = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 93 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 0 |
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
snake_case : List[Any] = logging.get_logger(__name__)
class _snake_case ( _snake_case ):
SCREAMING_SNAKE_CASE__ = ['input_values', 'padding_mask']
def __init__( self , _lowerCamelCase = 1 , _lowerCamelCase = 2_4000 , _lowerCamelCase = 0.0 , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ):
super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase )
a :Optional[int] = chunk_length_s
a :Union[str, Any] = overlap
@property
def SCREAMING_SNAKE_CASE__ ( self ):
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
if padding and truncation:
raise ValueError('''Both padding and truncation were set. Make sure you only set one.''' )
elif padding is None:
# by default let's pad the inputs
a :Optional[Any] = True
a :Dict = bool(
isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
a :Dict = [np.asarray(_lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ):
a :Union[str, Any] = np.asarray(_lowerCamelCase , dtype=np.floataa )
elif isinstance(_lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
a :List[Any] = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
a :Tuple = [np.asarray(_lowerCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(_lowerCamelCase ):
if example.ndim > 2:
raise ValueError(F'''Expected input shape (channels, length) but got shape {example.shape}''' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'''Expected mono audio but example has {example.shape[-1]} channels''' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'''Expected stereo audio but example has {example.shape[-1]} channels''' )
a :Tuple = None
a :Dict = BatchFeature({'''input_values''': raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
a :Dict = min(array.shape[0] for array in raw_audio )
a :List[Any] = int(np.floor(max_length / self.chunk_stride ) )
a :Optional[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
a :str = max(array.shape[0] for array in raw_audio )
a :Union[str, Any] = int(np.ceil(max_length / self.chunk_stride ) )
a :List[Any] = (nb_step - 1) * self.chunk_stride + self.chunk_length
a :List[Any] = '''max_length'''
else:
a :str = input_values
# normal padding on batch
if padded_inputs is None:
a :Any = self.pad(
_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , padding=_lowerCamelCase , return_attention_mask=_lowerCamelCase , )
if padding:
a :Tuple = padded_inputs.pop('''attention_mask''' )
a :Union[str, Any] = []
for example in padded_inputs.pop('''input_values''' ):
if self.feature_size == 1:
a :Optional[int] = example[..., None]
input_values.append(example.T )
a :int = input_values
if return_tensors is not None:
a :Any = padded_inputs.convert_to_tensors(_lowerCamelCase )
return padded_inputs
| 94 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 0 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase : Any = logging.get_logger()
@dataclass
class __lowerCAmelCase :
_lowercase : nn.Module
_lowercase : List[nn.Module] = field(default_factory=UpperCamelCase__)
_lowercase : list = field(default_factory=UpperCamelCase__)
def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
'''simple docstring'''
a__ : Tuple =len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(lowerCAmelCase__ )
def __call__( self , lowerCAmelCase__ ) -> List[Any]:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(lowerCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
return list(filter(lambda lowerCAmelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class __lowerCAmelCase :
_lowercase : nn.Module
_lowercase : nn.Module
_lowercase : int = 0
_lowercase : List = field(default_factory=UpperCamelCase__)
_lowercase : List = field(default_factory=UpperCamelCase__)
def __call__( self , lowerCAmelCase__ ) -> Tuple:
'''simple docstring'''
a__ : Any =Tracker(self.dest )(lowerCAmelCase__ ).parametrized
a__ : List[str] =Tracker(self.src )(lowerCAmelCase__ ).parametrized
a__ : Tuple =list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) )
a__ : Any =list(filter(lambda lowerCAmelCase__ : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise Exception(
F'''Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while'''
F''' destination module has {len(lowerCAmelCase__ )}.''' )
for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F'''Transfered from={src_m} to={dest_m}''' )
def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : ResNetConfig , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : bool = True ):
"""simple docstring"""
print(f'''Converting {name}...''' )
with torch.no_grad():
a__ : Tuple =timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ).eval()
a__ : str =ResNetForImageClassification(SCREAMING_SNAKE_CASE ).eval()
a__ : List[str] =ModuleTransfer(src=SCREAMING_SNAKE_CASE , dest=SCREAMING_SNAKE_CASE )
a__ : Optional[Any] =torch.randn((1, 3, 224, 224) )
module_transfer(SCREAMING_SNAKE_CASE )
assert torch.allclose(from_model(SCREAMING_SNAKE_CASE ) , our_model(SCREAMING_SNAKE_CASE ).logits ), "The model logits don't match the original one."
a__ : Union[str, Any] =f'''resnet{"-".join(name.split("resnet" ) )}'''
print(SCREAMING_SNAKE_CASE )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="Add model" , use_temp_dir=SCREAMING_SNAKE_CASE , )
# we can use the convnext one
a__ : Optional[int] =AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message="Add image processor" , use_temp_dir=SCREAMING_SNAKE_CASE , )
print(f'''Pushed {checkpoint_name}''' )
def _A ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : bool = True ):
"""simple docstring"""
a__ : int ="imagenet-1k-id2label.json"
a__ : List[str] =1_000
a__ : List[Any] =(1, num_labels)
a__ : str ="huggingface/label-files"
a__ : Optional[int] =num_labels
a__ : Union[str, Any] =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) )
a__ : str ={int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
a__ : int =idalabel
a__ : Dict ={v: k for k, v in idalabel.items()}
a__ : str =partial(SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE )
a__ : Optional[Any] ={
"resnet18": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ),
"resnet26": ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet34": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type="basic" ),
"resnet50": ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet101": ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
"resnet152": ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type="bottleneck" ),
}
if model_name:
convert_weight_and_push(SCREAMING_SNAKE_CASE , names_to_config[model_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return config, expected_shape
if __name__ == "__main__":
UpperCAmelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported resnet* architecture,"""
""" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
UpperCAmelCase : str = parser.parse_args()
UpperCAmelCase : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 95 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 0 |
"""simple docstring"""
import json
import os
import tempfile
import datasets
from utils import generate_example_dataset, get_duration
lowercase__ = 5_0000
lowercase__ = 5000
lowercase__ , lowercase__ = os.path.split(__file__)
lowercase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json"""))
@get_duration
def _snake_case ( lowercase__ , lowercase__ ):
for i in range(lowercase__ ):
_lowerCamelCase : Optional[Any] = dataset[i]
@get_duration
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
for i in range(0 , len(lowercase__ ) , lowercase__ ):
_lowerCamelCase : str = dataset[i : i + batch_size]
@get_duration
def _snake_case ( lowercase__ , lowercase__ , lowercase__ ):
with dataset.formatted_as(type=lowercase__ ):
for i in range(lowercase__ ):
_lowerCamelCase : Optional[Any] = dataset[i]
@get_duration
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
with dataset.formatted_as(type=lowercase__ ):
for i in range(0 , lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = dataset[i : i + batch_size]
def _snake_case ( ):
_lowerCamelCase : List[str] = {'num examples': SPEED_TEST_N_EXAMPLES}
_lowerCamelCase : str = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted, {'type': 'pandas', 'length': SMALL_TEST}),
(read_formatted, {'type': 'torch', 'length': SMALL_TEST}),
(read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}),
]
_lowerCamelCase : Dict = [
(read, {'length': SMALL_TEST}),
(read, {'length': SPEED_TEST_N_EXAMPLES}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 10}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 100}),
(read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1000}),
(read_formatted, {'type': 'numpy', 'length': SMALL_TEST}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 10}),
(read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1000}),
]
with tempfile.TemporaryDirectory() as tmp_dir:
print('generating dataset' )
_lowerCamelCase : List[Any] = datasets.Features(
{'list': datasets.Sequence(datasets.Value('float32' ) ), 'numbers': datasets.Value('float32' )} )
_lowerCamelCase : List[Any] = generate_example_dataset(
os.path.join(lowercase__ , 'dataset.arrow' ) , lowercase__ , num_examples=lowercase__ , seq_shapes={'list': (100,)} , )
print('first set of iterations' )
for func, kwargs in functions:
print(func.__name__ , str(lowercase__ ) )
_lowerCamelCase : int = func(lowercase__ , **lowercase__ )
print('shuffling dataset' )
_lowerCamelCase : Dict = dataset.shuffle()
print('Second set of iterations (after shuffling' )
for func, kwargs in functions_shuffled:
print('shuffled ' , func.__name__ , str(lowercase__ ) )
_lowerCamelCase : List[str] = func(
lowercase__ , **lowercase__ )
with open(lowercase__ , 'wb' ) as f:
f.write(json.dumps(lowercase__ ).encode('utf-8' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_iterating() | 96 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 0 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase ( A__ ):
"""simple docstring"""
_a = 'xlnet'
_a = ['mems']
_a = {
'n_token': 'vocab_size', # Backward compatibility
'hidden_size': 'd_model',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , UpperCamelCase_=32000 , UpperCamelCase_=1024 , UpperCamelCase_=24 , UpperCamelCase_=16 , UpperCamelCase_=4096 , UpperCamelCase_="gelu" , UpperCamelCase_=True , UpperCamelCase_="bi" , UpperCamelCase_=0.02 , UpperCamelCase_=1e-12 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=-1 , UpperCamelCase_=False , UpperCamelCase_="last" , UpperCamelCase_=True , UpperCamelCase_="tanh" , UpperCamelCase_=0.1 , UpperCamelCase_=5 , UpperCamelCase_=5 , UpperCamelCase_=5 , UpperCamelCase_=1 , UpperCamelCase_=2 , **UpperCamelCase_ , ):
'''simple docstring'''
UpperCamelCase__ :Union[str, Any] = vocab_size
UpperCamelCase__ :List[str] = d_model
UpperCamelCase__ :Dict = n_layer
UpperCamelCase__ :Any = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
UpperCamelCase__ :List[Any] = d_model // n_head
UpperCamelCase__ :str = ff_activation
UpperCamelCase__ :Optional[int] = d_inner
UpperCamelCase__ :int = untie_r
UpperCamelCase__ :Optional[int] = attn_type
UpperCamelCase__ :Optional[int] = initializer_range
UpperCamelCase__ :Optional[int] = layer_norm_eps
UpperCamelCase__ :Tuple = dropout
UpperCamelCase__ :Union[str, Any] = mem_len
UpperCamelCase__ :Optional[int] = reuse_len
UpperCamelCase__ :Optional[Any] = bi_data
UpperCamelCase__ :Optional[Any] = clamp_len
UpperCamelCase__ :Optional[Any] = same_length
UpperCamelCase__ :List[str] = summary_type
UpperCamelCase__ :Optional[Any] = summary_use_proj
UpperCamelCase__ :Optional[Any] = summary_activation
UpperCamelCase__ :int = summary_last_dropout
UpperCamelCase__ :Dict = start_n_top
UpperCamelCase__ :Union[str, Any] = end_n_top
UpperCamelCase__ :Any = bos_token_id
UpperCamelCase__ :int = pad_token_id
UpperCamelCase__ :Optional[int] = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'''
''' instead.''' , UpperCamelCase_ , )
UpperCamelCase__ :Optional[Any] = kwargs['''use_cache''']
UpperCamelCase__ :List[Any] = use_mems_eval
UpperCamelCase__ :Any = use_mems_train
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) | 97 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
lowerCAmelCase__ : int = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : List[str] = ['GLPNFeatureExtractor']
lowerCAmelCase__ : Any = ['GLPNImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : Optional[int] = [
'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST',
'GLPNForDepthEstimation',
'GLPNLayer',
'GLPNModel',
'GLPNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
lowerCAmelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 98 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 0 |
def A_ ( A__ ) -> bool:
a__ : Union[str, Any] = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def A_ ( A__ = 5000 ) -> int:
a__ : Dict = [(i * (3 * i - 1)) // 2 for i in range(1 , A__ )]
for i, pentagonal_i in enumerate(A__ ):
for j in range(A__ , len(A__ ) ):
a__ : List[str] = pentagonal_nums[j]
a__ : Optional[Any] = pentagonal_i + pentagonal_j
a__ : Tuple = pentagonal_j - pentagonal_i
if is_pentagonal(A__ ) and is_pentagonal(A__ ):
return b
return -1
if __name__ == "__main__":
print(F"""{solution() = }""")
| 99 |
'''simple docstring'''
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
lowercase__ : Union[str, Any] = HUGGINGFACE_HUB_CACHE
lowercase__ : int = 'config.json'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.bin'
lowercase__ : List[str] = 'diffusion_flax_model.msgpack'
lowercase__ : str = 'model.onnx'
lowercase__ : Optional[int] = 'diffusion_pytorch_model.safetensors'
lowercase__ : List[str] = 'weights.pb'
lowercase__ : str = 'https://huggingface.co'
lowercase__ : str = default_cache_path
lowercase__ : Optional[int] = 'diffusers_modules'
lowercase__ : Optional[int] = os.getenv('HF_MODULES_CACHE', os.path.join(hf_cache_home, 'modules'))
lowercase__ : Tuple = ['fp16', 'non-ema']
lowercase__ : int = '.self_attn'
| 324 | 0 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , )
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9},
},
{
'''framework''': '''tensorflow''',
'''script''': '''run_tf.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9},
},
] )
class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ):
"""simple docstring"""
def snake_case_ ( self):
if self.framework == "pytorch":
subprocess.run(
f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="""utf-8""" , check=lowerCAmelCase__ , )
assert hasattr(self , """env""")
def snake_case_ ( self , lowerCAmelCase__=1):
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-single" , instance_count=lowerCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=lowerCAmelCase__ , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , )
