code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Union[torch.Tensor, float, int] , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : List[torch.tensor] , _UpperCAmelCase : List[float] , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , ) -> Union[ControlNetOutput, Tuple]:
"""simple docstring"""
for i, (image, scale, controlnet) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase , self.nets ) ):
__lowercase , __lowercase = controlnet(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , )
# merge samples
if i == 0:
__lowercase , __lowercase = down_samples, mid_sample
else:
__lowercase = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(_UpperCAmelCase , _UpperCAmelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Callable = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , ) -> Optional[int]:
"""simple docstring"""
__lowercase = 0
__lowercase = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
_UpperCAmelCase , is_main_process=_UpperCAmelCase , save_function=_UpperCAmelCase , safe_serialization=_UpperCAmelCase , variant=_UpperCAmelCase , )
idx += 1
__lowercase = model_path_to_save + f"""_{idx}"""
@classmethod
def a__ ( cls : Optional[int] , _UpperCAmelCase : Optional[Union[str, os.PathLike]] , **_UpperCAmelCase : Any ) -> Tuple:
"""simple docstring"""
__lowercase = 0
__lowercase = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
__lowercase = pretrained_model_path
while os.path.isdir(_UpperCAmelCase ):
__lowercase = ControlNetModel.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
controlnets.append(_UpperCAmelCase )
idx += 1
__lowercase = pretrained_model_path + f"""_{idx}"""
logger.info(f"""{len(_UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.""" )
if len(_UpperCAmelCase ) == 0:
raise ValueError(
f"""No ControlNets found under {os.path.dirname(_UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.""" )
return cls(_UpperCAmelCase )
| 325 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 1 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=None ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
_UpperCAmelCase , question_encoder_tokenizer=_UpperCAmelCase , generator_tokenizer=_UpperCAmelCase , index=_UpperCAmelCase , init_retrieval=_UpperCAmelCase , )
__lowercase = None
def a__ ( self : Dict , _UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
logger.info('initializing retrieval' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('dist initialized' )
# needs to be set manually
__lowercase = self._infer_socket_ifname()
# avoid clash with the NCCL port
__lowercase = str(distributed_port + 1 )
__lowercase = dist.new_group(ranks=_UpperCAmelCase , backend='gloo' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('dist not initialized / main' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def a__ ( self : str ) -> str:
"""simple docstring"""
return dist.get_rank(group=self.process_group ) == 0
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=torch.floataa ) -> Optional[int]:
"""simple docstring"""
__lowercase = torch.empty(_UpperCAmelCase , dtype=_UpperCAmelCase )
dist.scatter(_UpperCAmelCase , src=0 , scatter_list=_UpperCAmelCase , group=self.process_group )
return target_tensor
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__lowercase = next((addr for addr in addrs if addr.startswith('e' )) , _UpperCAmelCase )
return ifname
def a__ ( self : Union[str, Any] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int ) -> Tuple[np.ndarray, List[dict]]:
"""simple docstring"""
if not dist.is_initialized():
__lowercase , __lowercase = self._main_retrieve(_UpperCAmelCase , _UpperCAmelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_UpperCAmelCase )
# distributed training
__lowercase = dist.get_world_size(group=self.process_group )
# gather logic
__lowercase = None
if self._is_main():
__lowercase = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(_UpperCAmelCase )]
dist.gather(torch.tensor(_UpperCAmelCase ) , dst=0 , gather_list=_UpperCAmelCase , group=self.process_group )
# scatter logic
__lowercase = question_hidden_states.shape[0]
__lowercase = []
__lowercase = []
if self._is_main():
assert len(_UpperCAmelCase ) == world_size
__lowercase , __lowercase = self._main_retrieve(torch.cat(_UpperCAmelCase ).numpy() , _UpperCAmelCase )
__lowercase , __lowercase = torch.tensor(_UpperCAmelCase ), torch.tensor(_UpperCAmelCase )
__lowercase = self._chunk_tensor(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._chunk_tensor(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self._scattered(_UpperCAmelCase , [n_queries, n_docs] , target_type=torch.intaa )
__lowercase = self._scattered(_UpperCAmelCase , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(_UpperCAmelCase )
| 325 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 1 |
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]:
if isinstance(SCREAMING_SNAKE_CASE , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class A__ :
def a__ ( self : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Tuple:
"""simple docstring"""
pass
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
pass
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
pass
def a__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = VisionTextDualEncoderConfig.from_vision_text_configs(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = TFVisionTextDualEncoderModel(_UpperCAmelCase )
__lowercase = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) )
def a__ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowercase , __lowercase = self.get_vision_text_model(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = TFVisionTextDualEncoderModel(vision_model=_UpperCAmelCase , text_model=_UpperCAmelCase )
__lowercase = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Any=None , **_UpperCAmelCase : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase = self.get_vision_text_model(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = {'vision_model': vision_model, 'text_model': text_model}
__lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_UpperCAmelCase )
__lowercase = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.get_vision_text_model(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = TFVisionTextDualEncoderModel(vision_model=_UpperCAmelCase , text_model=_UpperCAmelCase )
__lowercase = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
__lowercase = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase )
__lowercase = TFVisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase )
__lowercase = model(input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
__lowercase = after_output[0].numpy()
__lowercase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_UpperCAmelCase , 1e-5 )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.get_vision_text_model(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = TFVisionTextDualEncoderModel(vision_model=_UpperCAmelCase , text_model=_UpperCAmelCase )
__lowercase = model(
input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_attentions=_UpperCAmelCase )
__lowercase = output.vision_model_output.attentions
self.assertEqual(len(_UpperCAmelCase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
__lowercase = to_atuple(vision_model.config.image_size )
__lowercase = to_atuple(vision_model.config.patch_size )
__lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__lowercase = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__lowercase = output.text_model_output.attentions
self.assertEqual(len(_UpperCAmelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def a__ ( self : Dict , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> Optional[Any]:
"""simple docstring"""
__lowercase = np.abs((a - b) ).max()
self.assertLessEqual(_UpperCAmelCase , _UpperCAmelCase , f"""Difference between torch and flax is {diff} (>= {tol}).""" )
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**_UpperCAmelCase )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**_UpperCAmelCase )
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
self.check_save_load(**_UpperCAmelCase )
def a__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**_UpperCAmelCase )
@slow
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.get_pretrained_model_and_inputs()
__lowercase = model_a(**_UpperCAmelCase )
__lowercase = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(_UpperCAmelCase )
__lowercase = TFVisionTextDualEncoderModel.from_pretrained(_UpperCAmelCase )
__lowercase = model_a(**_UpperCAmelCase )
__lowercase = after_outputs[0].numpy()
__lowercase = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(_UpperCAmelCase , 1e-5 )
@require_tf
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' )
__lowercase = 13
__lowercase = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__lowercase = random_attention_mask([batch_size, 4] )
__lowercase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def a__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = TFViTModel(_UpperCAmelCase , name='vision_model' )
__lowercase = TFBertModel(_UpperCAmelCase , name='text_model' )
return vision_model, text_model
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = TFViTModelTester(self )
__lowercase = TFBertModelTester(self )
__lowercase = vit_model_tester.prepare_config_and_inputs()
__lowercase = bert_model_tester.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase = vision_config_and_inputs
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' )
__lowercase = 13
__lowercase = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__lowercase = random_attention_mask([batch_size, 4] )
__lowercase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def a__ ( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.get_vision_text_model(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = TFVisionTextDualEncoderModel(vision_model=_UpperCAmelCase , text_model=_UpperCAmelCase )
__lowercase = model(
input_ids=_UpperCAmelCase , pixel_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_attentions=_UpperCAmelCase )
__lowercase = output.vision_model_output.attentions
self.assertEqual(len(_UpperCAmelCase ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
__lowercase = to_atuple(vision_model.config.image_size )
__lowercase = to_atuple(vision_model.config.patch_size )
__lowercase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
__lowercase = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
__lowercase = output.text_model_output.attentions
self.assertEqual(len(_UpperCAmelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ) -> int:
"""simple docstring"""
__lowercase = TFDeiTModel(_UpperCAmelCase , name='vision_model' )
__lowercase = TFRobertaModel(_UpperCAmelCase , name='text_model' )
return vision_model, text_model
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = TFDeiTModelTester(self )
__lowercase = TFRobertaModelTester(self )
__lowercase = vit_model_tester.prepare_config_and_inputs()
__lowercase = bert_model_tester.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase = vision_config_and_inputs
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' )
__lowercase = 13
__lowercase = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
__lowercase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
__lowercase = random_attention_mask([batch_size, 4] )
__lowercase = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def a__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> Tuple:
"""simple docstring"""
__lowercase = TFCLIPVisionModel(_UpperCAmelCase , name='vision_model' )
__lowercase = TFBertModel(_UpperCAmelCase , name='text_model' )
return vision_model, text_model
def a__ ( self : int ) -> Any:
"""simple docstring"""
__lowercase = TFCLIPVisionModelTester(self )
__lowercase = TFBertModelTester(self )
__lowercase = clip_model_tester.prepare_config_and_inputs()
__lowercase = bert_model_tester.prepare_config_and_inputs()
__lowercase , __lowercase = vision_config_and_inputs
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFVisionTextDualEncoderModel.from_pretrained(
'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=_UpperCAmelCase )
__lowercase = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' )
__lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
__lowercase = processor(
text=['una foto di un gatto', 'una foto di un cane'] , images=_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='np' )
__lowercase = model(**_UpperCAmelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
__lowercase = np.array([[1.2_284_727, 0.3_104_122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _UpperCAmelCase , atol=1e-3 ) )
| 325 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 1 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 4 ) -> list[list[int]]:
__lowercase = abs(SCREAMING_SNAKE_CASE ) or 4
return [[1 + x + y * row_size for x in range(SCREAMING_SNAKE_CASE )] for y in range(SCREAMING_SNAKE_CASE )]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> list[list[int]]:
return reverse_row(transpose(SCREAMING_SNAKE_CASE ) )
# OR.. transpose(reverse_column(matrix))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> list[list[int]]:
return reverse_row(reverse_column(SCREAMING_SNAKE_CASE ) )
# OR.. reverse_column(reverse_row(matrix))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> list[list[int]]:
return reverse_column(transpose(SCREAMING_SNAKE_CASE ) )
# OR.. transpose(reverse_row(matrix))
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> list[list[int]]:
__lowercase = [list(SCREAMING_SNAKE_CASE ) for x in zip(*SCREAMING_SNAKE_CASE )]
return matrix
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> list[list[int]]:
__lowercase = matrix[::-1]
return matrix
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> list[list[int]]:
__lowercase = [x[::-1] for x in matrix]
return matrix
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> None:
for i in matrix:
print(*SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = make_matrix()
print("""\norigin:\n""")
print_matrix(matrix)
print("""\nrotate 90 counterclockwise:\n""")
print_matrix(rotate_aa(matrix))
SCREAMING_SNAKE_CASE__ = make_matrix()
print("""\norigin:\n""")
print_matrix(matrix)
print("""\nrotate 180:\n""")
print_matrix(rotate_aaa(matrix))
SCREAMING_SNAKE_CASE__ = make_matrix()
print("""\norigin:\n""")
print_matrix(matrix)
print("""\nrotate 270 counterclockwise:\n""")
print_matrix(rotate_aaa(matrix))
| 325 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 1 |
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : str = GPTaTokenizer
lowerCAmelCase__ : List[Any] = GPTaTokenizerFast
lowerCAmelCase__ : Tuple = True
lowerCAmelCase__ : Dict = {"add_prefix_space": True}
lowerCAmelCase__ : str = False
def a__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__lowercase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
'<|endoftext|>',
]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
__lowercase = {'unk_token': '<unk>'}
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
__lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(_UpperCAmelCase ) )
def a__ ( self : Optional[int] , **_UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def a__ ( self : List[Any] , **_UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = 'lower newer'
__lowercase = 'lower newer'
return input_text, output_text
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
__lowercase = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__lowercase = 'lower newer'
__lowercase = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er']
__lowercase = tokenizer.tokenize(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = tokens + [tokenizer.unk_token]
__lowercase = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__lowercase = self.get_tokenizer()
__lowercase = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase )
__lowercase = 'lower newer'
# Testing tokenization
__lowercase = tokenizer.tokenize(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing conversion to ids without special tokens
__lowercase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing conversion to ids with special tokens
__lowercase = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase )
__lowercase = tokenizer.encode(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
__lowercase = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing the unknown token
__lowercase = tokens + [rust_tokenizer.unk_token]
__lowercase = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Dict , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
pass
def a__ ( self : Optional[Any] , _UpperCAmelCase : Tuple=15 ) -> Any:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowercase = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
# Simple input
__lowercase = 'This is a simple input'
__lowercase = ['This is a simple input 1', 'This is a simple input 2']
__lowercase = ('This is a simple input', 'This is a pair')
__lowercase = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' )
# Simple input
__lowercase = 'This is a simple input'
__lowercase = ['This is a simple input looooooooong', 'This is a simple input']
__lowercase = ('This is a simple input', 'This is a pair')
__lowercase = [
('This is a simple input loooooong', 'This is a simple input'),
('This is a simple pair loooooong', 'This is a simple pair'),
]
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer(_UpperCAmelCase , padding='max_length' , max_length=30 , return_tensors='np' )
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncate=_UpperCAmelCase , return_tensors='np' )
__lowercase = tokenizer(*_UpperCAmelCase , padding='max_length' , max_length=60 , return_tensors='np' )
__lowercase = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncate=_UpperCAmelCase , return_tensors='np' )
# s
# test single string max_length padding
self.assertEqual(out_s['input_ids'].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s['input_ids'] )
self.assertTrue(0 in out_s['attention_mask'] )
# s2
# test automatic padding
self.assertEqual(out_sa['input_ids'].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa['input_ids'][0] )
self.assertFalse(0 in out_sa['attention_mask'][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa['input_ids'][1] )
self.assertTrue(0 in out_sa['attention_mask'][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p['input_ids'].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p['input_ids'] )
self.assertTrue(0 in out_p['attention_mask'] )
# p2
# test automatic padding pair
self.assertEqual(out_pa['input_ids'].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa['input_ids'][0] )
self.assertFalse(0 in out_pa['attention_mask'][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa['input_ids'][1] )
self.assertTrue(0 in out_pa['attention_mask'][1] )
def a__ ( self : Optional[int] ) -> int:
"""simple docstring"""
__lowercase = '$$$'
__lowercase = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_UpperCAmelCase , add_bos_token=_UpperCAmelCase )
__lowercase = 'This is a simple input'
__lowercase = ['This is a simple input 1', 'This is a simple input 2']
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer(_UpperCAmelCase )
__lowercase = tokenizer(_UpperCAmelCase )
self.assertEqual(out_s.input_ids[0] , _UpperCAmelCase )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
__lowercase = tokenizer.decode(out_s.input_ids )
__lowercase = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , _UpperCAmelCase )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
pass
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = [self.get_tokenizer(do_lower_case=_UpperCAmelCase , add_bos_token=_UpperCAmelCase )]
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__lowercase = 'Encode this.'