def snake_case_ ( self , lowerCAmelCase__):
TrainingJobAnalytics(lowerCAmelCase__).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv")
def snake_case_ ( self):
# create estimator
__SCREAMING_SNAKE_CASE = self.create_estimator()
# run training
estimator.fit()
# result dataframe
__SCREAMING_SNAKE_CASE = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe()
# extract kpis
__SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""])
__SCREAMING_SNAKE_CASE = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""])
# get train time from SageMaker job, this includes starting, preprocessing, stopping
__SCREAMING_SNAKE_CASE = (
Session().describe_training_job(estimator.latest_training_job.name).get("""TrainingTimeInSeconds""" , 9_9_9_9_9_9)
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy)
assert all(t <= self.results["""eval_loss"""] for t in eval_loss)
# dump tests result into json file to share in PR
with open(f"{estimator.latest_training_job.name}.json" , """w""") as outfile:
json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , lowerCAmelCase__)
| 100 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : str = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def a__ ( lowercase : str ) -> Dict:
"""simple docstring"""
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_UpperCamelCase = k.replace(lowercase, lowercase )
if k.startswith('''encoder''' ):
_UpperCamelCase = k.replace('''.attn''', '''.self_attn''' )
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_UpperCamelCase = k.replace('''norm1''', '''self_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm2''', '''encoder_attn_layer_norm''' )
_UpperCamelCase = k.replace('''norm3''', '''final_layer_norm''' )
return k
def a__ ( lowercase : List[str] ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_UpperCamelCase = sd.pop(lowercase )
_UpperCamelCase = k.replace('''layernorm_embedding''', '''layer_norm''' )
assert new_k not in sd
_UpperCamelCase = v
lowercase__ : str = ['START']
@torch.no_grad()
def a__ ( lowercase : Optional[int], lowercase : List[str], lowercase : List[str] ) -> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )
_UpperCamelCase = model['''model''']
_UpperCamelCase = BlenderbotConfig.from_json_file(lowercase )
_UpperCamelCase = BlenderbotForConditionalGeneration(lowercase )
_UpperCamelCase = m.model.state_dict().keys()
_UpperCamelCase = []
_UpperCamelCase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_UpperCamelCase = rename_state_dict_key(lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_UpperCamelCase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(lowercase )
m.model.load_state_dict(lowercase, strict=lowercase )
m.half()
m.save_pretrained(lowercase )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
lowercase__ : Optional[Any] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 324 | 0 |
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowercase ( unittest.TestCase ):
def A__ ( self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def A__ ( self):
lowercase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''')
lowercase = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''')
lowercase = '''xvjiarui/stable-diffusion-2-inpainting'''
lowercase , lowercase = FlaxStableDiffusionInpaintPipeline.from_pretrained(A__ ,safety_checker=A__)
lowercase = '''Face of a yellow cat, high resolution, sitting on a park bench'''
lowercase = jax.random.PRNGKey(0)
lowercase = 5_0
lowercase = jax.device_count()
lowercase = num_samples * [prompt]
lowercase = num_samples * [init_image]
lowercase = num_samples * [mask_image]
lowercase , lowercase , lowercase = pipeline.prepare_inputs(A__ ,A__ ,A__)
# shard inputs and rng
lowercase = replicate(A__)
lowercase = jax.random.split(A__ ,jax.device_count())
lowercase = shard(A__)
lowercase = shard(A__)
lowercase = shard(A__)
lowercase = pipeline(
A__ ,A__ ,A__ ,A__ ,A__ ,A__ ,jit=A__)
lowercase = output.images.reshape(A__ ,5_1_2 ,5_1_2 ,3)
lowercase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1]
lowercase = jnp.asarray(jax.device_get(image_slice.flatten()))
lowercase = jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084])
print(f'output_slice: {output_slice}')
assert jnp.abs(output_slice - expected_slice).max() < 1E-2
| 101 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase__ : Tuple = {
'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'],
'feature_extraction_mctct': ['MCTCTFeatureExtractor'],
'processing_mctct': ['MCTCTProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase__ : Tuple = [
'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST',
'MCTCTForCTC',
'MCTCTModel',
'MCTCTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 324 | 0 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=14 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=4 , a_=4 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=0.02 , ):
'''simple docstring'''
__snake_case : Any = parent
__snake_case : List[str] = batch_size
__snake_case : Union[str, Any] = seq_length
__snake_case : Tuple = is_training
__snake_case : List[Any] = use_input_mask
__snake_case : List[Any] = use_token_type_ids
__snake_case : Union[str, Any] = use_labels
__snake_case : Union[str, Any] = vocab_size
__snake_case : Dict = hidden_size
__snake_case : int = rotary_dim
__snake_case : Any = num_hidden_layers
__snake_case : Union[str, Any] = num_attention_heads
__snake_case : Dict = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : List[str] = hidden_dropout_prob
__snake_case : Any = attention_probs_dropout_prob
__snake_case : Optional[int] = max_position_embeddings
__snake_case : Tuple = initializer_range
__snake_case : int = None
__snake_case : Optional[Any] = vocab_size - 1
__snake_case : List[str] = vocab_size - 1
__snake_case : Tuple = vocab_size - 1
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = None
if self.use_input_mask:
__snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : int = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=a_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case : int = config_and_inputs
__snake_case : Tuple = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = 20
__snake_case : int = model_class_name(a_ )
__snake_case : Tuple = model.init_cache(input_ids.shape[0] , a_ )
__snake_case : Dict = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' )
__snake_case : List[Any] = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__snake_case : Optional[Any] = model(
input_ids[:, :-1] , attention_mask=a_ , past_key_values=a_ , position_ids=a_ , )
__snake_case : List[str] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
__snake_case : List[str] = model(
input_ids[:, -1:] , attention_mask=a_ , past_key_values=outputs_cache.past_key_values , position_ids=a_ , )
__snake_case : Union[str, Any] = model(a_ )
__snake_case : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[str] = 20
__snake_case : str = model_class_name(a_ )
__snake_case : Tuple = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__snake_case : Union[str, Any] = model.init_cache(input_ids.shape[0] , a_ )
__snake_case : Any = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__snake_case : List[str] = model(
input_ids[:, :-1] , attention_mask=a_ , past_key_values=a_ , position_ids=a_ , )
__snake_case : Union[str, Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' )
__snake_case : Optional[int] = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=a_ , position_ids=a_ , )
__snake_case : Optional[int] = model(a_ , attention_mask=a_ )
__snake_case : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
lowerCamelCase__ =(FlaxGPTJForCausalLM,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = FlaxGPTJModelTester(self )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case , __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(a_ , a_ , a_ , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case , __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
a_ , a_ , a_ , a_ )
@tooslow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' )
__snake_case : str = tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=a_ , truncation=a_ )
__snake_case : Optional[int] = FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' )
__snake_case : Any = False
__snake_case : List[str] = model.config.eos_token_id
__snake_case : Dict = jax.jit(model.generate )
__snake_case : Dict = jit_generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences
__snake_case : Union[str, Any] = tokenizer.batch_decode(a_ , skip_special_tokens=a_ )
__snake_case : int = [
'''Hello this is a long string of text.\n\nI\'m trying to get the text of the''',
'''Hey, I\'m a little late to the party. I\'m going to''',
]
self.assertListEqual(a_ , a_ )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__snake_case : Tuple = self._prepare_for_class(a_ , a_ )
__snake_case : str = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__snake_case : int = model_class.__name__[4:] # Skip the "Flax" at the beginning
__snake_case : List[Any] = getattr(a_ , a_ )
__snake_case , __snake_case : Dict = pt_inputs['''input_ids'''].shape
__snake_case : Optional[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(a_ ):
__snake_case : List[str] = 0
__snake_case : Tuple = 1
__snake_case : int = 0
__snake_case : Optional[Any] = 1
__snake_case : Any = pt_model_class(a_ ).eval()
__snake_case : int = model_class(a_ , dtype=jnp.floataa )
__snake_case : Dict = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , a_ )
__snake_case : str = fx_state
with torch.no_grad():
__snake_case : int = pt_model(**a_ ).to_tuple()
__snake_case : str = fx_model(**a_ ).to_tuple()
self.assertEqual(len(a_ ) , len(a_ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(a_ , a_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(a_ )
__snake_case : List[str] = model_class.from_pretrained(a_ , from_pt=a_ )
__snake_case : int = fx_model_loaded(**a_ ).to_tuple()
self.assertEqual(
len(a_ ) , len(a_ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(a_ , a_ ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__snake_case : List[Any] = self._prepare_for_class(a_ , a_ )
__snake_case : Dict = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__snake_case : str = model_class.__name__[4:] # Skip the "Flax" at the beginning
__snake_case : List[Any] = getattr(a_ , a_ )
__snake_case : List[str] = pt_model_class(a_ ).eval()
__snake_case : int = model_class(a_ , dtype=jnp.floataa )
__snake_case : Dict = load_flax_weights_in_pytorch_model(a_ , fx_model.params )
__snake_case , __snake_case : Union[str, Any] = pt_inputs['''input_ids'''].shape
__snake_case : Optional[Any] = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(a_ ):
__snake_case : Any = 0
__snake_case : int = 1
__snake_case : int = 0
__snake_case : int = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__snake_case : List[Any] = pt_model(**a_ ).to_tuple()
__snake_case : List[str] = fx_model(**a_ ).to_tuple()
self.assertEqual(len(a_ ) , len(a_ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(a_ , a_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(a_ )
__snake_case : Any = pt_model_class.from_pretrained(a_ , from_flax=a_ )
with torch.no_grad():
__snake_case : Union[str, Any] = pt_model_loaded(**a_ ).to_tuple()
self.assertEqual(
len(a_ ) , len(a_ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(a_ , a_ ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__snake_case : List[str] = model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' )
__snake_case : int = model(np.ones((1, 1) ) )
self.assertIsNotNone(a_ )
| 102 |
'''simple docstring'''
import contextlib
from multiprocessing import Pool, RLock
from tqdm.auto import tqdm
from ..utils import experimental, logging
lowercase__ : Any = logging.get_logger(__name__)
class __lowerCAmelCase :
"""simple docstring"""
_snake_case : List[str] = None
@experimental
def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int:
"""simple docstring"""
if ParallelBackendConfig.backend_name is None:
return _map_with_multiprocessing_pool(
lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase )
def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase )
_UpperCamelCase = [] # We organize the splits ourselve (contiguous splits)
for index in range(lowercase ):
_UpperCamelCase = len(lowercase ) // num_proc
_UpperCamelCase = len(lowercase ) % num_proc
_UpperCamelCase = div * index + min(lowercase, lowercase )
_UpperCamelCase = start + div + (1 if index < mod else 0)
split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) )
if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ):
raise ValueError(
F"""Error dividing inputs iterable among processes. """
F"""Total number of objects {len(lowercase )}, """
F"""length: {sum(len(i[1] ) for i in split_kwds )}""" )
logger.info(
F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" )
_UpperCamelCase , _UpperCamelCase = None, None
if not disable_tqdm:
_UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock
with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool:
_UpperCamelCase = pool.map(lowercase, lowercase )
logger.info(F"""Finished {num_proc} processes""" )
_UpperCamelCase = [obj for proc_res in mapped for obj in proc_res]
logger.info(F"""Unpacked {len(lowercase )} objects""" )
return mapped
def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any:
"""simple docstring"""
import joblib
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ):
return joblib.Parallel()(
joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable )
@experimental
@contextlib.contextmanager
def a__ ( lowercase : str ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = backend_name
if backend_name == "spark":
from joblibspark import register_spark
register_spark()
# TODO: call create_cache_and_write_probe if "download" in steps
# TODO: raise NotImplementedError when Dataset.map etc is called
try:
yield
finally:
_UpperCamelCase = None
| 324 | 0 |
import unittest
from transformers import JukeboxTokenizer
from transformers.testing_utils import require_torch
class __snake_case ( unittest.TestCase ):
_a = JukeboxTokenizer
_a = {
'''artist''': '''Zac Brown Band''',
'''genres''': '''Country''',
'''lyrics''': '''I met a traveller from an antique land,
Who said "Two vast and trunkless legs of stone
Stand in the desert. . . . Near them, on the sand,
Half sunk a shattered visage lies, whose frown,
And wrinkled lip, and sneer of cold command,
Tell that its sculptor well those passions read
Which yet survive, stamped on these lifeless things,
The hand that mocked them, and the heart that fed;
And on the pedestal, these words appear:
My name is Ozymandias, King of Kings;
Look on my Works, ye Mighty, and despair!
Nothing beside remains. Round the decay
Of that colossal Wreck, boundless and bare
The lone and level sands stretch far away
''',
}
@require_torch
def UpperCAmelCase__ ( self : str):
import torch
lowerCAmelCase_ : List[Any] = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''')
lowerCAmelCase_ : Any = tokenizer(**self.metas)['''input_ids''']
# fmt: off
lowerCAmelCase_ : List[str] = [
torch.tensor([[
0, 0, 0, 7_1_6_9, 5_0_7, 9, 7_6, 3_9, 3_1, 4_6, 7_6, 2_7,
7_6, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8, 3_1, 4_4, 7_6, 3_2,
4_4, 4_1, 3_9, 7_6, 2_7, 4_0, 7_6, 2_7, 4_0, 4_6, 3_5, 4_3,
4_7, 3_1, 7_6, 3_8, 2_7, 4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6,
7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 4_1, 7_6, 4_5, 2_7, 3_5,
3_0, 7_6, 7_1, 2_0, 4_9, 4_1, 7_6, 4_8, 2_7, 4_5, 4_6, 7_6,
2_7, 4_0, 3_0, 7_6, 4_6, 4_4, 4_7, 4_0, 3_7, 3_8, 3_1, 4_5,
4_5, 7_6, 3_8, 3_1, 3_3, 4_5, 7_6, 4_1, 3_2, 7_6, 4_5, 4_6,
4_1, 4_0, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6,
1_9, 4_6, 2_7, 4_0, 3_0, 7_6, 3_5, 4_0, 7_6, 4_6, 3_4, 3_1,
7_6, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3, 7_6, 6_3, 7_6, 6_3,
7_6, 6_3, 7_6, 1_4, 3_1, 2_7, 4_4, 7_6, 4_6, 3_4, 3_1, 3_9,
6_4, 7_6, 4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_5, 2_7, 4_0,
3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 8,
2_7, 3_8, 3_2, 7_6, 4_5, 4_7, 4_0, 3_7, 7_6, 2_7, 7_6, 4_5,
3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0, 7_6, 4_8, 3_5, 4_5,
2_7, 3_3, 3_1, 7_6, 3_8, 3_5, 3_1, 4_5, 6_4, 7_6, 4_9, 3_4,
4_1, 4_5, 3_1, 7_6, 3_2, 4_4, 4_1, 4_9, 4_0, 6_4, 7_8, 7_6,
7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6, 4_9,
4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_6, 3_8, 3_5, 4_2, 6_4,
7_6, 2_7, 4_0, 3_0, 7_6, 4_5, 4_0, 3_1, 3_1, 4_4, 7_6, 4_1,
3_2, 7_6, 2_9, 4_1, 3_8, 3_0, 7_6, 2_9, 4_1, 3_9, 3_9, 2_7,
4_0, 3_0, 6_4, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6,
2_0, 3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_5, 4_6,
4_5, 7_6, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6, 4_1, 4_4, 7_6, 4_9,
3_1, 3_8, 3_8, 7_6, 4_6, 3_4, 4_1, 4_5, 3_1, 7_6, 4_2, 2_7,
4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_6, 4_4, 3_1, 2_7, 3_0, 7_8,
7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_3, 3_4, 3_5, 2_9,
3_4, 7_6, 5_1, 3_1, 4_6, 7_6, 4_5, 4_7, 4_4, 4_8, 3_5, 4_8,
3_1, 6_4, 7_6, 4_5, 4_6, 2_7, 3_9, 4_2, 3_1, 3_0, 7_6, 4_1,
4_0, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 3_8, 3_5, 3_2, 3_1,
3_8, 3_1, 4_5, 4_5, 7_6, 4_6, 3_4, 3_5, 4_0, 3_3, 4_5, 6_4,
7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 2_0, 3_4, 3_1,
7_6, 3_4, 2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_9,
4_1, 2_9, 3_7, 3_1, 3_0, 7_6, 4_6, 3_4, 3_1, 3_9, 6_4, 7_6,
2_7, 4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_4, 3_1, 2_7, 4_4,
4_6, 7_6, 4_6, 3_4, 2_7, 4_6, 7_6, 3_2, 3_1, 3_0, 6_6, 7_8,
7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1, 4_0, 3_0, 7_6,
4_1, 4_0, 7_6, 4_6, 3_4, 3_1, 7_6, 4_2, 3_1, 3_0, 3_1, 4_5,
4_6, 2_7, 3_8, 6_4, 7_6, 4_6, 3_4, 3_1, 4_5, 3_1, 7_6, 4_9,
4_1, 4_4, 3_0, 4_5, 7_6, 2_7, 4_2, 4_2, 3_1, 2_7, 4_4, 6_5,
7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_3, 5_1, 7_6,
4_0, 2_7, 3_9, 3_1, 7_6, 3_5, 4_5, 7_6, 1_5, 5_2, 5_1, 3_9,
2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_6, 1_1, 3_5, 4_0, 3_3,
7_6, 4_1, 3_2, 7_6, 1_1, 3_5, 4_0, 3_3, 4_5, 6_6, 7_8, 7_6,
7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_2, 4_1, 4_1, 3_7, 7_6,
4_1, 4_0, 7_6, 3_9, 5_1, 7_6, 2_3, 4_1, 4_4, 3_7, 4_5, 6_4,
7_6, 5_1, 3_1, 7_6, 1_3, 3_5, 3_3, 3_4, 4_6, 5_1, 6_4, 7_6,
2_7, 4_0, 3_0, 7_6, 3_0, 3_1, 4_5, 4_2, 2_7, 3_5, 4_4, 6_7,
7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_4, 4_1, 4_6,
3_4, 3_5, 4_0, 3_3, 7_6, 2_8, 3_1, 4_5, 3_5, 3_0, 3_1, 7_6,
4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3, 7_6, 1_8, 4_1, 4_7,
4_0, 3_0, 7_6, 4_6, 3_4, 3_1, 7_6, 3_0, 3_1, 2_9, 2_7, 5_1,
7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 1_5, 3_2, 7_6,
4_6, 3_4, 2_7, 4_6, 7_6, 2_9, 4_1, 3_8, 4_1, 4_5, 4_5, 2_7,
3_8, 7_6, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4, 7_6, 2_8, 4_1, 4_7,
4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_6, 2_7, 4_0, 3_0, 7_6, 2_8,
2_7, 4_4, 3_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6,
2_0, 3_4, 3_1, 7_6, 3_8, 4_1, 4_0, 3_1, 7_6, 2_7, 4_0, 3_0,
7_6, 3_8, 3_1, 4_8, 3_1, 3_8, 7_6, 4_5, 2_7, 4_0, 3_0, 4_5,
7_6, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4, 7_6, 3_2, 2_7, 4_4,
7_6, 2_7, 4_9, 2_7, 5_1, 7_8, 7_6, 7_6, 7_6, 7_6, 7_6, 7_6,
7_6, 7_6]]),
torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]]),
torch.tensor([[0, 0, 0, 1_0_6_9, 1_1]]),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0]))
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1]))
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
@require_torch
def UpperCAmelCase__ ( self : Any):
import torch
lowerCAmelCase_ : str = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''')
lowerCAmelCase_ : List[Any] = tokenizer(**self.metas)['''input_ids''']
# fmt: off
lowerCAmelCase_ : Optional[int] = [
torch.tensor([[
0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1, 9, 7_7, 3_9,
3_1, 4_6, 7_7, 2_7, 7_7, 4_6, 4_4, 2_7, 4_8, 3_1, 3_8, 3_8,
3_1, 4_4, 7_7, 3_2, 4_4, 4_1, 3_9, 7_7, 2_7, 4_0, 7_7, 2_7,
4_0, 4_6, 3_5, 4_3, 4_7, 3_1, 7_7, 3_8, 2_7, 4_0, 3_0, 6_4,
7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 2_3, 3_4, 4_1,
7_7, 4_5, 2_7, 3_5, 3_0, 7_7, 7_2, 2_0, 4_9, 4_1, 7_7, 4_8,
2_7, 4_5, 4_6, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 4_4, 4_7, 4_0,
3_7, 3_8, 3_1, 4_5, 4_5, 7_7, 3_8, 3_1, 3_3, 4_5, 7_7, 4_1,
3_2, 7_7, 4_5, 4_6, 4_1, 4_0, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7,
7_7, 7_7, 7_7, 7_7, 1_9, 4_6, 2_7, 4_0, 3_0, 7_7, 3_5, 4_0,
7_7, 4_6, 3_4, 3_1, 7_7, 3_0, 3_1, 4_5, 3_1, 4_4, 4_6, 6_3,
7_7, 6_3, 7_7, 6_3, 7_7, 6_3, 7_7, 1_4, 3_1, 2_7, 4_4, 7_7,
4_6, 3_4, 3_1, 3_9, 6_4, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1,
7_7, 4_5, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 7_7, 7_7, 8, 2_7, 3_8, 3_2, 7_7, 4_5, 4_7, 4_0, 3_7,
7_7, 2_7, 7_7, 4_5, 3_4, 2_7, 4_6, 4_6, 3_1, 4_4, 3_1, 3_0,
7_7, 4_8, 3_5, 4_5, 2_7, 3_3, 3_1, 7_7, 3_8, 3_5, 3_1, 4_5,
6_4, 7_7, 4_9, 3_4, 4_1, 4_5, 3_1, 7_7, 3_2, 4_4, 4_1, 4_9,
4_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1,
4_0, 3_0, 7_7, 4_9, 4_4, 3_5, 4_0, 3_7, 3_8, 3_1, 3_0, 7_7,
3_8, 3_5, 4_2, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_5, 4_0, 3_1,
3_1, 4_4, 7_7, 4_1, 3_2, 7_7, 2_9, 4_1, 3_8, 3_0, 7_7, 2_9,
4_1, 3_9, 3_9, 2_7, 4_0, 3_0, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7,
7_7, 7_7, 7_7, 7_7, 2_0, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 2_7,
4_6, 7_7, 3_5, 4_6, 4_5, 7_7, 4_5, 2_9, 4_7, 3_8, 4_2, 4_6,
4_1, 4_4, 7_7, 4_9, 3_1, 3_8, 3_8, 7_7, 4_6, 3_4, 4_1, 4_5,
3_1, 7_7, 4_2, 2_7, 4_5, 4_5, 3_5, 4_1, 4_0, 4_5, 7_7, 4_4,
3_1, 2_7, 3_0, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
2_3, 3_4, 3_5, 2_9, 3_4, 7_7, 5_1, 3_1, 4_6, 7_7, 4_5, 4_7,
4_4, 4_8, 3_5, 4_8, 3_1, 6_4, 7_7, 4_5, 4_6, 2_7, 3_9, 4_2,
3_1, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 4_5, 3_1, 7_7,
3_8, 3_5, 3_2, 3_1, 3_8, 3_1, 4_5, 4_5, 7_7, 4_6, 3_4, 3_5,
4_0, 3_3, 4_5, 6_4, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 2_0, 3_4, 3_1, 7_7, 3_4, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4,
2_7, 4_6, 7_7, 3_9, 4_1, 2_9, 3_7, 3_1, 3_0, 7_7, 4_6, 3_4,
3_1, 3_9, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7,
3_4, 3_1, 2_7, 4_4, 4_6, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 3_2,
3_1, 3_0, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
1, 4_0, 3_0, 7_7, 4_1, 4_0, 7_7, 4_6, 3_4, 3_1, 7_7, 4_2,
3_1, 3_0, 3_1, 4_5, 4_6, 2_7, 3_8, 6_4, 7_7, 4_6, 3_4, 3_1,
4_5, 3_1, 7_7, 4_9, 4_1, 4_4, 3_0, 4_5, 7_7, 2_7, 4_2, 4_2,
3_1, 2_7, 4_4, 6_5, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 1_3, 5_1, 7_7, 4_0, 2_7, 3_9, 3_1, 7_7, 3_5, 4_5, 7_7,
1_5, 5_2, 5_1, 3_9, 2_7, 4_0, 3_0, 3_5, 2_7, 4_5, 6_4, 7_7,
1_1, 3_5, 4_0, 3_3, 7_7, 4_1, 3_2, 7_7, 1_1, 3_5, 4_0, 3_3,
4_5, 6_6, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 1_2,
4_1, 4_1, 3_7, 7_7, 4_1, 4_0, 7_7, 3_9, 5_1, 7_7, 2_3, 4_1,
4_4, 3_7, 4_5, 6_4, 7_7, 5_1, 3_1, 7_7, 1_3, 3_5, 3_3, 3_4,
4_6, 5_1, 6_4, 7_7, 2_7, 4_0, 3_0, 7_7, 3_0, 3_1, 4_5, 4_2,
2_7, 3_5, 4_4, 6_7, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 1_4, 4_1, 4_6, 3_4, 3_5, 4_0, 3_3, 7_7, 2_8, 3_1, 4_5,
3_5, 3_0, 3_1, 7_7, 4_4, 3_1, 3_9, 2_7, 3_5, 4_0, 4_5, 6_3,
7_7, 1_8, 4_1, 4_7, 4_0, 3_0, 7_7, 4_6, 3_4, 3_1, 7_7, 3_0,
3_1, 2_9, 2_7, 5_1, 7_9, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7, 7_7,
7_7, 1_5, 3_2, 7_7, 4_6, 3_4, 2_7, 4_6, 7_7, 2_9, 4_1, 3_8,
4_1, 4_5, 4_5, 2_7, 3_8, 7_7, 2_3, 4_4, 3_1, 2_9, 3_7, 6_4,
7_7, 2_8, 4_1, 4_7, 4_0, 3_0, 3_8, 3_1, 4_5, 4_5, 7_7, 2_7,
4_0, 3_0, 7_7, 2_8, 2_7, 4_4, 3_1, 7_9, 7_7, 7_7, 7_7, 7_7,
7_7, 7_7, 7_7, 7_7, 2_0, 3_4, 3_1, 7_7, 3_8, 4_1, 4_0, 3_1,
7_7, 2_7, 4_0, 3_0, 7_7, 3_8, 3_1, 4_8, 3_1, 3_8, 7_7, 4_5,
2_7, 4_0, 3_0, 4_5, 7_7, 4_5, 4_6, 4_4, 3_1, 4_6, 2_9, 3_4,
7_7, 3_2, 2_7, 4_4, 7_7, 2_7, 4_9, 2_7, 5_1, 7_9, 7_7, 7_7,
7_7, 7_7, 7_7, 7_7, 7_7, 7_7]]),
torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]]),
torch.tensor([[0, 0, 0, 1_0_6_9, 1_1, -1, -1, -1, -1]]),
]
# fmt: on
self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0]))
self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1]))
self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
| 103 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=7 , lowerCAmelCase__ : Optional[Any]=3 , lowerCAmelCase__ : Optional[Any]=30 , lowerCAmelCase__ : Dict=400 , lowerCAmelCase__ : Optional[int]=True , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : List[str]=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Union[str, Any]=1 / 255 , lowerCAmelCase__ : Tuple=True , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_pad
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> str:
'''simple docstring'''
if not batched:
_UpperCamelCase = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
_UpperCamelCase , _UpperCamelCase = image.size
else:
_UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2]
if w < h:
_UpperCamelCase = int(self.size['''shortest_edge'''] * h / w )
_UpperCamelCase = self.size['''shortest_edge''']
elif w > h:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = int(self.size['''shortest_edge'''] * w / h )
else:
_UpperCamelCase = self.size['''shortest_edge''']
_UpperCamelCase = self.size['''shortest_edge''']
else:
_UpperCamelCase = []
for image in image_inputs:
_UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
_UpperCamelCase = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = DeformableDetrImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_rescale''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_pad''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
_UpperCamelCase = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCAmelCase__ )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad , lowerCAmelCase__ )
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
pass
def snake_case__ ( self : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : str ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
_UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def snake_case__ ( self : int ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''image_id''': 39769, '''annotations''': target}
# encode them
_UpperCamelCase = DeformableDetrImageProcessor()
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
@slow
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
_UpperCamelCase = json.loads(f.read() )
_UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
_UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
_UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' )
_UpperCamelCase = image_processing(images=lowerCAmelCase__ , annotations=lowerCAmelCase__ , masks_path=lowerCAmelCase__ , return_tensors='''pt''' )
# verify pixel values
_UpperCamelCase = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify area
_UpperCamelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , lowerCAmelCase__ ) )
# verify boxes
_UpperCamelCase = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , lowerCAmelCase__ )
_UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , lowerCAmelCase__ , atol=1e-3 ) )
# verify image_id
_UpperCamelCase = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , lowerCAmelCase__ ) )
# verify is_crowd
_UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , lowerCAmelCase__ ) )
# verify class_labels
_UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , lowerCAmelCase__ ) )
# verify masks
_UpperCamelCase = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , lowerCAmelCase__ )
# verify orig_size
_UpperCamelCase = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , lowerCAmelCase__ ) )
# verify size
_UpperCamelCase = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , lowerCAmelCase__ ) )
| 324 | 0 |
'''simple docstring'''
import cva
import numpy as np
class lowercase_ :
"""simple docstring"""
def __init__( self : str ,lowercase__ : float ,lowercase__ : int ):
if k in (0.0_4, 0.0_6):
__lowercase = k
__lowercase = window_size
else:
raise ValueError('''invalid k value''' )
def __str__( self : Dict ):
return str(self.k )
def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : str ):
__lowercase = cva.imread(lowercase__ ,0 )
__lowercase , __lowercase = img.shape
__lowercase = []
__lowercase = img.copy()
__lowercase = cva.cvtColor(lowercase__ ,cva.COLOR_GRAY2RGB )
__lowercase , __lowercase = np.gradient(lowercase__ )
__lowercase = dx**2
__lowercase = dy**2
__lowercase = dx * dy
__lowercase = 0.0_4
__lowercase = self.window_size // 2
for y in range(lowercase__ ,h - offset ):
for x in range(lowercase__ ,w - offset ):
__lowercase = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__lowercase = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__lowercase = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
__lowercase = (wxx * wyy) - (wxy**2)
__lowercase = wxx + wyy
__lowercase = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) ,0 )
color_img.itemset((y, x, 1) ,0 )
color_img.itemset((y, x, 2) ,2_5_5 )
return color_img, corner_list
if __name__ == "__main__":
lowerCAmelCase__ = HarrisCorner(0.04, 3)
lowerCAmelCase__ , lowerCAmelCase__ = edge_detect.detect('''path_to_image''')
cva.imwrite('''detect.png''', color_img)
| 104 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
lowercase__ : str = None
lowercase__ : Optional[int] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'}
lowercase__ : int = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
'tokenizer_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json',
},
}
lowercase__ : Optional[int] = {
'google/rembert': 2_56,
}
lowercase__ : str = '▁'
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : str = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : Dict = RemBertTokenizer
def __init__( self : List[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : List[Any]="[CLS]" , lowerCAmelCase__ : str="[SEP]" , lowerCAmelCase__ : Optional[Any]="<unk>" , lowerCAmelCase__ : Optional[int]="[SEP]" , lowerCAmelCase__ : List[str]="<pad>" , lowerCAmelCase__ : str="[CLS]" , lowerCAmelCase__ : List[Any]="[MASK]" , **lowerCAmelCase__ : List[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
_UpperCamelCase = do_lower_case
_UpperCamelCase = remove_space
_UpperCamelCase = keep_accents
_UpperCamelCase = vocab_file
_UpperCamelCase = False if not self.vocab_file else True
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : int , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case__ ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCAmelCase__ ) )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 324 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
a : List[str] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Tuple = ['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = ['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = [
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
a : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 105 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase__ : str = logging.get_logger(__name__)
lowercase__ : Any = {
'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Tuple = 'deformable_detr'