__lowercase = 'This one too please.'
__lowercase = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
encoded_sequence += tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
__lowercase = tokenizer.encode_plus(
_UpperCAmelCase , _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , )
__lowercase = encoded_sequence_dict['input_ids']
__lowercase = encoded_sequence_dict['special_tokens_mask']
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
__lowercase = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(_UpperCAmelCase )
]
__lowercase = [x for x in filtered_sequence if x is not None]
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
@require_tokenizers
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_UpperCAmelCase )
__lowercase = 'A photo of a cat'
__lowercase = tokenizer.encode(
_UpperCAmelCase , )
self.assertEqual(_UpperCAmelCase , [2, 2_50, 13_45, 9, 10, 47_58] )
tokenizer.save_pretrained('test_opt' )
__lowercase = AutoTokenizer.from_pretrained('./test_opt' )
__lowercase = tokenizer.encode(
_UpperCAmelCase , )
self.assertEqual(_UpperCAmelCase , [2, 2_50, 13_45, 9, 10, 47_58] )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=_UpperCAmelCase )
__lowercase = 'A photo of a cat'
__lowercase = tokenizer.encode(
_UpperCAmelCase , )
# Same as above
self.assertEqual(_UpperCAmelCase , [2, 2_50, 13_45, 9, 10, 47_58] )
@unittest.skip('This test is failing because of a bug in the fast tokenizer' )
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_UpperCAmelCase )
__lowercase = 'bos'
__lowercase = tokenizer.get_vocab()['bos']
__lowercase = 'A photo of a cat'
__lowercase = tokenizer.encode(
_UpperCAmelCase , )
# We changed the bos token
self.assertEqual(_UpperCAmelCase , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
tokenizer.save_pretrained('./tok' )
__lowercase = AutoTokenizer.from_pretrained('./tok' )
self.assertTrue(tokenizer.is_fast )
__lowercase = tokenizer.encode(
_UpperCAmelCase , )
self.assertEqual(_UpperCAmelCase , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
| 325 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 1 |
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> Optional[int]:
# A local function to see if a dot lands in the circle.
def is_in_circle(SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> bool:
__lowercase = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
__lowercase = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(SCREAMING_SNAKE_CASE ) )
# The ratio of the area for circle to square is pi/4.
__lowercase = proportion * 4
print(F"""The estimated value of pi is {pi_estimate}""" )
print(F"""The numpy value of pi is {pi}""" )
print(F"""The total error is {abs(pi - pi_estimate )}""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Callable[[float], float] , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 , ) -> float:
return mean(
function_to_integrate(uniform(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) for _ in range(SCREAMING_SNAKE_CASE ) ) * (max_value - min_value)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 ) -> None:
def identity_function(SCREAMING_SNAKE_CASE : float ) -> float:
return x
__lowercase = area_under_curve_estimator(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (max_value * max_value - min_value * min_value) / 2
print('******************' )
print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" )
print(F"""Estimated value is {estimated_value}""" )
print(F"""Expected value is {expected_value}""" )
print(F"""Total error is {abs(estimated_value - expected_value )}""" )
print('******************' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> None:
def function_to_integrate(SCREAMING_SNAKE_CASE : float ) -> float:
return sqrt(4.0 - x * x )
__lowercase = area_under_curve_estimator(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0.0 , 2.0 )
print('******************' )
print('Estimating pi using area_under_curve_estimator' )
print(F"""Estimated value is {estimated_value}""" )
print(F"""Expected value is {pi}""" )
print(F"""Total error is {abs(estimated_value - pi )}""" )
print('******************' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """▁"""
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """sentencepiece.bpe.model"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
}
}
SCREAMING_SNAKE_CASE__ = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE__ = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Tuple = ["input_ids", "attention_mask"]
lowerCAmelCase__ : List[int] = []
lowerCAmelCase__ : List[int] = []
def __init__( self : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple="<s>" , _UpperCAmelCase : List[str]="</s>" , _UpperCAmelCase : Optional[Any]="</s>" , _UpperCAmelCase : int="<s>" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : Tuple="<pad>" , _UpperCAmelCase : Optional[int]="<mask>" , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : int=None , **_UpperCAmelCase : List[Any] , ) -> Tuple:
"""simple docstring"""
__lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token
__lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_UpperCAmelCase ) )
__lowercase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
__lowercase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__lowercase = 1
__lowercase = len(self.sp_model )
__lowercase = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase )
}
__lowercase = {v: k for k, v in self.lang_code_to_id.items()}
__lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__lowercase = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__lowercase = src_lang if src_lang is not None else 'en_XX'
__lowercase = self.lang_code_to_id[self._src_lang]
__lowercase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.__dict__.copy()
__lowercase = None
__lowercase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : str , _UpperCAmelCase : List[str] ) -> int:
"""simple docstring"""
__lowercase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__lowercase = {}
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def a__ ( self : Optional[int] ) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def a__ ( self : int , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
__lowercase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def a__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
__lowercase = [1] * len(self.prefix_tokens )
__lowercase = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones
def a__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a__ ( self : int , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : Tuple ) -> Any:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
__lowercase = src_lang
__lowercase = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = self.convert_tokens_to_ids(_UpperCAmelCase )
__lowercase = tgt_lang_id
return inputs
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def a__ ( self : Dict , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : Tuple ) -> Optional[int]:
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__lowercase = self.sp_model.PieceToId(_UpperCAmelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def a__ ( self : Any , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def a__ ( self : int , _UpperCAmelCase : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = ''.join(_UpperCAmelCase ).replace(_UpperCAmelCase , ' ' ).strip()
return out_string
def a__ ( self : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__lowercase = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
def a__ ( self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "en_XX" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "ro_RO" , **_UpperCAmelCase : Tuple , ) -> BatchEncoding:
"""simple docstring"""
__lowercase = src_lang
__lowercase = tgt_lang
return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang )
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def a__ ( self : Any , _UpperCAmelCase : List[Any] ) -> None:
"""simple docstring"""
__lowercase = self.lang_code_to_id[src_lang]
__lowercase = []
__lowercase = [self.eos_token_id, self.cur_lang_code]
def a__ ( self : Tuple , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
__lowercase = self.lang_code_to_id[lang]
__lowercase = []
__lowercase = [self.eos_token_id, self.cur_lang_code]
| 325 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""MIT/ast-finetuned-audioset-10-10-0.4593""": (
"""https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = "audio-spectrogram-transformer"
def __init__( self : Dict , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : List[str]=1e-1_2 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Dict=10 , _UpperCAmelCase : Tuple=10 , _UpperCAmelCase : List[Any]=10_24 , _UpperCAmelCase : Optional[int]=1_28 , **_UpperCAmelCase : List[Any] , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = patch_size
__lowercase = qkv_bias
__lowercase = frequency_stride
__lowercase = time_stride
__lowercase = max_length
__lowercase = num_mel_bins
| 325 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 1 |
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Any = None
lowerCAmelCase__ : Any = BloomTokenizerFast
lowerCAmelCase__ : Union[str, Any] = BloomTokenizerFast
lowerCAmelCase__ : List[str] = True
lowerCAmelCase__ : Optional[Any] = False
lowerCAmelCase__ : Dict = "tokenizer_file"
lowerCAmelCase__ : str = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
__lowercase = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : List[Any] , **_UpperCAmelCase : List[str] ) -> Dict:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = self.get_rust_tokenizer()
__lowercase = ['The quick brown fox</s>', 'jumps over the lazy dog</s>']
__lowercase = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
__lowercase = tokenizer.batch_encode_plus(_UpperCAmelCase )['input_ids']
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = tokenizer.batch_decode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : List[str]=6 ) -> List[Any]:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__lowercase = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
__lowercase = 'This is a simple input'
__lowercase = ['This is a simple input 1', 'This is a simple input 2']
__lowercase = ('This is a simple input', 'This is a pair')
__lowercase = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
try:
tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.encode(_UpperCAmelCase , max_length=_UpperCAmelCase )
tokenizer_r.batch_encode_plus(_UpperCAmelCase , max_length=_UpperCAmelCase )
except ValueError:
self.fail('Bloom Tokenizer should be able to deal with padding' )
__lowercase = None # Hotfixing padding = None
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Simple input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' )
# Pair input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , )
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.get_rust_tokenizer()
__lowercase = load_dataset('xnli' , 'all_languages' , split='test' , streaming=_UpperCAmelCase )
__lowercase = next(iter(_UpperCAmelCase ) )['premise'] # pick up one data
__lowercase = list(sample_data.values() )
__lowercase = list(map(tokenizer.encode , _UpperCAmelCase ) )
__lowercase = [tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) for x in output_tokens]
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 325 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 1 |
import unittest
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import enable_full_determinism, skip_mps
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[Any] = KandinskyVaaPriorPipeline
lowerCAmelCase__ : Optional[int] = ["prompt"]
lowerCAmelCase__ : Union[str, Any] = ["prompt", "negative_prompt"]
lowerCAmelCase__ : Tuple = [
"num_images_per_prompt",
"generator",
"num_inference_steps",
"latents",
"negative_prompt",
"guidance_scale",
"output_type",
"return_dict",
]
lowerCAmelCase__ : int = False
@property
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 32
@property
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
return 32
@property
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
return self.time_input_dim
@property
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
return self.time_input_dim * 4
@property
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
return 1_00
@property
def a__ ( self : List[str] ) -> Any:
"""simple docstring"""
__lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModelWithProjection(_UpperCAmelCase )
@property
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = {
'num_attention_heads': 2,
'attention_head_dim': 12,
'embedding_dim': self.text_embedder_hidden_size,
'num_layers': 1,
}
__lowercase = PriorTransformer(**_UpperCAmelCase )
# clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0
__lowercase = nn.Parameter(torch.ones(model.clip_std.shape ) )
return model
@property
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
__lowercase = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , image_size=2_24 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , )
__lowercase = CLIPVisionModelWithProjection(_UpperCAmelCase )
return model
@property
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = CLIPImageProcessor(
crop_size=2_24 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=2_24 , )
return image_processor
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.dummy_prior
__lowercase = self.dummy_image_encoder
__lowercase = self.dummy_text_encoder
__lowercase = self.dummy_tokenizer
__lowercase = self.dummy_image_processor
__lowercase = UnCLIPScheduler(
variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=10_00 , clip_sample=_UpperCAmelCase , clip_sample_range=10.0 , )
__lowercase = {
'prior': prior,
'image_encoder': image_encoder,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'scheduler': scheduler,
'image_processor': image_processor,
}
return components
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=0 ) -> str:
"""simple docstring"""
if str(_UpperCAmelCase ).startswith('mps' ):
__lowercase = torch.manual_seed(_UpperCAmelCase )
else:
__lowercase = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
__lowercase = {
'prompt': 'horse',
'generator': generator,
'guidance_scale': 4.0,
'num_inference_steps': 2,