_snake_case : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Optional[Any] , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=3 , lowerCAmelCase__ : List[str]=300 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : Tuple=6 , lowerCAmelCase__ : Union[str, Any]=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : List[Any]=6 , lowerCAmelCase__ : Tuple=1024 , lowerCAmelCase__ : List[Any]=8 , lowerCAmelCase__ : Union[str, Any]=0.0 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Any="relu" , lowerCAmelCase__ : int=256 , lowerCAmelCase__ : Dict=0.1 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Any=1.0 , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : int=False , lowerCAmelCase__ : str="sine" , lowerCAmelCase__ : List[Any]="resnet50" , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : List[str]=4 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Optional[int]=300 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Dict=5 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Tuple=1 , lowerCAmelCase__ : Optional[Any]=1 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int=0.25 , lowerCAmelCase__ : Any=False , **lowerCAmelCase__ : Optional[Any] , ) -> str:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
_UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = backbone_config.get('''model_type''' )
_UpperCamelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCamelCase = config_class.from_dict(lowerCAmelCase__ )
_UpperCamelCase = use_timm_backbone
_UpperCamelCase = backbone_config
_UpperCamelCase = num_channels
_UpperCamelCase = num_queries
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = d_model
_UpperCamelCase = encoder_ffn_dim
_UpperCamelCase = encoder_layers
_UpperCamelCase = encoder_attention_heads
_UpperCamelCase = decoder_ffn_dim
_UpperCamelCase = decoder_layers
_UpperCamelCase = decoder_attention_heads
_UpperCamelCase = dropout
_UpperCamelCase = attention_dropout
_UpperCamelCase = activation_dropout
_UpperCamelCase = activation_function
_UpperCamelCase = init_std
_UpperCamelCase = init_xavier_std
_UpperCamelCase = encoder_layerdrop
_UpperCamelCase = auxiliary_loss
_UpperCamelCase = position_embedding_type
_UpperCamelCase = backbone
_UpperCamelCase = use_pretrained_backbone
_UpperCamelCase = dilation
# deformable attributes
_UpperCamelCase = num_feature_levels
_UpperCamelCase = encoder_n_points
_UpperCamelCase = decoder_n_points
_UpperCamelCase = two_stage
_UpperCamelCase = two_stage_num_proposals
_UpperCamelCase = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
_UpperCamelCase = class_cost
_UpperCamelCase = bbox_cost
_UpperCamelCase = giou_cost
# Loss coefficients
_UpperCamelCase = mask_loss_coefficient
_UpperCamelCase = dice_loss_coefficient
_UpperCamelCase = bbox_loss_coefficient
_UpperCamelCase = giou_loss_coefficient
_UpperCamelCase = eos_coefficient
_UpperCamelCase = focal_alpha
_UpperCamelCase = disable_custom_kernels
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
return self.d_model
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 324 | 0 |
"""simple docstring"""
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class SCREAMING_SNAKE_CASE :
"""simple docstring"""
def __init__( self : str ,lowercase_ : List[str] ,lowercase_ : Optional[int]=1_4 ,lowercase_ : Any=7 ,lowercase_ : List[Any]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Any=True ,lowercase_ : Optional[int]=True ,lowercase_ : Union[str, Any]=True ,lowercase_ : Union[str, Any]=9_9 ,lowercase_ : Any=3_2 ,lowercase_ : str=5 ,lowercase_ : int=4 ,lowercase_ : str=3_7 ,lowercase_ : Optional[Any]="gelu" ,lowercase_ : Any=0.1 ,lowercase_ : Any=0.1 ,lowercase_ : Tuple=5_1_2 ,lowercase_ : str=1_6 ,lowercase_ : str=2 ,lowercase_ : List[Any]=0.02 ,lowercase_ : int=3 ,lowercase_ : List[str]=4 ,lowercase_ : int=None ,):
lowerCAmelCase__ : Union[str, Any] = parent
lowerCAmelCase__ : Union[str, Any] = batch_size
lowerCAmelCase__ : Optional[Any] = seq_length
lowerCAmelCase__ : Any = is_training
lowerCAmelCase__ : int = use_token_type_ids
lowerCAmelCase__ : Optional[int] = use_input_mask
lowerCAmelCase__ : List[str] = use_labels
lowerCAmelCase__ : Optional[Any] = use_mc_token_ids
lowerCAmelCase__ : List[str] = vocab_size
lowerCAmelCase__ : int = hidden_size
lowerCAmelCase__ : Optional[int] = num_hidden_layers
lowerCAmelCase__ : Tuple = num_attention_heads
lowerCAmelCase__ : Tuple = intermediate_size
lowerCAmelCase__ : List[str] = hidden_act
lowerCAmelCase__ : Optional[Any] = hidden_dropout_prob
lowerCAmelCase__ : int = attention_probs_dropout_prob
lowerCAmelCase__ : List[Any] = max_position_embeddings
lowerCAmelCase__ : Optional[int] = type_vocab_size
lowerCAmelCase__ : int = type_sequence_label_size
lowerCAmelCase__ : List[str] = initializer_range
lowerCAmelCase__ : Optional[Any] = num_labels
lowerCAmelCase__ : Optional[int] = num_choices
lowerCAmelCase__ : Dict = scope
lowerCAmelCase__ : List[Any] = self.vocab_size - 1
def __lowerCAmelCase ( self : Optional[Any] ):
lowerCAmelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
lowerCAmelCase__ : str = None
if self.use_input_mask:
lowerCAmelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] )
lowerCAmelCase__ : int = None
if self.use_token_type_ids:
lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
lowerCAmelCase__ : Optional[int] = None
if self.use_mc_token_ids:
lowerCAmelCase__ : int = ids_tensor([self.batch_size, self.num_choices] ,self.seq_length )
lowerCAmelCase__ : Tuple = None
lowerCAmelCase__ : Optional[Any] = None
lowerCAmelCase__ : int = None
if self.use_labels:
lowerCAmelCase__ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
lowerCAmelCase__ : Tuple = ids_tensor([self.batch_size] ,self.num_choices )
lowerCAmelCase__ : Optional[int] = self.get_config()
lowerCAmelCase__ : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] ,2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __lowerCAmelCase ( self : int ):
return CTRLConfig(
vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,pad_token_id=self.pad_token_id ,)
def __lowerCAmelCase ( self : Any ,lowercase_ : Optional[int] ,lowercase_ : Dict ,lowercase_ : List[Any] ,lowercase_ : Any ,lowercase_ : str ,*lowercase_ : str ):
lowerCAmelCase__ : Tuple = CTRLModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
model(lowercase_ ,token_type_ids=lowercase_ ,head_mask=lowercase_ )
model(lowercase_ ,token_type_ids=lowercase_ )
lowerCAmelCase__ : Tuple = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) ,config.n_layer )
def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Dict ,lowercase_ : Tuple ,lowercase_ : Dict ,lowercase_ : List[str] ,lowercase_ : Any ,*lowercase_ : Optional[Any] ):
lowerCAmelCase__ : List[str] = CTRLLMHeadModel(lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase__ : Optional[Any] = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ )
self.parent.assertEqual(result.loss.shape ,() )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self : Optional[Any] ):
lowerCAmelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,(
lowerCAmelCase__
) ,
) : Tuple = config_and_inputs
lowerCAmelCase__ : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask}
return config, inputs_dict
def __lowerCAmelCase ( self : Any ,lowercase_ : str ,lowercase_ : str ,lowercase_ : str ,lowercase_ : Optional[int] ,*lowercase_ : Optional[Any] ):
lowerCAmelCase__ : List[str] = self.num_labels
lowerCAmelCase__ : Optional[Any] = CTRLForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
lowerCAmelCase__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
lowerCAmelCase__ : Dict = model(lowercase_ ,token_type_ids=lowercase_ ,labels=lowercase_ )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
@require_torch
class SCREAMING_SNAKE_CASE ( a_ , a_ , a_ , unittest.TestCase ):
"""simple docstring"""
lowercase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
lowercase__ = (CTRLLMHeadModel,) if is_torch_available() else ()
lowercase__ = (
{
"feature-extraction": CTRLModel,
"text-classification": CTRLForSequenceClassification,
"text-generation": CTRLLMHeadModel,
"zero-shot": CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__ = True
lowercase__ = False
lowercase__ = False
def __lowerCAmelCase ( self : Dict ,lowercase_ : Dict ,lowercase_ : Any ,lowercase_ : List[str] ,lowercase_ : str ,lowercase_ : Optional[Any] ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def __lowerCAmelCase ( self : Optional[Any] ):
lowerCAmelCase__ : Optional[Any] = CTRLModelTester(self )
lowerCAmelCase__ : Any = ConfigTester(self ,config_class=lowercase_ ,n_embd=3_7 )
def __lowerCAmelCase ( self : Optional[int] ):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def __lowerCAmelCase ( self : Dict ):
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self : int ):
lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*lowercase_ )
def __lowerCAmelCase ( self : Any ):
lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*lowercase_ )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __lowerCAmelCase ( self : List[str] ):
pass
@slow
def __lowerCAmelCase ( self : Any ):
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase__ : int = CTRLModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def __lowerCAmelCase ( self : Any ):
pass
@require_torch
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : str ):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def __lowerCAmelCase ( self : Optional[int] ):
lowerCAmelCase__ : List[str] = CTRLLMHeadModel.from_pretrained('''ctrl''' )
model.to(lowercase_ )
lowerCAmelCase__ : str = torch.tensor(
[[1_1_8_5_9, 0, 1_6_1_1, 8]] ,dtype=torch.long ,device=lowercase_ ) # Legal the president is
lowerCAmelCase__ : List[str] = [
1_1_8_5_9,
0,
1_6_1_1,
8,
5,
1_5_0,
2_6_4_4_9,
2,
1_9,
3_4_8,
4_6_9,
3,
2_5_9_5,
4_8,
2_0_7_4_0,
2_4_6_5_3_3,
2_4_6_5_3_3,
1_9,
3_0,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
lowerCAmelCase__ : List[Any] = model.generate(lowercase_ ,do_sample=lowercase_ )
self.assertListEqual(output_ids[0].tolist() ,lowercase_ )
| 106 |
'''simple docstring'''
from __future__ import annotations
def a__ ( lowercase : str, lowercase : list[str] | None = None, lowercase : dict[str, float] | None = None, lowercase : bool = False, ) -> tuple[int, float, str]:
"""simple docstring"""
_UpperCamelCase = cipher_alphabet or [chr(lowercase ) for i in range(97, 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
_UpperCamelCase = {
'''a''': 0.0_8_4_9_7,
'''b''': 0.0_1_4_9_2,
'''c''': 0.0_2_2_0_2,
'''d''': 0.0_4_2_5_3,
'''e''': 0.1_1_1_6_2,
'''f''': 0.0_2_2_2_8,
'''g''': 0.0_2_0_1_5,
'''h''': 0.0_6_0_9_4,
'''i''': 0.0_7_5_4_6,
'''j''': 0.0_0_1_5_3,
'''k''': 0.0_1_2_9_2,
'''l''': 0.0_4_0_2_5,
'''m''': 0.0_2_4_0_6,
'''n''': 0.0_6_7_4_9,
'''o''': 0.0_7_5_0_7,
'''p''': 0.0_1_9_2_9,
'''q''': 0.0_0_0_9_5,
'''r''': 0.0_7_5_8_7,
'''s''': 0.0_6_3_2_7,
'''t''': 0.0_9_3_5_6,
'''u''': 0.0_2_7_5_8,
'''v''': 0.0_0_9_7_8,
'''w''': 0.0_2_5_6_0,
'''x''': 0.0_0_1_5_0,
'''y''': 0.0_1_9_9_4,
'''z''': 0.0_0_0_7_7,
}
else:
# Custom frequencies dictionary
_UpperCamelCase = frequencies_dict
if not case_sensitive:
_UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
_UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(lowercase ) ):
_UpperCamelCase = ''''''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
_UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
lowercase )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
_UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
_UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.lower().count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
_UpperCamelCase = decrypted_with_shift.count(lowercase )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
_UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
_UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
_UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(lowercase : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
_UpperCamelCase = min(
lowercase, key=lowercase, )
# Get all the data from the most likely cipher (key, decoded message)
(
(
_UpperCamelCase
) , (
_UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 324 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCAmelCase : str = logging.get_logger(__name__)
__lowerCAmelCase : Tuple = {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json',
'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json',
}
class snake_case__ (_UpperCamelCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = """roberta"""
def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any]=5_02_65 , __lowerCamelCase : Optional[Any]=7_68 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=30_72 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : int=5_12 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Union[str, Any]=1e-12 , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]="absolute" , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=None , **__lowerCamelCase : List[str] , ) -> Tuple:
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
a = vocab_size
a = hidden_size
a = num_hidden_layers
a = num_attention_heads
a = hidden_act
a = intermediate_size
a = hidden_dropout_prob
a = attention_probs_dropout_prob
a = max_position_embeddings
a = type_vocab_size
a = initializer_range
a = layer_norm_eps
a = position_embedding_type
a = use_cache
a = classifier_dropout
class snake_case__ (_UpperCamelCase ):
"""simple docstring"""
@property
def __UpperCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
a = {0: "batch", 1: "choice", 2: "sequence"}
else:
a = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 107 |
'''simple docstring'''
import math
def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list:
"""simple docstring"""
_UpperCamelCase = end or len(lowercase )
for i in range(lowercase, lowercase ):
_UpperCamelCase = i
_UpperCamelCase = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
_UpperCamelCase = array[temp_index - 1]
temp_index -= 1
_UpperCamelCase = temp_index_value
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap
"""simple docstring"""
_UpperCamelCase = index
_UpperCamelCase = 2 * index + 1 # Left Node
_UpperCamelCase = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
_UpperCamelCase = left_index
if right_index < heap_size and array[largest] < array[right_index]:
_UpperCamelCase = right_index
if largest != index:
_UpperCamelCase , _UpperCamelCase = array[largest], array[index]
heapify(lowercase, lowercase, lowercase )
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
_UpperCamelCase = len(lowercase )
for i in range(n // 2, -1, -1 ):
heapify(lowercase, lowercase, lowercase )
for i in range(n - 1, 0, -1 ):
_UpperCamelCase , _UpperCamelCase = array[0], array[i]
heapify(lowercase, 0, lowercase )
return array
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int:
"""simple docstring"""
_UpperCamelCase = low
_UpperCamelCase = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
_UpperCamelCase , _UpperCamelCase = array[j], array[i]
i += 1
def a__ ( lowercase : list ) -> list:
"""simple docstring"""
if len(lowercase ) == 0:
return array
_UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) )
_UpperCamelCase = 16
return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase )
def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list:
"""simple docstring"""
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(lowercase )
max_depth -= 1
_UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 )
_UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase )
intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase )
_UpperCamelCase = p
return insertion_sort(lowercase, lowercase, lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Any = input('Enter numbers separated by a comma : ').strip()
lowercase__ : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted))
| 324 | 0 |
"""simple docstring"""
import unittest
from transformers import BigBirdTokenizer, BigBirdTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ = '''▁'''
lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ):
"""simple docstring"""
a : str =BigBirdTokenizer
a : Union[str, Any] =BigBirdTokenizerFast
a : Tuple =True
a : Any =True
def lowercase__ ( self ):
"""simple docstring"""
super().setUp()
lowerCAmelCase : str = self.tokenizer_class(snake_case__ , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : str = "<s>"
lowerCAmelCase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "[MASK]" )
self.assertEqual(len(snake_case__ ) , 1_004 )
def lowercase__ ( self ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1_000 )
def lowercase__ ( self ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowerCAmelCase : Tuple = self.get_tokenizer()
lowerCAmelCase : Optional[int] = self.get_rust_tokenizer()
lowerCAmelCase : Tuple = "I was born in 92000, and this is falsé."
lowerCAmelCase : Optional[int] = tokenizer.tokenize(snake_case__ )
lowerCAmelCase : int = rust_tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
lowerCAmelCase : Tuple = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ )
lowerCAmelCase : int = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
lowerCAmelCase : List[Any] = self.get_rust_tokenizer()
lowerCAmelCase : Tuple = tokenizer.encode(snake_case__ )
lowerCAmelCase : List[Any] = rust_tokenizer.encode(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Any = BigBirdTokenizer(snake_case__ , keep_accents=snake_case__ )
lowerCAmelCase : Union[str, Any] = tokenizer.tokenize("This is a test" )
self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] , )
lowerCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
snake_case__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
lowerCAmelCase : str = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def lowercase__ ( self ):
"""simple docstring"""
return BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : List[Any] = "Hello World!"
lowerCAmelCase : Any = [65, 18_536, 2_260, 101, 66]
self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Union[str, Any] = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
# fmt: off
lowerCAmelCase : List[str] = [65, 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, 66] # noqa: E231
# fmt: on
self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) )
@require_torch
@slow
def lowercase__ ( self ):
"""simple docstring"""
import torch
from transformers import BigBirdConfig, BigBirdModel
# Build sequence
lowerCAmelCase : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10]
lowerCAmelCase : int = " ".join(snake_case__ )
lowerCAmelCase : Dict = self.big_tokenizer.encode_plus(snake_case__ , return_tensors="pt" , return_token_type_ids=snake_case__ )
lowerCAmelCase : Any = self.big_tokenizer.batch_encode_plus(
[sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=snake_case__ )
lowerCAmelCase : str = BigBirdConfig(attention_type="original_full" )
lowerCAmelCase : Any = BigBirdModel(snake_case__ )
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**snake_case__ )
model(**snake_case__ )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : List[str] = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base" )
lowerCAmelCase : Union[str, Any] = tokenizer.decode(tokenizer("Paris is the [MASK]." ).input_ids )
self.assertTrue(decoded_text == "[CLS] Paris is the[MASK].[SEP]" )
@slow
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : Any = {"input_ids": [[65, 39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114, 66], [65, 448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name="google/bigbird-roberta-base" , revision="215c99f1600e06f83acce68422f2035b2b5c3510" , )
| 108 |
'''simple docstring'''
import os
import numpy
import onnx
def a__ ( lowercase : List[str], lowercase : str ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = a.name
_UpperCamelCase = b.name
_UpperCamelCase = ''''''
_UpperCamelCase = ''''''
_UpperCamelCase = a == b
_UpperCamelCase = name_a
_UpperCamelCase = name_b
return res
def a__ ( lowercase : List[str], lowercase : List[Any], lowercase : Tuple ) -> int:
"""simple docstring"""
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(lowercase, lowercase )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
_graph_replace_input_with(node_proto.attribute[1].g, lowercase, lowercase )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g, lowercase, lowercase )
def a__ ( lowercase : Any, lowercase : Union[str, Any], lowercase : Dict ) -> Tuple:
"""simple docstring"""
for n in graph_proto.node:
_node_replace_input_with(lowercase, lowercase, lowercase )
def a__ ( lowercase : Optional[int], lowercase : Union[str, Any], lowercase : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph, lowercase, lowercase )
def a__ ( lowercase : Dict ) -> Dict:
"""simple docstring"""
_UpperCamelCase = os.path.dirname(lowercase )
_UpperCamelCase = os.path.basename(lowercase )
_UpperCamelCase = onnx.load(os.path.join(lowercase, lowercase ) )
_UpperCamelCase = list(model.graph.initializer )
_UpperCamelCase = set()
_UpperCamelCase = {}
_UpperCamelCase = []
_UpperCamelCase = 0
for i in range(len(lowercase ) ):
if i in dup_set:
continue
for j in range(i + 1, len(lowercase ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i], inits[j] ):
dup_set.add(lowercase )
dup_set.add(lowercase )
_UpperCamelCase = inits[j].data_type
_UpperCamelCase = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print('''unexpected data type: ''', lowercase )
total_reduced_size += mem_size
_UpperCamelCase = inits[i].name
_UpperCamelCase = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(lowercase )
else:
_UpperCamelCase = [name_j]
ind_to_replace.append((j, i) )
print('''total reduced size: ''', total_reduced_size / 1024 / 1024 / 1024, '''GB''' )
_UpperCamelCase = sorted(lowercase )
_remove_dup_initializers_from_model(lowercase, lowercase, lowercase )
_UpperCamelCase = '''optimized_''' + model_file_name
_UpperCamelCase = os.path.join(lowercase, lowercase )
onnx.save(lowercase, lowercase )
return new_model
| 324 | 0 |
"""simple docstring"""
def _snake_case ( UpperCamelCase : int ):
if num <= 0:
raise ValueError("""Input must be a positive integer""" )
UpperCAmelCase : Any = [True] * (num + 1)
UpperCAmelCase : Any = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , UpperCamelCase ):
UpperCAmelCase : int = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
A: int = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 109 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowercase__ : List[Any] = 25_00_04
lowercase__ : str = 25_00_20
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Optional[Any] = MBartTokenizer
_snake_case : Tuple = MBartTokenizerFast
_snake_case : List[str] = True
_snake_case : Optional[Any] = True
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
_UpperCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
_UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
_UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
_UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = 'facebook/mbart-large-en-ro'
_snake_case : Dict = [
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
_snake_case : List[Any] = [
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
_snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE]
@classmethod
def snake_case__ ( cls : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' )
_UpperCamelCase = 1
return cls
def snake_case__ ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 )
def snake_case__ ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
def snake_case__ ( self : str ) -> List[Any]:
'''simple docstring'''
self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids )
_UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
_UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
_UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , lowerCAmelCase__ )
_UpperCamelCase = 10
_UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] )
def snake_case__ ( self : int ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ )
@require_torch
def snake_case__ ( self : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def snake_case__ ( self : Optional[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
_UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_UpperCamelCase = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def snake_case__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' )
_UpperCamelCase = self.tokenizer(
text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' )
_UpperCamelCase = targets['''input_ids''']
_UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def snake_case__ ( self : Tuple ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' )
self.assertEqual(
nested_simplify(lowerCAmelCase__ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[62, 3034, 2, 250004]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 250001,
} , )
| 324 | 0 |
"""simple docstring"""
import os
# Precomputes a list of the 100 first triangular numbers
A = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def __A ( ) -> Dict:
__a : int = os.path.dirname(os.path.realpath(a_))
__a : Union[str, Any] = os.path.join(a_ , '''words.txt''')
__a : List[str] = ''''''
with open(a_) as f:
__a : List[Any] = f.readline()
__a : Any = [word.strip('''"''') for word in words.strip('''\r\n''').split(''',''')]
__a : List[str] = [
word
for word in [sum(ord(a_) - 64 for x in word) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(a_)
if __name__ == "__main__":
print(solution()) | 160 |
'''simple docstring'''
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, is_torch_tensor, logging
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Union[str, Any] = ['pixel_values']
def __init__( self : Optional[Any] , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Dict[str, int]] = None , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[int, float] = 1 / 255 , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> None:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 256}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224}
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = resample
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_rescale
_UpperCamelCase = rescale_factor
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD
def snake_case__ ( self : Tuple , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
if "shortest_edge" not in size:
raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" )
_UpperCamelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ )
return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Dict[str, int] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Optional[Any] , ) -> np.ndarray:
'''simple docstring'''
_UpperCamelCase = get_size_dict(lowerCAmelCase__ )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" )
return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Dict , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Tuple ) -> np.ndarray:
'''simple docstring'''
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : str , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Union[float, List[float]] , lowerCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ : Any , ) -> np.ndarray:
'''simple docstring'''
return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : ImageInput , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : PILImageResampling = None , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : Dict[str, int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[float] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[float, List[float]]] = None , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , lowerCAmelCase__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ : Optional[Any] , ) -> Any:
'''simple docstring'''
_UpperCamelCase = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase = size if size is not None else self.size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ )
_UpperCamelCase = resample if resample is not None else self.resample
_UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' )
_UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase = image_std if image_std is not None else self.image_std
_UpperCamelCase = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
'''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '''
'''torch.Tensor, tf.Tensor or jax.ndarray.''' )
if do_resize and size is None:
raise ValueError('''Size must be specified if do_resize is True.''' )
if do_center_crop and crop_size is None:
raise ValueError('''Crop size must be specified if do_center_crop is True.''' )
if do_rescale and rescale_factor is None:
raise ValueError('''Rescale factor must be specified if do_rescale is True.''' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('''Image mean and std must be specified if do_normalize is True.''' )
# All transformations expect numpy arrays.
_UpperCamelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_resize:
_UpperCamelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images]
if do_center_crop:
_UpperCamelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
if do_rescale:
_UpperCamelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_normalize:
_UpperCamelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images]
_UpperCamelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
_UpperCamelCase = {'''pixel_values''': images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[Tuple] = None ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise ValueError(
'''Make sure that you pass in as many target sizes as the batch dimension of the logits''' )
if is_torch_tensor(lowerCAmelCase__ ):
_UpperCamelCase = target_sizes.numpy()
_UpperCamelCase = []
for idx in range(len(lowerCAmelCase__ ) ):
_UpperCamelCase = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=lowerCAmelCase__ )
_UpperCamelCase = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(lowerCAmelCase__ )
else:
_UpperCamelCase = logits.argmax(dim=1 )
_UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 324 | 0 |
"""simple docstring"""
import csv
import tweepy
# Twitter API credentials
__a = ''
__a = ''
__a = ''
__a = ''
def A_ ( _lowercase ):
'''simple docstring'''
snake_case_ :List[Any] = tweepy.OAuthHandler(_lowercase, _lowercase )
auth.set_access_token(_lowercase, _lowercase )
snake_case_ :List[Any] = tweepy.API(_lowercase )
# initialize a list to hold all the tweepy Tweets
snake_case_ :Dict = []
# make initial request for most recent tweets (200 is the maximum allowed count)
snake_case_ :Tuple = api.user_timeline(screen_name=_lowercase, count=200 )
# save most recent tweets
alltweets.extend(_lowercase )
# save the id of the oldest tweet less one
snake_case_ :List[str] = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(_lowercase ) > 0:
print(f"""getting tweets before {oldest}""" )
# all subsequent requests use the max_id param to prevent duplicates
snake_case_ :Dict = api.user_timeline(
screen_name=_lowercase, count=200, max_id=_lowercase )
# save most recent tweets
alltweets.extend(_lowercase )
# update the id of the oldest tweet less one
snake_case_ :Optional[Any] = alltweets[-1].id - 1
print(f"""...{len(_lowercase )} tweets downloaded so far""" )
# transform the tweepy tweets into a 2D array that will populate the csv
snake_case_ :Union[str, Any] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(f"""new_{screen_name}_tweets.csv""", """w""" ) as f:
snake_case_ :int = csv.writer(_lowercase )
writer.writerow(["""id""", """created_at""", """text"""] )
writer.writerows(_lowercase )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets("FirePing32")
| 66 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : jnp.ndarray
@flax_register_to_config
class __lowerCAmelCase ( nn.Module , __magic_name__ , __magic_name__ ):
"""simple docstring"""
_snake_case : int = 3_2
_snake_case : int = 4
_snake_case : int = 4
_snake_case : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
_snake_case : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
_snake_case : Union[bool, Tuple[bool]] = False
_snake_case : Tuple[int] = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0)
_snake_case : int = 2
_snake_case : Union[int, Tuple[int]] = 8
_snake_case : Optional[Union[int, Tuple[int]]] = None
_snake_case : int = 1_2_8_0
_snake_case : float = 0.0
_snake_case : bool = False
_snake_case : jnp.dtype = jnp.floataa
_snake_case : bool = True
_snake_case : int = 0
_snake_case : bool = False
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : jax.random.KeyArray ) -> FrozenDict:
'''simple docstring'''
_UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size)
_UpperCamelCase = jnp.zeros(lowerCAmelCase__ , dtype=jnp.floataa )
_UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa )
_UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
_UpperCamelCase , _UpperCamelCase = jax.random.split(lowerCAmelCase__ )
_UpperCamelCase = {'''params''': params_rng, '''dropout''': dropout_rng}
return self.init(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["params"]
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.block_out_channels
_UpperCamelCase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
_UpperCamelCase = self.num_attention_heads or self.attention_head_dim
# input
_UpperCamelCase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
_UpperCamelCase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
_UpperCamelCase = FlaxTimestepEmbedding(lowerCAmelCase__ , dtype=self.dtype )
_UpperCamelCase = self.only_cross_attention
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = (num_attention_heads,) * len(self.down_block_types )
# down
_UpperCamelCase = []
_UpperCamelCase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = block_out_channels[i]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if down_block_type == "CrossAttnDownBlock2D":
_UpperCamelCase = FlaxCrossAttnDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxDownBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = down_blocks
# mid
_UpperCamelCase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
_UpperCamelCase = []
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = list(reversed(lowerCAmelCase__ ) )
_UpperCamelCase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
_UpperCamelCase = output_channel
_UpperCamelCase = reversed_block_out_channels[i]
_UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(lowerCAmelCase__ ) - 1 )]
_UpperCamelCase = i == len(lowerCAmelCase__ ) - 1
if up_block_type == "CrossAttnUpBlock2D":
_UpperCamelCase = FlaxCrossAttnUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
_UpperCamelCase = FlaxUpBlockaD(
in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , prev_output_channel=lowerCAmelCase__ , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(lowerCAmelCase__ )
_UpperCamelCase = output_channel
_UpperCamelCase = up_blocks
# out
_UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
_UpperCamelCase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int=None , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , jnp.ndarray ):
_UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(lowerCAmelCase__ , jnp.ndarray ) and len(timesteps.shape ) == 0:
_UpperCamelCase = timesteps.astype(dtype=jnp.floataa )
_UpperCamelCase = jnp.expand_dims(lowerCAmelCase__ , 0 )
_UpperCamelCase = self.time_proj(lowerCAmelCase__ )
_UpperCamelCase = self.time_embedding(lowerCAmelCase__ )
# 2. pre-process
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 2, 3, 1) )
_UpperCamelCase = self.conv_in(lowerCAmelCase__ )
# 3. down
_UpperCamelCase = (sample,)
for down_block in self.down_blocks:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
else:
_UpperCamelCase , _UpperCamelCase = down_block(lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
_UpperCamelCase = ()
for down_block_res_sample, down_block_additional_residual in zip(
lowerCAmelCase__ , lowerCAmelCase__ ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
_UpperCamelCase = new_down_block_res_samples
# 4. mid
_UpperCamelCase = self.mid_block(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
_UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :]
_UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = up_block(
lowerCAmelCase__ , temb=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train , )
else:
_UpperCamelCase = up_block(lowerCAmelCase__ , temb=lowerCAmelCase__ , res_hidden_states_tuple=lowerCAmelCase__ , deterministic=not train )
# 6. post-process
_UpperCamelCase = self.conv_norm_out(lowerCAmelCase__ )
_UpperCamelCase = nn.silu(lowerCAmelCase__ )
_UpperCamelCase = self.conv_out(lowerCAmelCase__ )
_UpperCamelCase = jnp.transpose(lowerCAmelCase__ , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=lowerCAmelCase__ )
| 324 | 0 |
import json
import os
import unittest
from transformers.models.blenderbot_small.tokenization_blenderbot_small import (
VOCAB_FILES_NAMES,
BlenderbotSmallTokenizer,
)
from ...test_tokenization_common import TokenizerTesterMixin
class __UpperCAmelCase ( lowerCamelCase__ , unittest.TestCase ):
UpperCamelCase = BlenderbotSmallTokenizer
UpperCamelCase = False
def __magic_name__ ( self : Union[str, Any] ):
super().setUp()
UpperCAmelCase : Dict = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__''']
UpperCAmelCase : List[str] = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__ ) ) ) )
UpperCAmelCase : Dict = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', '''''']
UpperCAmelCase : Any = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''}
UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''vocab_file'''] )
UpperCAmelCase : Any = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' )
with open(self.merges_file, '''w''', encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(lowerCAmelCase__ ) )
def __magic_name__ ( self : List[str], **__A : str ):
kwargs.update(self.special_tokens_map )
return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **lowerCAmelCase__ )
def __magic_name__ ( self : str, __A : Any ):
UpperCAmelCase : Optional[Any] = '''adapt act apte'''
UpperCAmelCase : List[str] = '''adapt act apte'''
return input_text, output_text
def __magic_name__ ( self : Tuple ):
UpperCAmelCase : Any = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map )
UpperCAmelCase : Optional[int] = '''adapt act apte'''
UpperCAmelCase : int = ['''adapt''', '''act''', '''ap@@''', '''te''']
UpperCAmelCase : Tuple = tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__, lowerCAmelCase__ )
UpperCAmelCase : List[Any] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token]
UpperCAmelCase : List[str] = [0, 1, 2, 3, 4, 5]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ), lowerCAmelCase__ )
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Any = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
assert tok('''sam''' ).input_ids == [1_3_8_4]
UpperCAmelCase : str = '''I am a small frog.'''