'output_type': 'np',
}
return inputs
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = 'cpu'
__lowercase = self.get_dummy_components()
__lowercase = self.pipeline_class(**_UpperCAmelCase )
__lowercase = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__lowercase = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
__lowercase = output.image_embeds
__lowercase = pipe(
**self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0]
__lowercase = image[0, -10:]
__lowercase = image_from_tuple[0, -10:]
assert image.shape == (1, 32)
__lowercase = np.array(
[-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = torch_device == 'cpu'
__lowercase = True
__lowercase = False
self._test_inference_batch_single_identical(
test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , test_mean_pixel_difference=_UpperCAmelCase , )
@skip_mps
def a__ ( self : Tuple ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = torch_device == 'cpu'
__lowercase = False
self._test_attention_slicing_forward_pass(
test_max_difference=_UpperCAmelCase , test_mean_pixel_difference=_UpperCAmelCase , )
| 325 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 1 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
SCREAMING_SNAKE_CASE__ = """cuda""" if torch.cuda.is_available() else """cpu"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any]=100 , SCREAMING_SNAKE_CASE : List[Any]=" " ) -> List[str]:
__lowercase = text.split(SCREAMING_SNAKE_CASE )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : dict ) -> dict:
__lowercase , __lowercase = [], []
for title, text in zip(documents['title'] , documents['text'] ):
if text is not None:
for passage in split_text(SCREAMING_SNAKE_CASE ):
titles.append(title if title is not None else '' )
texts.append(SCREAMING_SNAKE_CASE )
return {"title": titles, "text": texts}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : DPRContextEncoder , SCREAMING_SNAKE_CASE : DPRContextEncoderTokenizerFast ) -> dict:
__lowercase = ctx_tokenizer(
documents['title'] , documents['text'] , truncation=SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' )['input_ids']
__lowercase = ctx_encoder(input_ids.to(device=SCREAMING_SNAKE_CASE ) , return_dict=SCREAMING_SNAKE_CASE ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : "RagExampleArguments" , SCREAMING_SNAKE_CASE : "ProcessingArguments" , SCREAMING_SNAKE_CASE : "IndexHnswArguments" , ) -> List[str]:
######################################
logger.info('Step 1 - Create the dataset' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
__lowercase = load_dataset(
'csv' , data_files=[rag_example_args.csv_path] , split='train' , delimiter='\t' , column_names=['title', 'text'] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
__lowercase = dataset.map(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , num_proc=processing_args.num_proc )
# And compute the embeddings
__lowercase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=SCREAMING_SNAKE_CASE )
__lowercase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
__lowercase = Features(
{'text': Value('string' ), 'title': Value('string' ), 'embeddings': Sequence(Value('float32' ) )} ) # optional, save as float32 instead of float64 to save space
__lowercase = dataset.map(
partial(SCREAMING_SNAKE_CASE , ctx_encoder=SCREAMING_SNAKE_CASE , ctx_tokenizer=SCREAMING_SNAKE_CASE ) , batched=SCREAMING_SNAKE_CASE , batch_size=processing_args.batch_size , features=SCREAMING_SNAKE_CASE , )
# And finally save your dataset
__lowercase = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset' )
dataset.save_to_disk(SCREAMING_SNAKE_CASE )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('Step 2 - Index the dataset' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
__lowercase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('embeddings' , custom_index=SCREAMING_SNAKE_CASE )
# And save the index
__lowercase = os.path.join(rag_example_args.output_dir , 'my_knowledge_dataset_hnsw_index.faiss' )
dataset.get_index('embeddings' ).save(SCREAMING_SNAKE_CASE )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class A__ :
lowerCAmelCase__ : str = field(
default=str(Path(lowerCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , )
lowerCAmelCase__ : str = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , )
lowerCAmelCase__ : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} , )
lowerCAmelCase__ : Optional[str] = field(
default=str(Path(lowerCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class A__ :
lowerCAmelCase__ : Optional[int] = field(
default=lowerCAmelCase__ , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
lowerCAmelCase__ : int = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class A__ :
lowerCAmelCase__ : int = field(
default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
lowerCAmelCase__ : int = field(
default=128 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
SCREAMING_SNAKE_CASE__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE__ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 325 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "swin"
lowerCAmelCase__ : Union[str, Any] = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : List[Any] , _UpperCAmelCase : int=2_24 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Optional[Any]=96 , _UpperCAmelCase : str=[2, 2, 6, 2] , _UpperCAmelCase : Optional[Any]=[3, 6, 12, 24] , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : int=4.0 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Union[str, Any]=1e-5 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Optional[int] , ) -> List[str]:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = embed_dim
__lowercase = depths
__lowercase = len(_UpperCAmelCase )
__lowercase = num_heads
__lowercase = window_size
__lowercase = mlp_ratio
__lowercase = qkv_bias
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = drop_path_rate
__lowercase = hidden_act
__lowercase = use_absolute_embeddings
__lowercase = layer_norm_eps
__lowercase = initializer_range
__lowercase = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__lowercase = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) )
__lowercase = ['stem'] + [f"""stage{idx}""" for idx in range(1 , len(_UpperCAmelCase ) + 1 )]
__lowercase , __lowercase = get_aligned_output_features_output_indices(
out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : str = version.parse("1.11" )
@property
def a__ ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-4
| 325 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 1000 ) -> int:
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 325 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 1 |
import unittest
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TextGenerationPipeline,
logging,
pipeline,
)
from transformers.testing_utils import (
CaptureLogger,
is_pipeline_test,
require_accelerate,
require_tf,
require_torch,
require_torch_gpu,
require_torch_or_tf,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING
lowerCAmelCase__ : str = TF_MODEL_FOR_CAUSAL_LM_MAPPING
@require_torch
def a__ ( self : Any ) -> int:
"""simple docstring"""
__lowercase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='pt' )
# Using `do_sample=False` to force deterministic output
__lowercase = text_generator('This is a test' , do_sample=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{
'generated_text': (
'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'
' oscope. FiliFili@@'
)
}
] , )
__lowercase = text_generator(['This is a test', 'This is a second test'] )
self.assertEqual(
_UpperCAmelCase , [
[
{
'generated_text': (
'This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.'
' oscope. FiliFili@@'
)
}
],
[
{
'generated_text': (
'This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy'
' oscope. oscope. FiliFili@@'
)
}
],
] , )
__lowercase = text_generator('This is a test' , do_sample=_UpperCAmelCase , num_return_sequences=2 , return_tensors=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{'generated_token_ids': ANY(_UpperCAmelCase )},
{'generated_token_ids': ANY(_UpperCAmelCase )},
] , )
__lowercase = text_generator.model.config.eos_token_id
__lowercase = '<pad>'
__lowercase = text_generator(
['This is a test', 'This is a second test'] , do_sample=_UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_UpperCAmelCase , )
self.assertEqual(
_UpperCAmelCase , [
[
{'generated_token_ids': ANY(_UpperCAmelCase )},
{'generated_token_ids': ANY(_UpperCAmelCase )},
],
[
{'generated_token_ids': ANY(_UpperCAmelCase )},
{'generated_token_ids': ANY(_UpperCAmelCase )},
],
] , )
@require_tf
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = pipeline(task='text-generation' , model='sshleifer/tiny-ctrl' , framework='tf' )
# Using `do_sample=False` to force deterministic output
__lowercase = text_generator('This is a test' , do_sample=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
{
'generated_text': (
'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'
' please,'
)
}
] , )
__lowercase = text_generator(['This is a test', 'This is a second test'] , do_sample=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
[
{
'generated_text': (
'This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵'
' please,'
)
}
],
[
{
'generated_text': (
'This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes'
' Cannes 閲閲Cannes Cannes Cannes 攵 please,'
)
}
],
] , )
def a__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> Any:
"""simple docstring"""
__lowercase = TextGenerationPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
return text_generator, ["This is a test", "Another test"]
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = 'Hello I believe in'
__lowercase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' )
__lowercase = text_generator(_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [{'generated_text': 'Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'}] , )
__lowercase = text_generator(_UpperCAmelCase , stop_sequence=' fe' )
self.assertEqual(_UpperCAmelCase , [{'generated_text': 'Hello I believe in fe'}] )
def a__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> List[str]:
"""simple docstring"""
__lowercase = text_generator.model
__lowercase = text_generator.tokenizer
__lowercase = text_generator('This is a test' )
self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] )
self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) )
__lowercase = text_generator('This is a test' , return_full_text=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] )
self.assertNotIn('This is a test' , outputs[0]['generated_text'] )
__lowercase = pipeline(task='text-generation' , model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , return_full_text=_UpperCAmelCase )
__lowercase = text_generator('This is a test' )
self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] )
self.assertNotIn('This is a test' , outputs[0]['generated_text'] )
__lowercase = text_generator('This is a test' , return_full_text=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] )
self.assertTrue(outputs[0]['generated_text'].startswith('This is a test' ) )
__lowercase = text_generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
[{'generated_text': ANY(_UpperCAmelCase )}, {'generated_text': ANY(_UpperCAmelCase )}],
[{'generated_text': ANY(_UpperCAmelCase )}, {'generated_text': ANY(_UpperCAmelCase )}],
] , )
if text_generator.tokenizer.pad_token is not None:
__lowercase = text_generator(
['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=_UpperCAmelCase )
self.assertEqual(
_UpperCAmelCase , [
[{'generated_text': ANY(_UpperCAmelCase )}, {'generated_text': ANY(_UpperCAmelCase )}],
[{'generated_text': ANY(_UpperCAmelCase )}, {'generated_text': ANY(_UpperCAmelCase )}],
] , )
with self.assertRaises(_UpperCAmelCase ):
__lowercase = text_generator('test' , return_full_text=_UpperCAmelCase , return_text=_UpperCAmelCase )
with self.assertRaises(_UpperCAmelCase ):
__lowercase = text_generator('test' , return_full_text=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
with self.assertRaises(_UpperCAmelCase ):
__lowercase = text_generator('test' , return_text=_UpperCAmelCase , return_tensors=_UpperCAmelCase )
# Empty prompt is slighly special
# it requires BOS token to exist.
# Special case for Pegasus which will always append EOS so will
# work even without BOS.
if (
text_generator.tokenizer.bos_token_id is not None
or "Pegasus" in tokenizer.__class__.__name__
or "Git" in model.__class__.__name__
):
__lowercase = text_generator('' )
self.assertEqual(_UpperCAmelCase , [{'generated_text': ANY(_UpperCAmelCase )}] )
else:
with self.assertRaises((ValueError, AssertionError) ):
__lowercase = text_generator('' )
if text_generator.framework == "tf":
# TF generation does not support max_new_tokens, and it's impossible
# to control long generation with only max_length without
# fancy calculation, dismissing tests for now.
return
# We don't care about infinite range models.
# They already work.
# Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly.
__lowercase = ['RwkvForCausalLM', 'XGLMForCausalLM', 'GPTNeoXForCausalLM']
if (
tokenizer.model_max_length < 1_00_00
and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS
):
# Handling of large generations
with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ):
text_generator('This is a test' * 5_00 , max_new_tokens=20 )
__lowercase = text_generator('This is a test' * 5_00 , handle_long_generation='hole' , max_new_tokens=20 )
# Hole strategy cannot work
with self.assertRaises(_UpperCAmelCase ):
text_generator(
'This is a test' * 5_00 , handle_long_generation='hole' , max_new_tokens=tokenizer.model_max_length + 10 , )
@require_torch
@require_accelerate
@require_torch_gpu
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
import torch
# Classic `model_kwargs`
__lowercase = pipeline(
model='hf-internal-testing/tiny-random-bloom' , model_kwargs={'device_map': 'auto', 'torch_dtype': torch.bfloataa} , )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__lowercase = pipe('This is a test' )
self.assertEqual(
_UpperCAmelCase , [
{
'generated_text': (
'This is a test test test test test test test test test test test test test test test test'
' test'
)
}
] , )
# Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.)