UpperCAmelCase : str = tok([src_text], padding=lowerCAmelCase__, truncation=lowerCAmelCase__ )['''input_ids''']
UpperCAmelCase : int = tok.batch_decode(lowerCAmelCase__, skip_special_tokens=lowerCAmelCase__, clean_up_tokenization_spaces=lowerCAmelCase__ )[0]
assert src_text != decoded # I wish it did!
assert decoded == "i am a small frog ."
def __magic_name__ ( self : Union[str, Any] ):
UpperCAmelCase : Optional[int] = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' )
UpperCAmelCase : Optional[int] = '''I am a small frog .'''
UpperCAmelCase : Optional[int] = '''.'''
UpperCAmelCase : Any = tok(lowerCAmelCase__ )['''input_ids''']
UpperCAmelCase : List[Any] = tok(lowerCAmelCase__ )['''input_ids''']
assert encoded[-1] == encoded_dot[0]
| 336 |
'''simple docstring'''
import argparse
import json
import logging
import os
import sys
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, get_gpu_count, slow
lowercase__ : List[str] = [
os.path.join(os.path.dirname(__file__), dirname)
for dirname in [
'text-classification',
'language-modeling',
'summarization',
'token-classification',
'question-answering',
]
]
sys.path.extend(SRC_DIRS)
if SRC_DIRS is not None:
import run_clm_flax
import run_flax_glue
import run_flax_ner
import run_mlm_flax
import run_qa
import run_summarization_flax
import run_ta_mlm_flax
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Dict = logging.getLogger()
def a__ ( ) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Tuple, lowercase : Dict="eval" ) -> int:
"""simple docstring"""
_UpperCamelCase = os.path.join(lowercase, F"""{split}_results.json""" )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
return json.load(lowercase )
raise ValueError(F"""can't find {path}""" )
lowercase__ : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def snake_case__ ( self : Any ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--eval_steps=2
--warmup_steps=2
--seed=42
--max_seq_length=128
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_glue.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
@slow
def snake_case__ ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_clm_flax.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--block_size 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_clm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 100 )
@slow
def snake_case__ ( self : Tuple ) -> str:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_summarization.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--test_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=8
--do_train
--do_eval
--do_predict
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--predict_with_generate
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_summarization_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ , split='''test''' )
self.assertGreaterEqual(result['''test_rouge1'''] , 10 )
self.assertGreaterEqual(result['''test_rouge2'''] , 2 )
self.assertGreaterEqual(result['''test_rougeL'''] , 7 )
self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 )
@slow
def snake_case__ ( self : Tuple ) -> Any:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_mlm.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--overwrite_output_dir
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--logging_steps 2 --eval_steps 2
--do_train
--do_eval
--num_train_epochs=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''eval_perplexity'''] , 42 )
@slow
def snake_case__ ( self : str ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_t5_mlm_flax.py
--model_name_or_path t5-small
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--do_train
--do_eval
--max_seq_length 128
--per_device_train_batch_size 4
--per_device_eval_batch_size 4
--num_train_epochs 2
--logging_steps 2 --eval_steps 2
--output_dir {tmp_dir}
--overwrite_output_dir
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_ta_mlm_flax.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 )
@slow
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_flax_ner.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--do_train
--do_eval
--warmup_steps=2
--learning_rate=2e-4
--logging_steps 2 --eval_steps 2
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_flax_ner.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertGreaterEqual(result['''eval_f1'''] , 0.3 )
@slow
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
run_qa.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--overwrite_output_dir
--num_train_epochs=3
--warmup_steps=2
--do_train
--do_eval
--logging_steps 2 --eval_steps 2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
""".split()
with patch.object(lowerCAmelCase__ , '''argv''' , lowerCAmelCase__ ):
run_qa.main()
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_f1'''] , 30 )
self.assertGreaterEqual(result['''eval_exact'''] , 30 )
| 324 | 0 |
"""simple docstring"""
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def a__ ( SCREAMING_SNAKE_CASE : dict ):
'''simple docstring'''
return (data["data"], data["target"])
def a__ ( SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : np.ndarray ):
'''simple docstring'''
lowerCAmelCase : int = XGBRegressor(verbosity=0 , random_state=4_2 )
xgb.fit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Predict target for test data
lowerCAmelCase : Union[str, Any] = xgb.predict(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Optional[Any] = predictions.reshape(len(SCREAMING_SNAKE_CASE ) , 1 )
return predictions
def a__ ( ):
'''simple docstring'''
lowerCAmelCase : Tuple = fetch_california_housing()
lowerCAmelCase , lowerCAmelCase : Union[str, Any] = data_handling(SCREAMING_SNAKE_CASE )
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = train_test_split(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , test_size=0.25 , random_state=1 )
lowerCAmelCase : List[Any] = xgboost(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Error printing
print(f"""Mean Absolute Error : {mean_absolute_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" )
print(f"""Mean Square Error : {mean_squared_error(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}""" )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 108 |
'''simple docstring'''
import argparse
import json
import logging
import os
import shutil
import sys
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.utils import write_basic_config
from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device
from transformers.utils import is_apex_available
logging.basicConfig(level=logging.DEBUG)
lowercase__ : Optional[Any] = logging.getLogger()
def a__ ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = argparse.ArgumentParser()
parser.add_argument('''-f''' )
_UpperCamelCase = parser.parse_args()
return args.f
def a__ ( lowercase : Dict ) -> int:
"""simple docstring"""
_UpperCamelCase = {}
_UpperCamelCase = os.path.join(lowercase, '''all_results.json''' )
if os.path.exists(lowercase ):
with open(lowercase, '''r''' ) as f:
_UpperCamelCase = json.load(lowercase )
else:
raise ValueError(F"""can't find {path}""" )
return results
def a__ ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda'''
return is_using_cuda and is_apex_available()
lowercase__ : str = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
@classmethod
def snake_case__ ( cls : Optional[int] ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = tempfile.mkdtemp()
_UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
_UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def snake_case__ ( cls : Tuple ) -> int:
'''simple docstring'''
shutil.rmtree(cls.tmpdir )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Any ) -> Dict:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--seed=42
--checkpointing_steps epoch
--with_tracking
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py
--model_name_or_path distilgpt2
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--block_size 128
--per_device_train_batch_size 5
--per_device_eval_batch_size 5
--num_train_epochs 2
--output_dir {tmp_dir}
--checkpointing_steps epoch
--with_tracking
""".split()
if torch.cuda.device_count() > 1:
# Skipping because there are not enough batches to train the model + would need a drop_last to work.
return
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 100 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py
--model_name_or_path distilroberta-base
--train_file ./tests/fixtures/sample_text.txt
--validation_file ./tests/fixtures/sample_text.txt
--output_dir {tmp_dir}
--num_train_epochs=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertLess(result['''perplexity'''] , 42 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = 7 if get_gpu_count() > 1 else 2
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/conll/sample.json
--validation_file tests/fixtures/tests_samples/conll/sample.json
--output_dir {tmp_dir}
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=2
--num_train_epochs={epochs}
--seed 7
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 )
self.assertLess(result['''train_loss'''] , 0.5 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) )
@unittest.skip(reason='''Fix me @muellerzr''' )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : int ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py
--model_name_or_path bert-base-uncased
--version_2_with_negative
--train_file tests/fixtures/tests_samples/SQUAD/sample.json
--validation_file tests/fixtures/tests_samples/SQUAD/sample.json
--output_dir {tmp_dir}
--seed=42
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics.
self.assertGreaterEqual(result['''eval_f1'''] , 28 )
self.assertGreaterEqual(result['''eval_exact'''] , 28 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py
--model_name_or_path bert-base-uncased
--train_file tests/fixtures/tests_samples/swag/sample.json
--validation_file tests/fixtures/tests_samples/swag/sample.json
--output_dir {tmp_dir}
--max_train_steps=20
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py
--model_name_or_path t5-small
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_rouge1'''] , 10 )
self.assertGreaterEqual(result['''eval_rouge2'''] , 2 )
self.assertGreaterEqual(result['''eval_rougeL'''] , 7 )
self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) )
@slow
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : str ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/translation/run_translation_no_trainer.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
--max_train_steps=50
--num_warmup_steps=8
--num_beams=6
--learning_rate=3e-3
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--source_lang en_XX
--target_lang ro_RO
--checkpointing_steps epoch
--with_tracking
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_bleu'''] , 30 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) )
@slow
def snake_case__ ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = logging.StreamHandler(sys.stdout )
logger.addHandler(lowerCAmelCase__ )
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py
--dataset_name huggingface/semantic-segmentation-test-sample
--output_dir {tmp_dir}
--max_train_steps=10
--num_warmup_steps=2
--learning_rate=2e-4
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--checkpointing_steps epoch
""".split()
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 )
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.get_auto_remove_tmp_dir()
_UpperCamelCase = f"""
{self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py
--model_name_or_path google/vit-base-patch16-224-in21k
--dataset_name hf-internal-testing/cats_vs_dogs_sample
--learning_rate 1e-4
--per_device_train_batch_size 2
--per_device_eval_batch_size 1
--max_train_steps 2
--train_val_split 0.1
--seed 42
--output_dir {tmp_dir}
--with_tracking
--checkpointing_steps 1
""".split()
if is_cuda_and_apex_available():
testargs.append('''--fp16''' )
run_command(self._launch_args + testargs )
_UpperCamelCase = get_results(lowerCAmelCase__ )
# The base model scores a 25%
self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
| 324 | 0 |
"""simple docstring"""
from __future__ import annotations
import bisect
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ,_lowerCamelCase : int = 0 ,_lowerCamelCase : int = -1 ) -> int:
if hi < 0:
_lowerCAmelCase : Optional[int] = len(_lowerCamelCase )
while lo < hi:
_lowerCAmelCase : Dict = lo + (hi - lo) // 2
if sorted_collection[mid] < item:
_lowerCAmelCase : Union[str, Any] = mid + 1
else:
_lowerCAmelCase : Dict = mid
return lo
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ,_lowerCamelCase : int = 0 ,_lowerCamelCase : int = -1 ) -> int:
if hi < 0:
_lowerCAmelCase : Union[str, Any] = len(_lowerCamelCase )
while lo < hi:
_lowerCAmelCase : Union[str, Any] = lo + (hi - lo) // 2
if sorted_collection[mid] <= item:
_lowerCAmelCase : str = mid + 1
else:
_lowerCAmelCase : List[Any] = mid
return lo
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ,_lowerCamelCase : int = 0 ,_lowerCamelCase : int = -1 ) -> None:
sorted_collection.insert(bisect_left(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase )
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ,_lowerCamelCase : int = 0 ,_lowerCamelCase : int = -1 ) -> None:
sorted_collection.insert(bisect_right(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) ,_lowerCamelCase )
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ) -> int | None:
_lowerCAmelCase : Optional[Any] = 0
_lowerCAmelCase : Tuple = len(_lowerCamelCase ) - 1
while left <= right:
_lowerCAmelCase : Tuple = left + (right - left) // 2
_lowerCAmelCase : Optional[Any] = sorted_collection[midpoint]
if current_item == item:
return midpoint
elif item < current_item:
_lowerCAmelCase : Dict = midpoint - 1
else:
_lowerCAmelCase : List[str] = midpoint + 1
return None
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ) -> int | None:
_lowerCAmelCase : str = bisect.bisect_left(_lowerCamelCase ,_lowerCamelCase )
if index != len(_lowerCamelCase ) and sorted_collection[index] == item:
return index
return None
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ,_lowerCamelCase : int ,_lowerCamelCase : int ,_lowerCamelCase : int ) -> int | None:
if right < left:
return None
_lowerCAmelCase : Union[str, Any] = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,midpoint - 1 )
else:
return binary_search_by_recursion(_lowerCamelCase ,_lowerCamelCase ,midpoint + 1 ,_lowerCamelCase )
if __name__ == "__main__":
_a : Union[str, Any] = input('Enter numbers separated by comma:\n').strip()
_a : List[Any] = sorted(int(item) for item in user_input.split(','))
_a : List[Any] = int(input('Enter a single number to be found in the list:\n'))
_a : List[str] = binary_search(collection, target)
if result is None:
print(F"""{target} was not found in {collection}.""")
else:
print(F"""{target} was found at position {result} in {collection}.""")
| 44 |
'''simple docstring'''
import itertools
import string
from collections.abc import Generator, Iterable
def a__ ( lowercase : Iterable[str], lowercase : int ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
_UpperCamelCase = iter(lowercase )
while True:
_UpperCamelCase = tuple(itertools.islice(lowercase, lowercase ) )
if not chunk:
return
yield chunk
def a__ ( lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
_UpperCamelCase = ''''''
if len(lowercase ) < 2:
return dirty
for i in range(len(lowercase ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(lowercase ) & 1:
clean += "X"
return clean
def a__ ( lowercase : str ) -> list[str]:
"""simple docstring"""
_UpperCamelCase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
_UpperCamelCase = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(lowercase )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(lowercase )
return table
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = prepare_input(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a__ ( lowercase : str, lowercase : str ) -> str:
"""simple docstring"""
_UpperCamelCase = generate_table(lowercase )
_UpperCamelCase = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(lowercase, 2 ):
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
_UpperCamelCase , _UpperCamelCase = divmod(table.index(lowercase ), 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 324 | 0 |
'''simple docstring'''
import os
import time
import pytest
from datasets.utils.filelock import FileLock, Timeout
def UpperCAmelCase__ ( UpperCAmelCase_ : Union[str, Any] ) -> Union[str, Any]:
__lowerCamelCase : Optional[Any] = FileLock(str(tmpdir / 'foo.lock' ) )
__lowerCamelCase : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) )
__lowerCamelCase : Union[str, Any] = 0.01
with locka.acquire():
with pytest.raises(UpperCAmelCase_ ):
__lowerCamelCase : Any = time.time()
locka.acquire(UpperCAmelCase_ )
assert time.time() - _start > timeout
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] ) -> int:
__lowerCamelCase : Any = 'a' * 10_00 + '.lock'
__lowerCamelCase : List[str] = FileLock(str(tmpdir / filename ) )
assert locka._lock_file.endswith('.lock' )
assert not locka._lock_file.endswith(UpperCAmelCase_ )
assert len(os.path.basename(locka._lock_file ) ) <= 2_55
__lowerCamelCase : int = FileLock(tmpdir / filename )
with locka.acquire():
with pytest.raises(UpperCAmelCase_ ):
locka.acquire(0 )
| 185 |
'''simple docstring'''
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase__ : Tuple = logging.get_logger(__name__)
lowercase__ : Any = {'vocab_file': 'spiece.model'}
lowercase__ : Dict = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
}
}
lowercase__ : Optional[Any] = {
'google/bigbird-roberta-base': 40_96,
'google/bigbird-roberta-large': 40_96,
'google/bigbird-base-trivia-itc': 40_96,
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = VOCAB_FILES_NAMES
_snake_case : str = PRETRAINED_VOCAB_FILES_MAP
_snake_case : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_snake_case : str = ['input_ids', 'attention_mask']
_snake_case : List[int] = []
def __init__( self : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int="<unk>" , lowerCAmelCase__ : Union[str, Any]="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : List[Any]="<pad>" , lowerCAmelCase__ : Dict="[SEP]" , lowerCAmelCase__ : str="[MASK]" , lowerCAmelCase__ : Optional[Any]="[CLS]" , lowerCAmelCase__ : Optional[Dict[str, Any]] = None , **lowerCAmelCase__ : int , ) -> None:
'''simple docstring'''
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
_UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , )
_UpperCamelCase = vocab_file
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase__ )
@property
def snake_case__ ( self : List[str] ) -> Tuple:
'''simple docstring'''
return self.sp_model.get_piece_size()
def snake_case__ ( self : Any ) -> int:
'''simple docstring'''
_UpperCamelCase = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.__dict__.copy()
_UpperCamelCase = None
return state
def __setstate__( self : str , lowerCAmelCase__ : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
_UpperCamelCase = {}
_UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def snake_case__ ( self : str , lowerCAmelCase__ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[Any] ) -> List[Any]:
'''simple docstring'''
return self.sp_model.piece_to_id(lowerCAmelCase__ )
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.sp_model.IdToPiece(lowerCAmelCase__ )
return token
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = []
_UpperCamelCase = ''''''
_UpperCamelCase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowerCAmelCase__ ) + token
_UpperCamelCase = True
_UpperCamelCase = []
else:
current_sub_tokens.append(lowerCAmelCase__ )
_UpperCamelCase = False
out_string += self.sp_model.decode(lowerCAmelCase__ )
return out_string.strip()
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = None , lowerCAmelCase__ : bool = True , **lowerCAmelCase__ : List[str] , ) -> str:
'''simple docstring'''
_UpperCamelCase = kwargs.pop('''use_source_tokenizer''' , lowerCAmelCase__ )
_UpperCamelCase = self.convert_ids_to_tokens(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
_UpperCamelCase = []
_UpperCamelCase = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
_UpperCamelCase = []
sub_texts.append(lowerCAmelCase__ )
else:
current_sub_text.append(lowerCAmelCase__ )
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(lowerCAmelCase__ ) )
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
_UpperCamelCase = re.sub(r''' (\[(MASK|SEP)\])''' , r'''\1''' , ''' '''.join(lowerCAmelCase__ ) )
else:
_UpperCamelCase = ''''''.join(lowerCAmelCase__ )
_UpperCamelCase = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
_UpperCamelCase = self.clean_up_tokenization(lowerCAmelCase__ )
return clean_text
else:
return text
def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCamelCase = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , '''wb''' ) as fi:
_UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
_UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + token_ids_a + sep
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None , lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_UpperCamelCase = [self.sep_token_id]
_UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
| 324 | 0 |
import unittest
import numpy as np
import torch
from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class A__ ( unittest.TestCase ):
"""simple docstring"""
@property
def a_ ( self ):
torch.manual_seed(0 )
snake_case = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def a_ ( self ):
snake_case = self.dummy_uncond_unet
snake_case = KarrasVeScheduler()
snake_case = KarrasVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case = torch.manual_seed(0 )
snake_case = pipe(num_inference_steps=2 , generator=lowerCAmelCase__ , output_type='''numpy''' ).images
snake_case = torch.manual_seed(0 )
snake_case = pipe(num_inference_steps=2 , generator=lowerCAmelCase__ , output_type='''numpy''' , return_dict=lowerCAmelCase__ )[0]
snake_case = image[0, -3:, -3:, -1]
snake_case = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
snake_case = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
def a_ ( self ):
snake_case = '''google/ncsnpp-celebahq-256'''
snake_case = UNetaDModel.from_pretrained(lowerCAmelCase__ )
snake_case = KarrasVeScheduler()
snake_case = KarrasVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
snake_case = torch.manual_seed(0 )
snake_case = pipe(num_inference_steps=2_0 , generator=lowerCAmelCase__ , output_type='''numpy''' ).images
snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_5_6, 2_5_6, 3)
snake_case = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 127 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[int] = {
'MIT/ast-finetuned-audioset-10-10-0.4593': (
'https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json'
),
}
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : int = 'audio-spectrogram-transformer'
def __init__( self : Optional[Any] , lowerCAmelCase__ : List[str]=768 , lowerCAmelCase__ : Optional[Any]=12 , lowerCAmelCase__ : int=12 , lowerCAmelCase__ : int=3072 , lowerCAmelCase__ : List[str]="gelu" , lowerCAmelCase__ : List[Any]=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : int=0.02 , lowerCAmelCase__ : Union[str, Any]=1e-1_2 , lowerCAmelCase__ : Any=16 , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=10 , lowerCAmelCase__ : int=10 , lowerCAmelCase__ : Dict=1024 , lowerCAmelCase__ : Optional[int]=128 , **lowerCAmelCase__ : List[Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**lowerCAmelCase__ )
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = patch_size
_UpperCamelCase = qkv_bias
_UpperCamelCase = frequency_stride
_UpperCamelCase = time_stride
_UpperCamelCase = max_length
_UpperCamelCase = num_mel_bins
| 324 | 0 |
"""simple docstring"""
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_UpperCamelCase : Tuple = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_UpperCamelCase : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007
def a_ ( _lowerCAmelCase : Vector , _lowerCAmelCase : Vector ):
'''simple docstring'''
return np.sqrt(np.sum((np.asarray(_lowerCAmelCase ) - np.asarray(_lowerCAmelCase )) ** 2 ) )
def a_ ( _lowerCAmelCase : Vector , _lowerCAmelCase : Vector ):
'''simple docstring'''
return sum((va - va) ** 2 for va, va in zip(_lowerCAmelCase , _lowerCAmelCase ) ) ** (1 / 2)
if __name__ == "__main__":
def a_ ( ):
'''simple docstring'''
from timeit import timeit
print('Without Numpy' )
print(
timeit(
'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , ) )
print('With Numpy' )
print(
timeit(
'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=1_0000 , globals=globals() , ) )
benchmark()
| 77 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
lowercase__ : Union[str, Any] = logging.get_logger(__name__)
# General docstring
lowercase__ : Dict = 'ResNetConfig'
# Base docstring
lowercase__ : str = 'microsoft/resnet-50'
lowercase__ : Tuple = [1, 20_48, 7, 7]
# Image classification docstring
lowercase__ : Optional[Any] = 'microsoft/resnet-50'
lowercase__ : List[str] = 'tiger cat'
lowercase__ : List[Any] = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> Union[str, Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(
lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=kernel_size // 2 , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
_UpperCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCAmelCase__ : ResNetConfig ) -> Tuple:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
_UpperCamelCase = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
_UpperCamelCase = config.num_channels
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' )
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
return embedding
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.Convad(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , stride=lowerCAmelCase__ , bias=lowerCAmelCase__ )
_UpperCamelCase = nn.BatchNormad(lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = self.convolution(lowerCAmelCase__ )
_UpperCamelCase = self.normalization(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" ) -> str:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : Tuple , lowerCAmelCase__ : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : str = "relu" , lowerCAmelCase__ : int = 4 ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = in_channels != out_channels or stride != 1
_UpperCamelCase = out_channels // reduction
_UpperCamelCase = (
ResNetShortCut(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) if should_apply_shortcut else nn.Identity()
)
_UpperCamelCase = nn.Sequential(
ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ ) , ResNetConvLayer(lowerCAmelCase__ , lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ ) , )
_UpperCamelCase = ACTaFN[activation]
def snake_case__ ( self : int , lowerCAmelCase__ : List[Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = hidden_state
_UpperCamelCase = self.layer(lowerCAmelCase__ )
_UpperCamelCase = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
_UpperCamelCase = self.activation(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Union[str, Any] , lowerCAmelCase__ : ResNetConfig , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int = 2 , lowerCAmelCase__ : int = 2 , ) -> int:
'''simple docstring'''
super().__init__()
_UpperCamelCase = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer
_UpperCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , activation=config.hidden_act ) , *[layer(lowerCAmelCase__ , lowerCAmelCase__ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Tensor ) -> Tensor:
'''simple docstring'''
_UpperCamelCase = input
for layer in self.layers:
_UpperCamelCase = layer(lowerCAmelCase__ )
return hidden_state
class __lowerCAmelCase ( nn.Module ):
"""simple docstring"""
def __init__( self : Any , lowerCAmelCase__ : ResNetConfig ) -> List[Any]:
'''simple docstring'''
super().__init__()
_UpperCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
_UpperCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(lowerCAmelCase__ , config.depths[1:] ):
self.stages.append(ResNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ ) )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True ) -> BaseModelOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
_UpperCamelCase = stage_module(lowerCAmelCase__ )
if output_hidden_states:
_UpperCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
_snake_case : Optional[int] = ResNetConfig
_snake_case : Union[str, Any] = 'resnet'
_snake_case : Optional[int] = 'pixel_values'
_snake_case : int = True
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' )
elif isinstance(lowerCAmelCase__ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=False ) -> List[str]:
'''simple docstring'''
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_UpperCamelCase = value
lowercase__ : Optional[int] = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
lowercase__ : Any = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare ResNet model outputting raw features without any specific head on top.' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any] ) -> str:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
_UpperCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = encoder_outputs[0]
_UpperCamelCase = self.pooler(lowerCAmelCase__ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
_UpperCamelCase = config.num_labels
_UpperCamelCase = ResNetModel(lowerCAmelCase__ )
# classification head
_UpperCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def snake_case__ ( self : int , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[torch.LongTensor] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = self.resnet(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.pooler_output if return_dict else outputs[1]
_UpperCamelCase = self.classifier(lowerCAmelCase__ )
_UpperCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_UpperCamelCase = '''regression'''
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_UpperCamelCase = '''single_label_classification'''
else:
_UpperCamelCase = '''multi_label_classification'''
if self.config.problem_type == "regression":
_UpperCamelCase = MSELoss()
if self.num_labels == 1:
_UpperCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
elif self.config.problem_type == "single_label_classification":
_UpperCamelCase = CrossEntropyLoss()
_UpperCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
_UpperCamelCase = BCEWithLogitsLoss()
_UpperCamelCase = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ )
if not return_dict:
_UpperCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
'\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , __magic_name__ , )
class __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
"""simple docstring"""
def __init__( self : Tuple , lowerCAmelCase__ : Any ) -> Dict:
'''simple docstring'''
super().__init__(lowerCAmelCase__ )
super()._init_backbone(lowerCAmelCase__ )
_UpperCamelCase = [config.embedding_size] + config.hidden_sizes
_UpperCamelCase = ResNetEmbeddings(lowerCAmelCase__ )
_UpperCamelCase = ResNetEncoder(lowerCAmelCase__ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@replace_return_docstrings(output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC )
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None ) -> BackboneOutput:
'''simple docstring'''
_UpperCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
_UpperCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_UpperCamelCase = self.embedder(lowerCAmelCase__ )
_UpperCamelCase = self.encoder(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
_UpperCamelCase = outputs.hidden_states
_UpperCamelCase = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
_UpperCamelCase = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=lowerCAmelCase__ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=lowerCAmelCase__ , )
| 324 | 0 |
"""simple docstring"""
import argparse
import hashlib
import os
import urllib
import warnings
import torch
from torch import nn
from tqdm import tqdm
from transformers import WhisperConfig, WhisperForConditionalGeneration
lowerCAmelCase_ = {
'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt',
'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt',
'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt',
'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt',
'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt',
'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt',
'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt',
'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt',
'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt',
'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt',
}
def __UpperCAmelCase ( __lowerCamelCase ) -> Any:
lowercase__ : Union[str, Any] = ['''layers''', '''blocks''']
for k in ignore_keys:
state_dict.pop(__lowerCamelCase , __lowerCamelCase )
lowerCAmelCase_ = {
'blocks': 'layers',
'mlp.0': 'fc1',
'mlp.2': 'fc2',
'mlp_ln': 'final_layer_norm',
'.attn.query': '.self_attn.q_proj',
'.attn.key': '.self_attn.k_proj',
'.attn.value': '.self_attn.v_proj',
'.attn_ln': '.self_attn_layer_norm',
'.attn.out': '.self_attn.out_proj',
'.cross_attn.query': '.encoder_attn.q_proj',
'.cross_attn.key': '.encoder_attn.k_proj',
'.cross_attn.value': '.encoder_attn.v_proj',
'.cross_attn_ln': '.encoder_attn_layer_norm',
'.cross_attn.out': '.encoder_attn.out_proj',
'decoder.ln.': 'decoder.layer_norm.',
'encoder.ln.': 'encoder.layer_norm.',
'token_embedding': 'embed_tokens',
'encoder.positional_embedding': 'encoder.embed_positions.weight',
'decoder.positional_embedding': 'decoder.embed_positions.weight',
'ln_post': 'layer_norm',
}
def __UpperCAmelCase ( __lowerCamelCase ) -> str:
lowercase__ : Optional[Any] = list(s_dict.keys() )
for key in keys:
lowercase__ : List[Any] = key