__lowercase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.bfloataa )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa )
__lowercase = pipe('This is a test' )
self.assertEqual(
_UpperCAmelCase , [
{
'generated_text': (
'This is a test test test test test test test test test test test test test test test test'
' test'
)
}
] , )
# torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602
__lowercase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' )
self.assertEqual(pipe.model.device , torch.device(0 ) )
self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa )
__lowercase = pipe('This is a test' )
self.assertEqual(
_UpperCAmelCase , [
{
'generated_text': (
'This is a test test test test test test test test test test test test test test test test'
' test'
)
}
] , )
@require_torch
@require_torch_gpu
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
import torch
__lowercase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device=0 , torch_dtype=torch.floataa )
pipe('This is a test' )
@require_torch
@require_accelerate
@require_torch_gpu
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
import torch
__lowercase = pipeline(model='hf-internal-testing/tiny-random-bloom' , device_map='auto' , torch_dtype=torch.floataa )
pipe('This is a test' , do_sample=_UpperCAmelCase , top_p=0.5 )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
__lowercase = 'Hello world'
__lowercase = pipeline('text-generation' , model='hf-internal-testing/tiny-random-gpt2' )
if text_generator.model.framework == "tf":
__lowercase = logging.get_logger('transformers.generation.tf_utils' )
else:
__lowercase = logging.get_logger('transformers.generation.utils' )
__lowercase = 'Both `max_new_tokens`' # The beggining of the message to be checked in this test
# Both are set by the user -> log warning
with CaptureLogger(_UpperCAmelCase ) as cl:
__lowercase = text_generator(_UpperCAmelCase , max_length=10 , max_new_tokens=1 )
self.assertIn(_UpperCAmelCase , cl.out )
# The user only sets one -> no warning
with CaptureLogger(_UpperCAmelCase ) as cl:
__lowercase = text_generator(_UpperCAmelCase , max_new_tokens=1 )
self.assertNotIn(_UpperCAmelCase , cl.out )
with CaptureLogger(_UpperCAmelCase ) as cl:
__lowercase = text_generator(_UpperCAmelCase , max_length=10 )
self.assertNotIn(_UpperCAmelCase , cl.out )
| 325 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 1 |
from maths.prime_check import is_prime
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = F"""Input value of [number={number}] must be an integer"""
raise TypeError(SCREAMING_SNAKE_CASE )
if is_prime(SCREAMING_SNAKE_CASE ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
SCREAMING_SNAKE_CASE__ = """platform"""
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , ) -> List[str]:
if attention_mask is None:
__lowercase = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
__lowercase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
__lowercase = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowercase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowercase = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class A__ :
def __init__( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=False , _UpperCAmelCase : int=99 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Optional[Any]=32 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Optional[int]=0 , _UpperCAmelCase : str=0.02 , ) -> Tuple:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = eos_token_id
__lowercase = pad_token_id
__lowercase = bos_token_id
__lowercase = initializer_range
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
__lowercase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
__lowercase = shift_tokens_right(_UpperCAmelCase , 1 , 2 )
__lowercase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , )
__lowercase = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowercase , __lowercase = self.prepare_config_and_inputs()
return config, inputs_dict
def a__ ( self : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = 20
__lowercase = model_class_name(_UpperCAmelCase )
__lowercase = model.encode(inputs_dict['input_ids'] )
__lowercase , __lowercase = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
__lowercase = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
__lowercase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowercase = model.decode(
decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
__lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
__lowercase = model.decode(
decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , )
__lowercase = model.decode(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : List[str] ) -> int:
"""simple docstring"""
__lowercase = 20
__lowercase = model_class_name(_UpperCAmelCase )
__lowercase = model.encode(inputs_dict['input_ids'] )
__lowercase , __lowercase = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
__lowercase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
__lowercase = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
__lowercase = model.decode(
decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
__lowercase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
__lowercase = model.decode(
decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , )
__lowercase = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase )
__lowercase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : Any = 99
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
__lowercase = input_ids.shape[0]
__lowercase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def a__ ( self : int ) -> Any:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = self._get_config_and_data()
__lowercase = FlaxBlenderbotForConditionalGeneration(_UpperCAmelCase )
__lowercase = lm_model(input_ids=_UpperCAmelCase )
__lowercase = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['logits'].shape , _UpperCAmelCase )
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
__lowercase = FlaxBlenderbotForConditionalGeneration(_UpperCAmelCase )
__lowercase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
__lowercase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
__lowercase = lm_model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase )
__lowercase = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['logits'].shape , _UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
__lowercase = shift_tokens_right(_UpperCAmelCase , 1 , 2 )
__lowercase = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum()
__lowercase = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(_UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class A__ ( lowerCAmelCase__ , unittest.TestCase , lowerCAmelCase__ ):
lowerCAmelCase__ : Any = True
lowerCAmelCase__ : Tuple = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCAmelCase__ : str = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = FlaxBlenderbotModelTester(self )
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
@jax.jit
def encode_jitted(_UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : str ):
return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase )
with self.subTest('JIT Enabled' ):
__lowercase = encode_jitted(**_UpperCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowercase = encode_jitted(**_UpperCAmelCase ).to_tuple()
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
__lowercase = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(_UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ):
return model.decode(
decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , )
with self.subTest('JIT Enabled' ):
__lowercase = decode_jitted(**_UpperCAmelCase ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
__lowercase = decode_jitted(**_UpperCAmelCase ).to_tuple()
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def a__ ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
__lowercase = np.ones((1, 1) ) * model.config.eos_token_id
__lowercase = model(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' )
@slow
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25}
__lowercase = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True}
__lowercase = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_UpperCAmelCase )
__lowercase = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' )
__lowercase = ['Sam']
__lowercase = tokenizer(_UpperCAmelCase , return_tensors='jax' )
__lowercase = model.generate(**_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = 'Sam is a great name. It means "sun" in Gaelic.'
__lowercase = tokenizer.batch_decode(_UpperCAmelCase , **_UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text
| 325 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 | 1 |
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
if is_torch_available():
import torch
from transformers import AutoModelForImageClassification
if is_vision_available():
from transformers import AutoImageProcessor
@require_torch
@require_vision
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__lowercase = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' )
__lowercase = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' )
model.to(_UpperCAmelCase )
from datasets import load_dataset
__lowercase = load_dataset('nielsr/rvlcdip-demo' )
__lowercase = dataset['train'][0]['image'].convert('RGB' )
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__lowercase = model(**_UpperCAmelCase )
__lowercase = outputs.logits
__lowercase = torch.Size((1, 16) )
self.assertEqual(logits.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[-0.4_158, -0.4_092, -0.4_347] , device=_UpperCAmelCase , dtype=torch.float , )
self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 325 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
SCREAMING_SNAKE_CASE__ = {
"""configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""],
"""configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""MaskFormerFeatureExtractor"""]
SCREAMING_SNAKE_CASE__ = ["""MaskFormerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MaskFormerForInstanceSegmentation""",
"""MaskFormerModel""",
"""MaskFormerPreTrainedModel""",
]
SCREAMING_SNAKE_CASE__ = [
"""MaskFormerSwinBackbone""",
"""MaskFormerSwinModel""",
"""MaskFormerSwinPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig
from .configuration_maskformer_swin import MaskFormerSwinConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_maskformer import MaskFormerFeatureExtractor
from .image_processing_maskformer import MaskFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_maskformer import (
MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
MaskFormerForInstanceSegmentation,
MaskFormerModel,
MaskFormerPreTrainedModel,
)
from .modeling_maskformer_swin import (
MaskFormerSwinBackbone,
MaskFormerSwinModel,
MaskFormerSwinPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 325 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 | 1 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
SCREAMING_SNAKE_CASE__ = """\
@inproceedings{lin-2004-rouge,
title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",
author = \"Lin, Chin-Yew\",
booktitle = \"Text Summarization Branches Out\",
month = jul,
year = \"2004\",
address = \"Barcelona, Spain\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W04-1013\",
pages = \"74--81\",
}
"""
SCREAMING_SNAKE_CASE__ = """\
ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for
evaluating automatic summarization and machine translation software in natural language processing.
The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.
Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.
This metrics is a wrapper around Google Research reimplementation of ROUGE:
https://github.com/google-research/google-research/tree/master/rouge
"""
SCREAMING_SNAKE_CASE__ = """
Calculates average rouge scores for a list of hypotheses and references
Args:
predictions: list of predictions to score. Each prediction
should be a string with tokens separated by spaces.
references: list of reference for each prediction. Each
reference should be a string with tokens separated by spaces.
rouge_types: A list of rouge types to calculate.
Valid names:
`\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,
`\"rougeL\"`: Longest common subsequence based scoring.
`\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.
See details in https://github.com/huggingface/datasets/issues/617
use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.
use_aggregator: Return aggregates if this is set to True
Returns:
rouge1: rouge_1 (precision, recall, f1),
rouge2: rouge_2 (precision, recall, f1),
rougeL: rouge_l (precision, recall, f1),
rougeLsum: rouge_lsum (precision, recall, f1)
Examples:
>>> rouge = datasets.load_metric('rouge')
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> results = rouge.compute(predictions=predictions, references=references)
>>> print(list(results.keys()))
['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
>>> print(results[\"rouge1\"])
AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))
>>> print(results[\"rouge1\"].mid.fmeasure)
1.0
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[
'https://en.wikipedia.org/wiki/ROUGE_(metric)',
'https://github.com/google-research/google-research/tree/master/rouge',
] , )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=True , _UpperCAmelCase : Optional[int]=False ) -> List[str]:
"""simple docstring"""
if rouge_types is None:
__lowercase = ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']
__lowercase = rouge_scorer.RougeScorer(rouge_types=_UpperCAmelCase , use_stemmer=_UpperCAmelCase )
if use_aggregator:
__lowercase = scoring.BootstrapAggregator()
else:
__lowercase = []
for ref, pred in zip(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = scorer.score(_UpperCAmelCase , _UpperCAmelCase )
if use_aggregator:
aggregator.add_scores(_UpperCAmelCase )
else:
scores.append(_UpperCAmelCase )
if use_aggregator:
__lowercase = aggregator.aggregate()
else:
__lowercase = {}
for key in scores[0]:
__lowercase = [score[key] for score in scores]
return result
| 325 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 | 1 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
__lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowercase = [3, 3, 3, 3]
__lowercase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowercase = [4, 4, 4, 4]
__lowercase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowercase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowercase = [3, 3, 3, 3]
else:
__lowercase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowercase = 96
elif "small" in model_name:
__lowercase = 96
elif "base" in model_name:
__lowercase = 128
elif "large" in model_name:
__lowercase = 192
elif "xlarge" in model_name:
__lowercase = 256
elif "huge" in model_name:
__lowercase = 352
# set label information
__lowercase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowercase = 'imagenet-22k-id2label.json'
else:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = FocalNetConfig(
embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , )
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if "patch_embed.proj" in name:
__lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowercase = 'encoder.' + name
if "encoder.layers" in name:
__lowercase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowercase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowercase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowercase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowercase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowercase = 'layernorm.weight'
if name == "norm.bias":
__lowercase = 'layernorm.bias'
if "head" in name:
__lowercase = name.replace('head' , 'classifier' )
else:
__lowercase = 'focalnet.' + name
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]:
# fmt: off
__lowercase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowercase = model_name_to_url[model_name]
print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
__lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE )
__lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
# load state dict
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify conversion
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = BitImageProcessor(
do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , )
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
__lowercase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 325 | 1 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[List[PIL.Image.Image], np.ndarray]
lowerCAmelCase__ : Optional[List[bool]]
lowerCAmelCase__ : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 325 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 | 1 |
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=0.999 , SCREAMING_SNAKE_CASE : Optional[Any]="cosine" , ) -> Union[str, Any]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(SCREAMING_SNAKE_CASE : Optional[Any] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(SCREAMING_SNAKE_CASE : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
__lowercase = []
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = i / num_diffusion_timesteps
__lowercase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE ) / alpha_bar_fn(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) )
return torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = [e.name for e in KarrasDiffusionSchedulers]
lowerCAmelCase__ : int = 2
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int = 10_00 , _UpperCAmelCase : float = 0.00_085 , _UpperCAmelCase : float = 0.012 , _UpperCAmelCase : str = "linear" , _UpperCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _UpperCAmelCase : str = "epsilon" , _UpperCAmelCase : Optional[bool] = False , _UpperCAmelCase : Optional[bool] = False , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : str = "linspace" , _UpperCAmelCase : int = 0 , ) -> str:
"""simple docstring"""
if trained_betas is not None:
__lowercase = torch.tensor(_UpperCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
__lowercase = torch.linspace(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__lowercase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__lowercase = betas_for_alpha_bar(_UpperCAmelCase , alpha_transform_type='cosine' )
elif beta_schedule == "exp":
__lowercase = betas_for_alpha_bar(_UpperCAmelCase , alpha_transform_type='exp' )
else:
raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" )
__lowercase = 1.0 - self.betas
__lowercase = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = use_karras_sigmas
def a__ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any=None ) -> Any:
"""simple docstring"""
if schedule_timesteps is None:
__lowercase = self.timesteps
__lowercase = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
__lowercase = 1 if len(_UpperCAmelCase ) > 1 else 0
else:
__lowercase = timestep.cpu().item() if torch.is_tensor(_UpperCAmelCase ) else timestep
__lowercase = self._index_counter[timestep_int]
return indices[pos].item()
@property
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def a__ ( self : Optional[int] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Union[float, torch.FloatTensor] , ) -> torch.FloatTensor:
"""simple docstring"""
__lowercase = self.index_for_timestep(_UpperCAmelCase )
__lowercase = self.sigmas[step_index]
__lowercase = sample / ((sigma**2 + 1) ** 0.5)
return sample
def a__ ( self : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, torch.device] = None , _UpperCAmelCase : Optional[int] = None , ) -> Optional[int]:
"""simple docstring"""
__lowercase = num_inference_steps
__lowercase = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
__lowercase = np.linspace(0 , num_train_timesteps - 1 , _UpperCAmelCase , dtype=_UpperCAmelCase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
__lowercase = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__lowercase = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(_UpperCAmelCase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
__lowercase = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__lowercase = (np.arange(_UpperCAmelCase , 0 , -step_ratio )).round().copy().astype(_UpperCAmelCase )
timesteps -= 1
else:
raise ValueError(
f"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" )
__lowercase = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
__lowercase = np.log(_UpperCAmelCase )
__lowercase = np.interp(_UpperCAmelCase , np.arange(0 , len(_UpperCAmelCase ) ) , _UpperCAmelCase )
if self.config.use_karras_sigmas:
__lowercase = self._convert_to_karras(in_sigmas=_UpperCAmelCase , num_inference_steps=self.num_inference_steps )
__lowercase = np.array([self._sigma_to_t(_UpperCAmelCase , _UpperCAmelCase ) for sigma in sigmas] )
__lowercase = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
__lowercase = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase )
__lowercase = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
__lowercase = torch.from_numpy(_UpperCAmelCase )
__lowercase = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(_UpperCAmelCase ).startswith('mps' ):
# mps does not support float64
__lowercase = timesteps.to(_UpperCAmelCase , dtype=torch.floataa )
else:
__lowercase = timesteps.to(device=_UpperCAmelCase )
# empty dt and derivative
__lowercase = None
__lowercase = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
__lowercase = defaultdict(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = np.log(_UpperCAmelCase )
# get distribution
__lowercase = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
__lowercase = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
__lowercase = low_idx + 1
__lowercase = log_sigmas[low_idx]
__lowercase = log_sigmas[high_idx]
# interpolate sigmas
__lowercase = (low - log_sigma) / (low - high)
__lowercase = np.clip(_UpperCAmelCase , 0 , 1 )
# transform interpolation to time range
__lowercase = (1 - w) * low_idx + w * high_idx
__lowercase = t.reshape(sigma.shape )
return t
def a__ ( self : Any , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : int ) -> torch.FloatTensor:
"""simple docstring"""
__lowercase = in_sigmas[-1].item()
__lowercase = in_sigmas[0].item()
__lowercase = 7.0 # 7.0 is the value used in the paper
__lowercase = np.linspace(0 , 1 , _UpperCAmelCase )
__lowercase = sigma_min ** (1 / rho)
__lowercase = sigma_max ** (1 / rho)
__lowercase = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def a__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.dt is None
def a__ ( self : List[str] , _UpperCAmelCase : Union[torch.FloatTensor, np.ndarray] , _UpperCAmelCase : Union[float, torch.FloatTensor] , _UpperCAmelCase : Union[torch.FloatTensor, np.ndarray] , _UpperCAmelCase : bool = True , ) -> Union[SchedulerOutput, Tuple]:
"""simple docstring"""
__lowercase = self.index_for_timestep(_UpperCAmelCase )
# advance index counter by 1
__lowercase = timestep.cpu().item() if torch.is_tensor(_UpperCAmelCase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
__lowercase = self.sigmas[step_index]
__lowercase = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
__lowercase = self.sigmas[step_index - 1]
__lowercase = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
__lowercase = 0
__lowercase = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
__lowercase = sigma_hat if self.state_in_first_order else sigma_next
__lowercase = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
__lowercase = sigma_hat if self.state_in_first_order else sigma_next
__lowercase = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
__lowercase = model_output
else:
raise ValueError(
f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" )
if self.config.clip_sample:
__lowercase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
__lowercase = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
__lowercase = sigma_next - sigma_hat
# store for 2nd order step
__lowercase = derivative
__lowercase = dt
__lowercase = sample
else:
# 2. 2nd order / Heun's method
__lowercase = (sample - pred_original_sample) / sigma_next
__lowercase = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
__lowercase = self.dt
__lowercase = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
__lowercase = None
__lowercase = None
__lowercase = None
__lowercase = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : torch.FloatTensor , ) -> torch.FloatTensor:
"""simple docstring"""
__lowercase = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_UpperCAmelCase ):
# mps does not support float64
__lowercase = self.timesteps.to(original_samples.device , dtype=torch.floataa )
__lowercase = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
__lowercase = self.timesteps.to(original_samples.device )
__lowercase = timesteps.to(original_samples.device )
__lowercase = [self.index_for_timestep(_UpperCAmelCase , _UpperCAmelCase ) for t in timesteps]
__lowercase = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
__lowercase = sigma.unsqueeze(-1 )
__lowercase = original_samples + noise * sigma
return noisy_samples
def __len__( self : int ) -> List[Any]:
"""simple docstring"""
return self.config.num_train_timesteps
| 325 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : dict ) -> bool:
__lowercase = set()
# To detect a back edge, keep track of vertices currently in the recursion stack
__lowercase = set()
return any(
node not in visited and depth_first_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for node in graph )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : set , SCREAMING_SNAKE_CASE : set ) -> bool:
visited.add(SCREAMING_SNAKE_CASE )
rec_stk.add(SCREAMING_SNAKE_CASE )
for node in graph[vertex]:
if node not in visited:
if depth_first_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
return True
elif node in rec_stk:
return True
# The node needs to be removed from recursion stack before function ends
rec_stk.remove(SCREAMING_SNAKE_CASE )
return False
if __name__ == "__main__":
from doctest import testmod
testmod()
| 325 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 1 |
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
SCREAMING_SNAKE_CASE__ = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
SCREAMING_SNAKE_CASE__ = [0, 25, 50]
SCREAMING_SNAKE_CASE__ = [25, 50, 75]
SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca)
SCREAMING_SNAKE_CASE__ = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
SCREAMING_SNAKE_CASE__ = np.ones(75)
SCREAMING_SNAKE_CASE__ = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
SCREAMING_SNAKE_CASE__ = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
SCREAMING_SNAKE_CASE__ = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
SCREAMING_SNAKE_CASE__ = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("""Young""")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("""Middle aged""")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("""union""")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("""intersection""")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("""complement_a""")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("""difference a/b""")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("""alg_sum""")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("""alg_product""")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("""bdd_sum""")
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("""bdd_difference""")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 325 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 1 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
def __init__( self : Dict , *_UpperCAmelCase : int , **_UpperCAmelCase : Tuple ) -> None:
"""simple docstring"""
warnings.warn(
'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use SegformerImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> None:
__lowercase = generate_pascal_triangle(SCREAMING_SNAKE_CASE )
for row_idx in range(SCREAMING_SNAKE_CASE ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=' ' )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=' ' )
else:
print(triangle[row_idx][col_idx] , end='' )
print()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[list[int]]:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
__lowercase = []
for current_row_idx in range(SCREAMING_SNAKE_CASE ):
__lowercase = populate_current_row(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
triangle.append(SCREAMING_SNAKE_CASE )
return triangle
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
__lowercase , __lowercase = 1, 1
for current_col_idx in range(1 , SCREAMING_SNAKE_CASE ):
calculate_current_element(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return current_row
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , ) -> None:
__lowercase = triangle[current_row_idx - 1][current_col_idx - 1]
__lowercase = triangle[current_row_idx - 1][current_col_idx]
__lowercase = above_to_left_elt + above_to_right_elt
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[list[int]]:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise TypeError('The input value of \'num_rows\' should be \'int\'' )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
'The input value of \'num_rows\' should be greater than or equal to 0' )
__lowercase = [[1]]
for row_index in range(1 , SCREAMING_SNAKE_CASE ):
__lowercase = [0] + result[-1] + [0]
__lowercase = row_index + 1
# Calculate the number of distinct elements in a row
__lowercase = sum(divmod(SCREAMING_SNAKE_CASE , 2 ) )
__lowercase = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
__lowercase = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
__lowercase = row_first_half + row_second_half
result.append(SCREAMING_SNAKE_CASE )
return result
def __SCREAMING_SNAKE_CASE ( ) -> None:
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(SCREAMING_SNAKE_CASE : Callable , SCREAMING_SNAKE_CASE : int ) -> None:
__lowercase = F"""{func.__name__}({value})"""
__lowercase = timeit(F"""__main__.{call}""" , setup='import __main__' )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(F"""{call:38} -- {timing:.4f} seconds""" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 325 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 1 |
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Dict:
# set parameter of one layer
assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match"""
__lowercase = nn.Parameter(SCREAMING_SNAKE_CASE )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match"""
__lowercase = nn.Parameter(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> Dict:
# set torch weights for 1-to-1 comparison
__lowercase = np.asarray(weights[0] )
__lowercase = np.asarray(weights[1] )
__lowercase = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , )
set_param(
torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> str:
# set torch weights for 1-to-1 comparison
__lowercase = np.asarray(weights[0] )
__lowercase = np.asarray(weights[1] )
__lowercase = np.asarray(weights[2] )
__lowercase = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , )
set_param(
torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ) -> int:
# layernorm 1
__lowercase = weights[0][0][0]
__lowercase = np.asarray(layer_norm_a[0] )
__lowercase = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , )
# lsh weights + output
__lowercase = weights[0][1]
if len(SCREAMING_SNAKE_CASE ) < 4:
set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE )
else:
set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE )
# intermediate weighs
__lowercase = weights[2][0][1][2]
# Chunked Feed Forward
if len(SCREAMING_SNAKE_CASE ) == 4:
__lowercase = intermediate_weights[2]
# layernorm 2
__lowercase = np.asarray(intermediate_weights[0][0] )
__lowercase = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , )
# intermediate dense
__lowercase = np.asarray(intermediate_weights[1][0] )
__lowercase = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , )
# intermediate out
__lowercase = np.asarray(intermediate_weights[4][0] )
__lowercase = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ) -> List[Any]:
# reformer model
__lowercase = torch_model.reformer
# word embeds
__lowercase = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE ) , )
if isinstance(weights[3] , SCREAMING_SNAKE_CASE ):
__lowercase = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
__lowercase = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F"""{position_embeddings[emb_idx]} emb does not match"""
__lowercase = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE ) )
__lowercase = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
SCREAMING_SNAKE_CASE ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
__lowercase = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# output layer norm
__lowercase = np.asarray(weights[7][0] )
__lowercase = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , )
# output embeddings
__lowercase = np.asarray(weights[9][0] )
__lowercase = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> str:
# Initialise PyTorch model
__lowercase = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE )
print(F"""Building PyTorch model from configuration: {config}""" )
__lowercase = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE )
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
__lowercase = pickle.load(SCREAMING_SNAKE_CASE )['weights']
set_model_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config.hidden_size )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help=(
"""The config json file corresponding to the pre-trained Reformer model. \n"""
"""This specifies the model architecture."""