for k, v in WHISPER_MAPPING.items():
if k in key:
lowercase__ : Tuple = new_key.replace(__lowerCamelCase , __lowerCamelCase )
print(f"""{key} -> {new_key}""" )
lowercase__ : str = s_dict.pop(__lowerCamelCase )
return s_dict
def __UpperCAmelCase ( __lowerCamelCase ) -> List[str]:
lowercase__ , lowercase__ : List[str] = emb.weight.shape
lowercase__ : Tuple = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase )
lowercase__ : str = emb.weight.data
return lin_layer
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> bytes:
os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase )
lowercase__ : List[str] = os.path.basename(__lowerCamelCase )
lowercase__ : Dict = url.split('''/''' )[-2]
lowercase__ : Tuple = os.path.join(__lowerCamelCase , __lowerCamelCase )
if os.path.exists(__lowerCamelCase ) and not os.path.isfile(__lowerCamelCase ):
raise RuntimeError(f"""{download_target} exists and is not a regular file""" )
if os.path.isfile(__lowerCamelCase ):
lowercase__ : Optional[int] = open(__lowerCamelCase , '''rb''' ).read()
if hashlib.shaaaa(__lowerCamelCase ).hexdigest() == expected_shaaaa:
return model_bytes
else:
warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" )
with urllib.request.urlopen(__lowerCamelCase ) as source, open(__lowerCamelCase , '''wb''' ) as output:
with tqdm(
total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=__lowerCamelCase , unit_divisor=10_24 ) as loop:
while True:
lowercase__ : Tuple = source.read(81_92 )
if not buffer:
break
output.write(__lowerCamelCase )
loop.update(len(__lowerCamelCase ) )
lowercase__ : Any = open(__lowerCamelCase , '''rb''' ).read()
if hashlib.shaaaa(__lowerCamelCase ).hexdigest() != expected_shaaaa:
raise RuntimeError(
'''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' )
return model_bytes
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict:
if ".pt" not in checkpoint_path:
lowercase__ : Tuple = _download(_MODELS[checkpoint_path] )
else:
lowercase__ : Optional[int] = torch.load(__lowerCamelCase , map_location='''cpu''' )
lowercase__ : Any = original_checkpoint['''dims''']
lowercase__ : Optional[Any] = original_checkpoint['''model_state_dict''']
lowercase__ : Union[str, Any] = state_dict['''decoder.token_embedding.weight''']
remove_ignore_keys_(__lowerCamelCase )
rename_keys(__lowerCamelCase )
lowercase__ : str = True
lowercase__ : Tuple = state_dict['''decoder.layers.0.fc1.weight'''].shape[0]
lowercase__ : List[str] = WhisperConfig(
vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=__lowerCamelCase , decoder_ffn_dim=__lowerCamelCase , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , )
lowercase__ : Optional[int] = WhisperForConditionalGeneration(__lowerCamelCase )
lowercase__ , lowercase__ : str = model.model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase )
if len(__lowerCamelCase ) > 0 and not set(__lowerCamelCase ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'''
f""" but all the following weights are missing {missing}""" )
if tie_embeds:
lowercase__ : Dict = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
lowercase__ : Optional[Any] = proj_out_weights
model.save_pretrained(__lowerCamelCase )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
# # Required parameters
parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
lowerCAmelCase_ = parser.parse_args()
convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
| 16 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def a__ ( lowercase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
if isinstance(lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class __lowerCAmelCase :
"""simple docstring"""
def snake_case__ ( self : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> List[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Tuple ) -> int:
'''simple docstring'''
pass
def snake_case__ ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
def snake_case__ ( self : int , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : np.ndarray , lowerCAmelCase__ : float ) -> str:
'''simple docstring'''
_UpperCamelCase = np.abs((a - b) ).max()
self.assertLessEqual(lowerCAmelCase__ , lowerCAmelCase__ , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def snake_case__ ( self : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Any ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def snake_case__ ( self : str , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model(input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
_UpperCamelCase = after_output[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : Optional[int] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_vision_text_model(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = {'''vision_model''': vision_model, '''text_model''': text_model}
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase__ )
_UpperCamelCase = model(
input_ids=lowerCAmelCase__ , pixel_values=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ )
_UpperCamelCase = output.vision_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_UpperCamelCase = to_atuple(vision_model.config.image_size )
_UpperCamelCase = to_atuple(vision_model.config.patch_size )
_UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_UpperCamelCase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_UpperCamelCase = output.text_model_output.attentions
self.assertEqual(len(lowerCAmelCase__ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def snake_case__ ( self : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : int ) -> Tuple:
'''simple docstring'''
pt_model.to(lowerCAmelCase__ )
pt_model.eval()
# prepare inputs
_UpperCamelCase = inputs_dict
_UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_UpperCamelCase = pt_model(**lowerCAmelCase__ ).to_tuple()
_UpperCamelCase = fx_model(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_pt=lowerCAmelCase__ )
_UpperCamelCase = fx_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output.numpy() , 4e-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ , from_flax=lowerCAmelCase__ )
pt_model_loaded.to(lowerCAmelCase__ )
pt_model_loaded.eval()
with torch.no_grad():
_UpperCamelCase = pt_model_loaded(**lowerCAmelCase__ ).to_tuple()
self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) , '''Output lengths differ between Flax and PyTorch''' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(lowerCAmelCase__ , pt_output_loaded.numpy() , 4e-2 )
def snake_case__ ( self : Dict , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int ) -> Any:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , lowerCAmelCase__ )
_UpperCamelCase = fx_state
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase__ , lowerCAmelCase__ )
_UpperCamelCase = VisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel(lowerCAmelCase__ )
_UpperCamelCase = load_flax_weights_in_pytorch_model(lowerCAmelCase__ , fx_model.params )
self.check_pt_flax_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**lowerCAmelCase__ )
def snake_case__ ( self : List[Any] ) -> int:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase__ )
def snake_case__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_save_load(**lowerCAmelCase__ )
def snake_case__ ( self : Any ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**lowerCAmelCase__ )
@is_pt_flax_cross_test
def snake_case__ ( self : int ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase = config_inputs_dict.pop('''vision_config''' )
_UpperCamelCase = config_inputs_dict.pop('''text_config''' )
_UpperCamelCase = config_inputs_dict
self.check_equivalence_pt_to_flax(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.check_equivalence_flax_to_pt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase , _UpperCamelCase = self.get_pretrained_model_and_inputs()
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(lowerCAmelCase__ )
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase__ )
_UpperCamelCase = model_a(**lowerCAmelCase__ )
_UpperCamelCase = after_outputs[0]
_UpperCamelCase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(lowerCAmelCase__ , 1e-5 )
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Tuple ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxViTModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : str ) -> Tuple:
'''simple docstring'''
_UpperCamelCase = FlaxViTModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = vit_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : List[str] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=lowerCAmelCase__ , text_from_pt=lowerCAmelCase__ , )
_UpperCamelCase = 13
_UpperCamelCase = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_UpperCamelCase = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_UpperCamelCase = random_attention_mask([batch_size, 4] )
_UpperCamelCase = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModel(lowerCAmelCase__ )
_UpperCamelCase = FlaxBertModel(lowerCAmelCase__ )
return vision_model, text_model
def snake_case__ ( self : List[str] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxCLIPVisionModelTester(self )
_UpperCamelCase = FlaxBertModelTester(self )
_UpperCamelCase = clip_model_tester.prepare_config_and_inputs()
_UpperCamelCase = bert_model_tester.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase = vision_config_and_inputs
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : List[Any] ) -> Any:
'''simple docstring'''
_UpperCamelCase = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 )
_UpperCamelCase = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
_UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
_UpperCamelCase = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors='''np''' )
_UpperCamelCase = model(**lowerCAmelCase__ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_UpperCamelCase = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image , lowerCAmelCase__ , atol=1e-3 ) )
| 324 | 0 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_a = logging.get_logger()
@dataclass
class __lowerCamelCase :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = field(default_factory=snake_case__)
UpperCamelCase__ = field(default_factory=snake_case__)
def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = len(list(m.modules() ) ) == 1 or isinstance(lowerCAmelCase__ , nn.Convad ) or isinstance(lowerCAmelCase__ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(lowerCAmelCase__ )
def __call__( self , UpperCAmelCase ):
"""simple docstring"""
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(lowerCAmelCase__ )
[x.remove() for x in self.handles]
return self
@property
def UpperCamelCase ( self ):
"""simple docstring"""
return list(filter(lambda UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class __lowerCamelCase :
"""simple docstring"""
UpperCamelCase__ = 42
UpperCamelCase__ = 42
UpperCamelCase__ = 0
UpperCamelCase__ = field(default_factory=snake_case__)
UpperCamelCase__ = field(default_factory=snake_case__)
def __call__( self , UpperCAmelCase ):
"""simple docstring"""
_UpperCAmelCase = Tracker(self.dest )(lowerCAmelCase__ ).parametrized
_UpperCAmelCase = Tracker(self.src )(lowerCAmelCase__ ).parametrized
_UpperCAmelCase = list(filter(lambda UpperCAmelCase : type(lowerCAmelCase__ ) not in self.src_skip , lowerCAmelCase__ ) )
_UpperCAmelCase = list(filter(lambda UpperCAmelCase : type(lowerCAmelCase__ ) not in self.dest_skip , lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ):
raise Exception(
F"""Numbers of operations are different. Source module has {len(lowerCAmelCase__ )} operations while"""
F""" destination module has {len(lowerCAmelCase__ )}.""" )
for dest_m, src_m in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = True )-> int:
"""simple docstring"""
print(F"""Converting {name}...""" )
with torch.no_grad():
_UpperCAmelCase = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ).eval()
_UpperCAmelCase = ResNetForImageClassification(__lowerCAmelCase ).eval()
_UpperCAmelCase = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase )
_UpperCAmelCase = torch.randn((1, 3, 224, 224) )
module_transfer(__lowerCAmelCase )
assert torch.allclose(from_model(__lowerCAmelCase ) , our_model(__lowerCAmelCase ).logits ), "The model logits don't match the original one."
_UpperCAmelCase = F"""resnet{"-".join(name.split("resnet" ) )}"""
print(__lowerCAmelCase )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=__lowerCAmelCase , )
# we can use the convnext one
_UpperCAmelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=__lowerCAmelCase , )
print(F"""Pushed {checkpoint_name}""" )
def __A ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True )-> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = 'imagenet-1k-id2label.json'
_UpperCAmelCase = 1_000
_UpperCAmelCase = (1, num_labels)
_UpperCAmelCase = 'huggingface/label-files'
_UpperCAmelCase = num_labels
_UpperCAmelCase = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) )
_UpperCAmelCase = {int(__lowerCAmelCase ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
_UpperCAmelCase = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase )
_UpperCAmelCase = {
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1_024, 2_048] , layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(__lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )
return config, expected_shape
if __name__ == "__main__":
_a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported resnet* architecture,'''
''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
_a = parser.parse_args()
_a = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 39 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any=13 , lowerCAmelCase__ : str=7 , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : str=True , lowerCAmelCase__ : str=99 , lowerCAmelCase__ : str=32 , lowerCAmelCase__ : Optional[int]=5 , lowerCAmelCase__ : Optional[Any]=4 , lowerCAmelCase__ : Tuple=37 , lowerCAmelCase__ : int="gelu" , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : List[str]=512 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : int=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Any=4 , ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = seq_length
_UpperCamelCase = is_training
_UpperCamelCase = use_attention_mask
_UpperCamelCase = use_token_type_ids
_UpperCamelCase = use_labels
_UpperCamelCase = vocab_size
_UpperCamelCase = hidden_size
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = max_position_embeddings
_UpperCamelCase = type_vocab_size
_UpperCamelCase = type_sequence_label_size
_UpperCamelCase = initializer_range
_UpperCamelCase = num_choices
def snake_case__ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCamelCase = None
if self.use_attention_mask:
_UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCamelCase = None
if self.use_token_type_ids:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCamelCase = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def snake_case__ ( self : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCamelCase = self.prepare_config_and_inputs()
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs
_UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_flax
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Dict = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def snake_case__ ( self : Optional[int] ) -> Dict:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModelTester(self )
@slow
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCamelCase = model_class_name.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase__ )
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def snake_case__ ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = FlaxAlbertModel.from_pretrained('''albert-base-v2''' )
_UpperCamelCase = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
_UpperCamelCase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
_UpperCamelCase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
_UpperCamelCase = (1, 11, 768)
self.assertEqual(output.shape , lowerCAmelCase__ )
_UpperCamelCase = np.array(
[[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 ) )
| 324 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCAmelCase__ = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = ['GLPNFeatureExtractor']
UpperCAmelCase__ = ['GLPNImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase__ = [
'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST',
'GLPNForDepthEstimation',
'GLPNLayer',
'GLPNModel',
'GLPNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_glpn import GLPNFeatureExtractor
from .image_processing_glpn import GLPNImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_glpn import (
GLPN_PRETRAINED_MODEL_ARCHIVE_LIST,
GLPNForDepthEstimation,
GLPNLayer,
GLPNModel,
GLPNPreTrainedModel,
)
else:
import sys
UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 289 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int]=7 , lowerCAmelCase__ : List[Any]=3 , lowerCAmelCase__ : Optional[Any]=18 , lowerCAmelCase__ : Union[str, Any]=30 , lowerCAmelCase__ : Any=400 , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=True , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Optional[Any]=True , lowerCAmelCase__ : str=[0.5, 0.5, 0.5] , lowerCAmelCase__ : int=[0.5, 0.5, 0.5] , ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = size if size is not None else {'''shortest_edge''': 18}
_UpperCamelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
_UpperCamelCase = parent
_UpperCamelCase = batch_size
_UpperCamelCase = num_channels
_UpperCamelCase = image_size
_UpperCamelCase = min_resolution
_UpperCamelCase = max_resolution
_UpperCamelCase = do_resize
_UpperCamelCase = size
_UpperCamelCase = do_center_crop
_UpperCamelCase = crop_size
_UpperCamelCase = do_normalize
_UpperCamelCase = image_mean
_UpperCamelCase = image_std
def snake_case__ ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ):
"""simple docstring"""
_snake_case : Tuple = LevitImageProcessor if is_vision_available() else None
def snake_case__ ( self : int ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = LevitImageProcessingTester(self )
@property
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_mean''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''image_std''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_normalize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_resize''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''do_center_crop''' ) )
self.assertTrue(hasattr(lowerCAmelCase__ , '''size''' ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
_UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def snake_case__ ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
pass
def snake_case__ ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def snake_case__ ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
_UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
_UpperCamelCase = image_processing(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 324 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.