),
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 325 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 1 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class A__ :
def __init__( self : int , _UpperCAmelCase : Any , ) -> Tuple:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = 30
__lowercase = self.seq_length + self.mem_len
__lowercase = 15
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = [10, 50, 80]
__lowercase = 32
__lowercase = 32
__lowercase = 4
__lowercase = 8
__lowercase = 1_28
__lowercase = 2
__lowercase = 2
__lowercase = None
__lowercase = 1
__lowercase = 0
__lowercase = 3
__lowercase = self.vocab_size - 1
__lowercase = 0.01
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def a__ ( self : Tuple ) -> Dict:
"""simple docstring"""
random.seed(self.seed )
tf.random.set_seed(self.seed )
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = TFTransfoXLModel(_UpperCAmelCase )
__lowercase , __lowercase = model(_UpperCAmelCase ).to_tuple()
__lowercase = {'input_ids': input_ids_a, 'mems': mems_a}
__lowercase , __lowercase = model(_UpperCAmelCase ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = TFTransfoXLLMHeadModel(_UpperCAmelCase )
__lowercase , __lowercase = model(_UpperCAmelCase ).to_tuple()
__lowercase = {'input_ids': input_ids_a, 'labels': lm_labels}
__lowercase , __lowercase = model(_UpperCAmelCase ).to_tuple()
__lowercase , __lowercase = model([input_ids_a, mems_a] ).to_tuple()
__lowercase = {'input_ids': input_ids_a, 'mems': mems_a, 'labels': lm_labels}
__lowercase , __lowercase = model(_UpperCAmelCase ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def a__ ( self : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = TFTransfoXLForSequenceClassification(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : int ) -> Any:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
((__lowercase) , (__lowercase) , (__lowercase) , (__lowercase)) = config_and_inputs
__lowercase = {'input_ids': input_ids_a}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Any = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
lowerCAmelCase__ : List[Any] = () if is_tf_available() else ()
lowerCAmelCase__ : Optional[Any] = (
{
"feature-extraction": TFTransfoXLModel,
"text-classification": TFTransfoXLForSequenceClassification,
"text-generation": TFTransfoXLLMHeadModel,
"zero-shot": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : Union[str, Any] = False
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = TFTransfoXLModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , d_embed=37 )
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
self.model_tester.set_seed()
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
self.model_tester.set_seed()
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
__lowercase = model.get_output_embeddings()
assert isinstance(_UpperCAmelCase , tf.keras.layers.Layer )
__lowercase = model.get_bias()
assert name is None
else:
__lowercase = model.get_output_embeddings()
assert x is None
__lowercase = model.get_bias()
assert name is None
def a__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
pass
@slow
def a__ ( self : int ) -> Any:
"""simple docstring"""
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFTransfoXLModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.' )
def a__ ( self : Dict ) -> str:
"""simple docstring"""
pass
@require_tf
class A__ ( unittest.TestCase ):
@unittest.skip('Skip test until #12651 is resolved.' )
@slow
def a__ ( self : str ) -> Any:
"""simple docstring"""
__lowercase = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103' )
# fmt: off
__lowercase = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
__lowercase = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
__lowercase = model.generate(_UpperCAmelCase , max_length=2_00 , do_sample=_UpperCAmelCase )
self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase )
| 325 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""GPTSw3Tokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 1 |
from __future__ import annotations
from collections.abc import Iterator
class A__ :
def __init__( self : List[Any] , _UpperCAmelCase : int ) -> None:
"""simple docstring"""
__lowercase = value
__lowercase = None
__lowercase = None
class A__ :
def __init__( self : int , _UpperCAmelCase : Node ) -> None:
"""simple docstring"""
__lowercase = tree
def a__ ( self : Tuple , _UpperCAmelCase : Node | None ) -> int:
"""simple docstring"""
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__( self : Union[str, Any] ) -> Iterator[int]:
"""simple docstring"""
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 1 |
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
SCREAMING_SNAKE_CASE__ = Path(__file__).resolve().parents[3] / """src"""
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
SCREAMING_SNAKE_CASE__ = {"""base""": """patrickvonplaten/wav2vec2_tiny_random""", """robust""": """patrickvonplaten/wav2vec2_tiny_random_robust"""}
SCREAMING_SNAKE_CASE__ = """zero2"""
SCREAMING_SNAKE_CASE__ = """zero3"""
SCREAMING_SNAKE_CASE__ = [ZEROa, ZEROa]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> Optional[int]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
__lowercase = parameterized.to_safe_name('_'.join(str(SCREAMING_SNAKE_CASE ) for x in param.args ) )
return F"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
SCREAMING_SNAKE_CASE__ = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class A__ ( lowerCAmelCase__ ):
@parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] ) -> List[str]:
"""simple docstring"""
self.run_and_check(
stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
@require_torch_multi_gpu
@parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] ) -> Dict:
"""simple docstring"""
self.run_and_check(
stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
@parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
self.run_and_check(
stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
@require_torch_multi_gpu
@parameterized.expand(_UpperCAmelCase , name_func=_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ) -> int:
"""simple docstring"""
self.run_and_check(
stage=_UpperCAmelCase , model=_UpperCAmelCase , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
def a__ ( self : List[str] , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
pass
def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> List[str]:
"""simple docstring"""
__lowercase = models[model]
__lowercase = self.run_trainer(
stage=_UpperCAmelCase , model_name=_UpperCAmelCase , eval_steps=_UpperCAmelCase , num_train_epochs=1 , distributed=_UpperCAmelCase , fpaa=_UpperCAmelCase , )
self.do_checks(_UpperCAmelCase )
return output_dir
def a__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_auto_remove_tmp_dir('./xxx' , after=_UpperCAmelCase )
__lowercase = f"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(_UpperCAmelCase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
__lowercase = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
__lowercase = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
__lowercase = self.get_launcher(_UpperCAmelCase )
__lowercase = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(_UpperCAmelCase , env=self.get_env() )
return output_dir
def a__ ( self : str , _UpperCAmelCase : List[Any]=False ) -> Tuple:
"""simple docstring"""
__lowercase = min(2 , get_gpu_count() ) if distributed else 1
return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 325 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 1 |
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Image , SCREAMING_SNAKE_CASE : int ) -> Image:
__lowercase = (259 * (level + 255)) / (255 * (259 - level))
def contrast(SCREAMING_SNAKE_CASE : int ) -> int:
return int(128 + factor * (c - 128) )
return img.point(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
# Load image
with Image.open("""image_data/lena.jpg""") as img:
# Change contrast to 170
SCREAMING_SNAKE_CASE__ = change_contrast(img, 170)
cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
| 325 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 1 |
import os
import textwrap
import pyarrow as pa
import pytest
from datasets import ClassLabel, Features, Image
from datasets.packaged_modules.csv.csv import Csv
from ..utils import require_pil
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Tuple:
__lowercase = tmp_path / 'file.csv'
__lowercase = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> List[Any]:
__lowercase = tmp_path / 'malformed_file.csv'
__lowercase = textwrap.dedent(
'\\n header1,header2\n 1,2\n 10,20,\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int ) -> List[str]:
__lowercase = tmp_path / 'csv_with_image.csv'
__lowercase = textwrap.dedent(
F"""\
image
{image_file}
""" )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Any:
__lowercase = tmp_path / 'csv_with_label.csv'
__lowercase = textwrap.dedent(
'\\n label\n good\n bad\n good\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
@pytest.fixture
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> str:
__lowercase = tmp_path / 'csv_with_int_list.csv'
__lowercase = textwrap.dedent(
'\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n ' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as f:
f.write(SCREAMING_SNAKE_CASE )
return str(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str ) -> int:
__lowercase = Csv()
__lowercase = csv._generate_tables([[csv_file, malformed_csv_file]] )
with pytest.raises(SCREAMING_SNAKE_CASE , match='Error tokenizing data' ):
for _ in generator:
pass
assert any(
record.levelname == 'ERROR'
and 'Failed to read file' in record.message
and os.path.basename(SCREAMING_SNAKE_CASE ) in record.message
for record in caplog.records )
@require_pil
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]:
with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
__lowercase = f.read().splitlines()[1]
__lowercase = Csv(encoding='utf-8' , features=Features({'image': Image()} ) )
__lowercase = csv._generate_tables([[csv_file_with_image]] )
__lowercase = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('image' ).type == Image()()
__lowercase = pa_table.to_pydict()['image']
assert generated_content == [{"path": image_file, "bytes": None}]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
__lowercase = f.read().splitlines()[1:]
__lowercase = Csv(encoding='utf-8' , features=Features({'label': ClassLabel(names=['good', 'bad'] )} ) )
__lowercase = csv._generate_tables([[csv_file_with_label]] )
__lowercase = pa.concat_tables([table for _, table in generator] )
assert pa_table.schema.field('label' ).type == ClassLabel(names=['good', 'bad'] )()
__lowercase = pa_table.to_pydict()['label']
assert generated_content == [ClassLabel(names=['good', 'bad'] ).straint(SCREAMING_SNAKE_CASE ) for label in labels]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]:
__lowercase = Csv(encoding='utf-8' , sep=',' , converters={'int_list': lambda SCREAMING_SNAKE_CASE : [int(SCREAMING_SNAKE_CASE ) for i in x.split()]} )
__lowercase = csv._generate_tables([[csv_file_with_int_list]] )
__lowercase = pa.concat_tables([table for _, table in generator] )
assert pa.types.is_list(pa_table.schema.field('int_list' ).type )
__lowercase = pa_table.to_pydict()['int_list']
assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
| 325 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 1 |
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from tax import checkpoints
from transformers import (
AutoTokenizer,
PixaStructConfig,
PixaStructForConditionalGeneration,
PixaStructImageProcessor,
PixaStructProcessor,
PixaStructTextConfig,
PixaStructVisionConfig,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any ) -> Dict:
__lowercase = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE )
__lowercase = flatten_dict(SCREAMING_SNAKE_CASE )
return flax_params
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Any:
__lowercase = {}
__lowercase = {
'token_embedder': 'embeddings',
'encoder_norm': 'layernorm',
'kernel': 'weight',
'.out': '.output',
'scale': 'weight',
'embedders_0.pos_embedding': 'row_embedder.weight',
'embedders_1.pos_embedding': 'column_embedder.weight',
}
__lowercase = {
'query': 'attention.query',
'key': 'attention.key',
'value': 'attention.value',
'output.dense': 'output',
'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o',
'pre_self_attention_layer_norm': 'self_attention.layer_norm',
'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm',
'mlp.': 'mlp.DenseReluDense.',
'pre_mlp_layer_norm': 'mlp.layer_norm',
'self_attention.o': 'self_attention.attention.o',
'decoder.embeddings.embedding': 'decoder.embed_tokens.weight',
'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight',
'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight',
'decoder.logits_dense.weight': 'decoder.lm_head.weight',
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
__lowercase = '.'.join(key[1:] )
# rename the key
for old, new in CONVERSION_MAPPING.items():
__lowercase = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
__lowercase = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
__lowercase = re.sub(R'layers_(\d+)' , R'layer.\1' , SCREAMING_SNAKE_CASE )
__lowercase = new_key.replace('encoder' , 'encoder.encoder' )
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
__lowercase = re.sub(R'layers_(\d+)' , R'layer.\1' , SCREAMING_SNAKE_CASE )
__lowercase = flax_dict[key]
__lowercase = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
__lowercase = torch.from_numpy(converted_dict[key].T )
else:
__lowercase = torch.from_numpy(converted_dict[key] )
return converted_torch_dict
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Tuple=False ) -> Dict:
__lowercase = get_flax_param(SCREAMING_SNAKE_CASE )
if not use_large:
__lowercase = PixaStructVisionConfig()
__lowercase = PixaStructTextConfig()
else:
__lowercase = PixaStructVisionConfig(
hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 )
__lowercase = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 )
__lowercase = PixaStructConfig(
vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE )
__lowercase = PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE )
__lowercase = rename_and_convert_flax_params(SCREAMING_SNAKE_CASE )
model.load_state_dict(SCREAMING_SNAKE_CASE )
__lowercase = AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' )
__lowercase = PixaStructImageProcessor()
__lowercase = PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE )
if use_large:
__lowercase = 4096
__lowercase = True
# mkdir if needed
os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
print('Model saved in {}'.format(SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""")
parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_pixastruct_original_pytorch_checkpoint_to_hf(
args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
)
| 325 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 0 ) -> list:
__lowercase = length or len(SCREAMING_SNAKE_CASE )
__lowercase = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
__lowercase , __lowercase = list_data[i + 1], list_data[i]
__lowercase = True
return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 1 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A__ :
def __init__( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any]=13 , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=True , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=2_24 , _UpperCAmelCase : Union[str, Any]=10_00 , _UpperCAmelCase : Union[str, Any]=[3, 3, 6, 4] , _UpperCAmelCase : Any=[48, 56, 1_12, 2_20] , ) -> List[str]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = is_training
__lowercase = use_labels
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = num_labels
__lowercase = image_size
__lowercase = layer_depths
__lowercase = embed_dims
def a__ ( self : str ) -> str:
"""simple docstring"""
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.num_labels )
__lowercase = self.get_config()
return config, pixel_values, labels
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act='gelu' , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_UpperCAmelCase , layer_scale_init_value=1e-5 , )
def a__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = SwiftFormerModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def a__ ( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = SwiftFormerForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
__lowercase = SwiftFormerForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : str ) -> str:
"""simple docstring"""
((__lowercase) , (__lowercase) , (__lowercase)) = self.prepare_config_and_inputs()
__lowercase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : str = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
lowerCAmelCase__ : Union[str, Any] = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : Tuple = False
lowerCAmelCase__ : Union[str, Any] = False
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = SwiftFormerModelTester(self )
__lowercase = ConfigTester(
self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def a__ ( self : int ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='SwiftFormer does not use inputs_embeds' )
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
pass
def a__ ( self : int ) -> Dict:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) )
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = SwiftFormerModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@unittest.skip(reason='SwiftFormer does not output attentions' )
def a__ ( self : Dict ) -> Optional[int]:
"""simple docstring"""
pass
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
def check_hidden_states_output(_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str ):
__lowercase = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = outputs.hidden_states
__lowercase = 8
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(_UpperCAmelCase ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
def _config_zero_init(_UpperCAmelCase : Optional[int] ):
__lowercase = copy.deepcopy(_UpperCAmelCase )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(_UpperCAmelCase , _UpperCAmelCase , 1e-1_0 )
if isinstance(getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , _UpperCAmelCase ):
__lowercase = _config_zero_init(getattr(_UpperCAmelCase , _UpperCAmelCase ) )
setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return configs_no_init
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = _config_zero_init(_UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = model_class(config=_UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
pass
def __SCREAMING_SNAKE_CASE ( ) -> int:
__lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class A__ ( unittest.TestCase ):
@cached_property
def a__ ( self : str ) -> Optional[int]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained('MBZUAI/swiftformer-xs' ) if is_vision_available() else None
@slow
def a__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowercase = SwiftFormerForImageClassification.from_pretrained('MBZUAI/swiftformer-xs' ).to(_UpperCAmelCase )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__lowercase = model(**_UpperCAmelCase )
# verify the logits
__lowercase = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__lowercase = torch.tensor([[-2.1_7_0_3e0_0, 2.1_1_0_7e0_0, -2.0_8_1_1e0_0]] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 325 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 | 1 |
import math
import torch
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from .attention_processor import Attention
from .embeddings import get_timestep_embedding
from .modeling_utils import ModelMixin
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
@register_to_config
def __init__( self : Optional[Any] , _UpperCAmelCase : int = 1_28 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : float = 2_000.0 , _UpperCAmelCase : int = 7_68 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : float = 0.1 , ) -> List[str]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Sequential(
nn.Linear(_UpperCAmelCase , d_model * 4 , bias=_UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_UpperCAmelCase ) , nn.SiLU() , )
__lowercase = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = False
__lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.Dropout(p=_UpperCAmelCase )
__lowercase = nn.ModuleList()
for lyr_num in range(_UpperCAmelCase ):
# FiLM conditional T5 decoder
__lowercase = DecoderLayer(d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase )
self.decoders.append(_UpperCAmelCase )
__lowercase = TaLayerNorm(_UpperCAmelCase )
__lowercase = nn.Dropout(p=_UpperCAmelCase )
__lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
__lowercase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) )
return mask.unsqueeze(-3 )
def a__ ( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> List[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase = decoder_input_tokens.shape
assert decoder_noise_time.shape == (batch,)
# decoder_noise_time is in [0, 1), so rescale to expected timing range.
__lowercase = get_timestep_embedding(
decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype )
__lowercase = self.conditioning_emb(_UpperCAmelCase ).unsqueeze(1 )
assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4)
__lowercase = decoder_input_tokens.shape[1]
# If we want to use relative positions for audio context, we can just offset
# this sequence by the length of encodings_and_masks.
__lowercase = torch.broadcast_to(
torch.arange(_UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , )
__lowercase = self.position_encoding(_UpperCAmelCase )
__lowercase = self.continuous_inputs_projection(_UpperCAmelCase )
inputs += position_encodings
__lowercase = self.dropout(_UpperCAmelCase )
# decoder: No padding present.
__lowercase = torch.ones(
decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype )
# Translate encoding masks to encoder-decoder masks.
__lowercase = [(x, self.encoder_decoder_mask(_UpperCAmelCase , _UpperCAmelCase )) for x, y in encodings_and_masks]
# cross attend style: concat encodings
__lowercase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 )
__lowercase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 )
for lyr in self.decoders:
__lowercase = lyr(
_UpperCAmelCase , conditioning_emb=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )[0]
__lowercase = self.decoder_norm(_UpperCAmelCase )
__lowercase = self.post_dropout(_UpperCAmelCase )
__lowercase = self.spec_out(_UpperCAmelCase )
return spec_out
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Dict=1e-6 ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList()
# cond self attention: layer 0
self.layer.append(
TaLayerSelfAttentionCond(d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , dropout_rate=_UpperCAmelCase ) )
# cross attention: layer 1
self.layer.append(
TaLayerCrossAttention(
d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase , ) )
# Film Cond MLP + dropout: last layer
self.layer.append(
TaLayerFFCond(d_model=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase ) )
def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , ) -> List[Any]:
"""simple docstring"""
__lowercase = self.layer[0](
_UpperCAmelCase , conditioning_emb=_UpperCAmelCase , attention_mask=_UpperCAmelCase , )
if encoder_hidden_states is not None:
__lowercase = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to(
encoder_hidden_states.dtype )
__lowercase = self.layer[1](
_UpperCAmelCase , key_value_states=_UpperCAmelCase , attention_mask=_UpperCAmelCase , )
# Apply Film Conditional Feed Forward layer
__lowercase = self.layer[-1](_UpperCAmelCase , _UpperCAmelCase )
return (hidden_states,)
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = TaLayerNorm(_UpperCAmelCase )
__lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCAmelCase )
__lowercase = Attention(query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , out_bias=_UpperCAmelCase , scale_qk=_UpperCAmelCase )
__lowercase = nn.Dropout(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : int=None , ) -> Tuple:
"""simple docstring"""
__lowercase = self.layer_norm(_UpperCAmelCase )
if conditioning_emb is not None:
__lowercase = self.FiLMLayer(_UpperCAmelCase , _UpperCAmelCase )
# Self-attention block
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_states + self.dropout(_UpperCAmelCase )
return hidden_states
class A__ ( nn.Module ):
def __init__( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = Attention(query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , out_bias=_UpperCAmelCase , scale_qk=_UpperCAmelCase )
__lowercase = TaLayerNorm(_UpperCAmelCase , eps=_UpperCAmelCase )
__lowercase = nn.Dropout(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : str=None , _UpperCAmelCase : List[str]=None , ) -> Any:
"""simple docstring"""
__lowercase = self.layer_norm(_UpperCAmelCase )
__lowercase = self.attention(
_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , )
__lowercase = hidden_states + self.dropout(_UpperCAmelCase )
return layer_output
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = TaDenseGatedActDense(d_model=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase )
__lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCAmelCase )
__lowercase = TaLayerNorm(_UpperCAmelCase , eps=_UpperCAmelCase )
__lowercase = nn.Dropout(_UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=None ) -> Any:
"""simple docstring"""
__lowercase = self.layer_norm(_UpperCAmelCase )
if conditioning_emb is not None:
__lowercase = self.film(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.DenseReluDense(_UpperCAmelCase )
__lowercase = hidden_states + self.dropout(_UpperCAmelCase )
return hidden_states
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> List[str]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.Dropout(_UpperCAmelCase )
__lowercase = NewGELUActivation()
def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.act(self.wi_a(_UpperCAmelCase ) )
__lowercase = self.wi_a(_UpperCAmelCase )
__lowercase = hidden_gelu * hidden_linear
__lowercase = self.dropout(_UpperCAmelCase )
__lowercase = self.wo(_UpperCAmelCase )
return hidden_states
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=1e-6 ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.Parameter(torch.ones(_UpperCAmelCase ) )
__lowercase = eps
def a__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_UpperCAmelCase )
__lowercase = hidden_states * torch.rsqrt(variance + self.variance_epsilon )
# convert into half-precision if necessary
if self.weight.dtype in [torch.floataa, torch.bfloataa]:
__lowercase = hidden_states.to(self.weight.dtype )
return self.weight * hidden_states
class A__ ( nn.Module ):
def a__ ( self : List[Any] , _UpperCAmelCase : torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(_UpperCAmelCase , 3.0 )) ))
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.Linear(_UpperCAmelCase , out_features * 2 , bias=_UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> List[Any]:
"""simple docstring"""
__lowercase = self.scale_bias(_UpperCAmelCase )
__lowercase , __lowercase = torch.chunk(_UpperCAmelCase , 2 , -1 )
__lowercase = x * (1 + scale) + shift
return x
| 325 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 | 1 |
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
# and https://github.com/hojonathanho/diffusion
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput, deprecate
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : torch.FloatTensor
lowerCAmelCase__ : Optional[torch.FloatTensor] = None
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str]=0.999 , SCREAMING_SNAKE_CASE : List[str]="cosine" , ) -> List[Any]:
if alpha_transform_type == "cosine":
def alpha_bar_fn(SCREAMING_SNAKE_CASE : int ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(SCREAMING_SNAKE_CASE : Any ):
return math.exp(t * -12.0 )
else:
raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
__lowercase = []
for i in range(SCREAMING_SNAKE_CASE ):
__lowercase = i / num_diffusion_timesteps
__lowercase = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(SCREAMING_SNAKE_CASE ) / alpha_bar_fn(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) )
return torch.tensor(SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ):
lowerCAmelCase__ : str = 1
@register_to_config
def __init__( self : List[str] , _UpperCAmelCase : int = 10_00 , _UpperCAmelCase : float = 0.0_001 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : str = "linear" , _UpperCAmelCase : Optional[Union[np.ndarray, List[float]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = True , _UpperCAmelCase : int = 0 , _UpperCAmelCase : str = "epsilon" , _UpperCAmelCase : float = 1.0 , **_UpperCAmelCase : Dict , ) -> int:
"""simple docstring"""
if kwargs.get('set_alpha_to_one' , _UpperCAmelCase ) is not None:
__lowercase = (
'The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.'
)
deprecate('set_alpha_to_one' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase )
__lowercase = kwargs['set_alpha_to_one']
if trained_betas is not None:
__lowercase = torch.tensor(_UpperCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
__lowercase = torch.linspace(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
__lowercase = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
__lowercase = betas_for_alpha_bar(_UpperCAmelCase )
else:
raise NotImplementedError(f"""{beta_schedule} does is not implemented for {self.__class__}""" )
__lowercase = 1.0 - self.betas
__lowercase = torch.cumprod(self.alphas , dim=0 )
# At every step in inverted ddim, we are looking into the next alphas_cumprod
# For the final step, there is no next alphas_cumprod, and the index is out of bounds
# `set_alpha_to_zero` decides whether we set this parameter simply to zero
# in this case, self.step() just output the predicted noise
# or whether we use the final alpha of the "non-previous" one.
__lowercase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1]
# standard deviation of the initial noise distribution
__lowercase = 1.0
# setable values
__lowercase = None
__lowercase = torch.from_numpy(np.arange(0 , _UpperCAmelCase ).copy().astype(np.intaa ) )
def a__ ( self : List[str] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor:
"""simple docstring"""
return sample
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, torch.device] = None ) -> int:
"""simple docstring"""
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"""
f""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"""
f""" maximal {self.config.num_train_timesteps} timesteps.""" )
__lowercase = num_inference_steps
__lowercase = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
__lowercase = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round().copy().astype(np.intaa )
__lowercase = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase )
self.timesteps += self.config.steps_offset
def a__ ( self : List[Any] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
"""simple docstring"""
__lowercase = timestep + self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
# change original implementation to exactly match noise levels for analogous forward process
__lowercase = self.alphas_cumprod[timestep]
__lowercase = (
self.alphas_cumprod[prev_timestep]
if prev_timestep < self.config.num_train_timesteps
else self.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if self.config.prediction_type == "epsilon":
__lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
__lowercase = model_output
elif self.config.prediction_type == "sample":
__lowercase = model_output
__lowercase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
elif self.config.prediction_type == "v_prediction":
__lowercase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
__lowercase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"""
' `v_prediction`' )
# 4. Clip or threshold "predicted x_0"
if self.config.clip_sample:
__lowercase = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
# 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon
# 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
__lowercase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase )
def __len__( self : str ) -> List[str]:
"""simple docstring"""
return self.config.num_train_timesteps
| 325 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 | 1 |
from unittest.mock import Mock, patch
from file_transfer.send_file import send_file
@patch('socket.socket' )
@patch('builtins.open' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
# ===== initialization =====
__lowercase = Mock()
__lowercase = conn, Mock()
__lowercase = iter([1, None] )
__lowercase = lambda SCREAMING_SNAKE_CASE : next(SCREAMING_SNAKE_CASE )
# ===== invoke =====
send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE )
# ===== ensurance =====
sock.assert_called_once()
sock.return_value.bind.assert_called_once()
sock.return_value.listen.assert_called_once()
sock.return_value.accept.assert_called_once()
conn.recv.assert_called_once()
file.return_value.__enter__.assert_called_once()
file.return_value.__enter__.return_value.read.assert_called()
conn.send.assert_called_once()
conn.close.assert_called_once()
sock.return_value.shutdown.assert_called_once()
sock.return_value.close.assert_called_once()
| 325 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 | 1 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spiece.model"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""",
"""albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""",
"""albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""",
"""albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""",
"""albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""",
"""albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""",
"""albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""",
"""albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""",
}
}
SCREAMING_SNAKE_CASE__ = {
"""albert-base-v1""": 512,
"""albert-large-v1""": 512,
"""albert-xlarge-v1""": 512,
"""albert-xxlarge-v1""": 512,
"""albert-base-v2""": 512,
"""albert-large-v2""": 512,
"""albert-xlarge-v2""": 512,
"""albert-xxlarge-v2""": 512,
}
SCREAMING_SNAKE_CASE__ = """▁"""
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = VOCAB_FILES_NAMES
lowerCAmelCase__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : List[str]="[CLS]" , _UpperCAmelCase : List[Any]="[SEP]" , _UpperCAmelCase : Optional[int]="<unk>" , _UpperCAmelCase : Optional[int]="[SEP]" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : Union[str, Any]="[CLS]" , _UpperCAmelCase : Dict="[MASK]" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : Optional[Any] , ) -> None:
"""simple docstring"""
__lowercase = (
AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase )
else mask_token
)
__lowercase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__lowercase = do_lower_case
__lowercase = remove_space
__lowercase = keep_accents
__lowercase = vocab_file
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
@property
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return len(self.sp_model )
def a__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.__dict__.copy()
__lowercase = None
return state
def __setstate__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Dict:
"""simple docstring"""
__lowercase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__lowercase = {}
__lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def a__ ( self : int , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
if self.remove_space:
__lowercase = ' '.join(inputs.strip().split() )
else:
__lowercase = inputs
__lowercase = outputs.replace('``' , '"' ).replace('\'\'' , '"' )
if not self.keep_accents:
__lowercase = unicodedata.normalize('NFKD' , _UpperCAmelCase )
__lowercase = ''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
__lowercase = outputs.lower()
return outputs
def a__ ( self : List[str] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
__lowercase = self.preprocess_text(_UpperCAmelCase )
__lowercase = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
__lowercase = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit():
__lowercase = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__lowercase = cur_pieces[1:]
else:
__lowercase = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def a__ ( self : List[str] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return self.sp_model.PieceToId(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
return self.sp_model.IdToPiece(_UpperCAmelCase )
def a__ ( self : str , _UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
__lowercase = []
__lowercase = ''
__lowercase = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_UpperCAmelCase ) + token
__lowercase = True
__lowercase = []
else:
current_sub_tokens.append(_UpperCAmelCase )
__lowercase = False
out_string += self.sp_model.decode(_UpperCAmelCase )
return out_string.strip()
def a__ ( self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
def a__ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , 'wb' ) as fi:
__lowercase = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
| 325 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 | 1 |
import argparse
import os
import re
import packaging.version
SCREAMING_SNAKE_CASE__ = """examples/"""
SCREAMING_SNAKE_CASE__ = {
"""examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""),
"""init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""),
"""setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""),
"""doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""),
}
SCREAMING_SNAKE_CASE__ = {
"""init""": """src/diffusers/__init__.py""",
"""setup""": """setup.py""",
}
SCREAMING_SNAKE_CASE__ = """README.md"""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.read()
__lowercase , __lowercase = REPLACE_PATTERNS[pattern]
__lowercase = replace.replace('VERSION' , SCREAMING_SNAKE_CASE )
__lowercase = re_pattern.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.write(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> str:
for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , pattern='examples' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> Tuple:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if not patch:
update_version_in_examples(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( ) -> int:
__lowercase = '🤗 Transformers currently provides the following architectures'
__lowercase = '1. Want to contribute a new model?'
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
# Find the start of the list.
__lowercase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
__lowercase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
__lowercase = lines[index].replace(
'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , )
index += 1
with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( ) -> int:
with open(REPLACE_FILES['init'] , 'r' ) as f:
__lowercase = f.read()
__lowercase = REPLACE_PATTERNS['init'][0].search(SCREAMING_SNAKE_CASE ).groups()[0]
return packaging.version.parse(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str]=False ) -> Optional[Any]:
__lowercase = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
__lowercase = default_version.base_version
elif patch:
__lowercase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
__lowercase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
__lowercase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(SCREAMING_SNAKE_CASE ) == 0:
__lowercase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(SCREAMING_SNAKE_CASE , patch=SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = get_version()
__lowercase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
__lowercase = current_version.base_version
# Check with the user we got that right.
__lowercase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(SCREAMING_SNAKE_CASE ) == 0:
__lowercase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(SCREAMING_SNAKE_CASE )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""")
parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print("""Nothing to do after a patch :-)""")
else:
post_release_work()
| 325 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
__lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowercase = [3, 3, 3, 3]
__lowercase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowercase = [4, 4, 4, 4]
__lowercase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowercase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowercase = [3, 3, 3, 3]
else:
__lowercase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowercase = 96
elif "small" in model_name:
__lowercase = 96
elif "base" in model_name:
__lowercase = 128
elif "large" in model_name:
__lowercase = 192
elif "xlarge" in model_name:
__lowercase = 256
elif "huge" in model_name:
__lowercase = 352
# set label information
__lowercase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowercase = 'imagenet-22k-id2label.json'
else:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = FocalNetConfig(
embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , )
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if "patch_embed.proj" in name:
__lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowercase = 'encoder.' + name
if "encoder.layers" in name:
__lowercase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowercase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowercase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowercase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowercase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowercase = 'layernorm.weight'
if name == "norm.bias":
__lowercase = 'layernorm.bias'
if "head" in name:
__lowercase = name.replace('head' , 'classifier' )
else:
__lowercase = 'focalnet.' + name
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]:
# fmt: off
__lowercase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowercase = model_name_to_url[model_name]
print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
__lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE )
__lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
# load state dict
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify conversion
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = BitImageProcessor(
do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , )
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
__lowercase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 325 | 1 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> bool:
__lowercase = get_failure_array(SCREAMING_SNAKE_CASE )
# 2) Step through text searching for pattern
__lowercase , __lowercase = 0, 0 # index into text, pattern
while i < len(SCREAMING_SNAKE_CASE ):
if pattern[j] == text[i]:
if j == (len(SCREAMING_SNAKE_CASE ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
__lowercase = failure[j - 1]
continue
i += 1
return False
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> list[int]:
__lowercase = [0]
__lowercase = 0
__lowercase = 1
while j < len(SCREAMING_SNAKE_CASE ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
__lowercase = failure[i - 1]
continue
j += 1
failure.append(SCREAMING_SNAKE_CASE )
return failure
if __name__ == "__main__":
# Test 1)
SCREAMING_SNAKE_CASE__ = """abc1abc12"""
SCREAMING_SNAKE_CASE__ = """alskfjaldsabc1abc1abc12k23adsfabcabc"""
SCREAMING_SNAKE_CASE__ = """alskfjaldsk23adsfabcabc"""
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
SCREAMING_SNAKE_CASE__ = """ABABX"""
SCREAMING_SNAKE_CASE__ = """ABABZABABYABABX"""
assert kmp(pattern, text)
# Test 3)
SCREAMING_SNAKE_CASE__ = """AAAB"""
SCREAMING_SNAKE_CASE__ = """ABAAAAAB"""
assert kmp(pattern, text)
# Test 4)
SCREAMING_SNAKE_CASE__ = """abcdabcy"""
SCREAMING_SNAKE_CASE__ = """abcxabcdabxabcdabcdabcy"""
assert kmp(pattern, text)
# Test 5)
SCREAMING_SNAKE_CASE__ = """aabaabaaa"""
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 325 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 | 1 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Dict ) -> Dict:
"""simple docstring"""
__lowercase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'tf_padding' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'depth_multiplier' ) )
class A__ :
def __init__( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int=13 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=32 , _UpperCAmelCase : Optional[int]=0.25 , _UpperCAmelCase : Tuple=8 , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[Any]=10_24 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Optional[int]="relu6" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : int=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=10 , _UpperCAmelCase : Union[str, Any]=None , ) -> str:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = image_size
__lowercase = depth_multiplier
__lowercase = min_depth
__lowercase = tf_padding
__lowercase = int(last_hidden_size * depth_multiplier )
__lowercase = output_stride
__lowercase = hidden_act
__lowercase = classifier_dropout_prob
__lowercase = use_labels
__lowercase = is_training
__lowercase = num_labels
__lowercase = initializer_range
__lowercase = scope
def a__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.num_labels )
__lowercase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__lowercase = self.get_config()
return config, pixel_values, labels, pixel_labels
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = MobileNetVaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def a__ ( self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] ) -> str:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = MobileNetVaForImageClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Any = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
lowerCAmelCase__ : List[str] = (
{"feature-extraction": MobileNetVaModel, "image-classification": MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
lowerCAmelCase__ : Tuple = False
lowerCAmelCase__ : Tuple = False
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : Any = False
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowercase = MobileNetVaModelTester(self )
__lowercase = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileNetV1 does not use inputs_embeds' )
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason='MobileNetV1 does not support input and output embeddings' )
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
pass
@unittest.skip(reason='MobileNetV1 does not output attentions' )
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
pass
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
def check_hidden_states_output(_UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] ):
__lowercase = model_class(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
with torch.no_grad():
__lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = outputs.hidden_states
__lowercase = 26
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def a__ ( self : Optional[int] ) -> str:
"""simple docstring"""
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = MobileNetVaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ) -> List[Any]:
__lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class A__ ( unittest.TestCase ):
@cached_property
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
return (
MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v1_1.0_224' ) if is_vision_available() else None
)
@slow
def a__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__lowercase = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v1_1.0_224' ).to(_UpperCAmelCase )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase )
# forward pass
with torch.no_grad():
__lowercase = model(**_UpperCAmelCase )
# verify the logits
__lowercase = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__lowercase = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ).to(_UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 325 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 | 1 |
import logging
import math
import os
from dataclasses import dataclass, field
from glob import glob
from typing import Optional
from torch.utils.data import ConcatDataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_WITH_LM_HEAD_MAPPING,
AutoConfig,
AutoModelWithLMHead,
AutoTokenizer,
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForWholeWordMask,
HfArgumentParser,
LineByLineTextDataset,
LineByLineWithRefDataset,
PreTrainedTokenizer,
TextDataset,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
SCREAMING_SNAKE_CASE__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys())
SCREAMING_SNAKE_CASE__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class A__ :
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={
"help": (
"The model checkpoint for weights initialization. Leave None if you want to train a model from"
" scratch."
)
} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowerCAmelCase__ )} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class A__ :
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "The input training data file (a text file)."} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={
"help": (
"The input training data files (multiple files in glob format). "
"Very often splitting large files to smaller files can prevent tokenizer going out of memory"
)
} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , )
lowerCAmelCase__ : bool = field(
default=lowerCAmelCase__ , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , )
lowerCAmelCase__ : bool = field(
default=lowerCAmelCase__ , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} )
lowerCAmelCase__ : bool = field(default=lowerCAmelCase__ , metadata={"help": "Whether ot not to use whole word mask."} )
lowerCAmelCase__ : float = field(
default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} )
lowerCAmelCase__ : float = field(
default=1 / 6 , metadata={
"help": (
"Ratio of length of a span of masked tokens to surrounding context length for permutation language"
" modeling."
)
} , )
lowerCAmelCase__ : int = field(
default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} )
lowerCAmelCase__ : int = field(
default=-1 , metadata={
"help": (
"Optional input sequence length after tokenization."
"The training dataset will be truncated in block of this size for training."
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
} , )
lowerCAmelCase__ : bool = field(
default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : DataTrainingArguments , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[str] = None , ) -> List[str]:
def _dataset(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any]=None ):
if args.line_by_line:
if ref_path is not None:
if not args.whole_word_mask or not args.mlm:
raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask' )
return LineByLineWithRefDataset(
tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size , ref_path=SCREAMING_SNAKE_CASE , )
return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size )
else:
return TextDataset(
tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=SCREAMING_SNAKE_CASE , )
if evaluate:
return _dataset(args.eval_data_file , args.eval_ref_file )
elif args.train_data_files:
return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE ) for f in glob(args.train_data_files )] )
else:
return _dataset(args.train_data_file , args.train_ref_file )
def __SCREAMING_SNAKE_CASE ( ) -> List[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses()
if data_args.eval_data_file is None and training_args.do_eval:
raise ValueError(
'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file '
'or remove the --do_eval argument.' )
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
if model_args.config_name:
__lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
__lowercase = CONFIG_MAPPING[model_args.model_type]()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.tokenizer_name:
__lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir )
elif model_args.model_name_or_path:
__lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir )
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another'
' script, save it,and load it from here, using --tokenizer_name' )
if model_args.model_name_or_path:
__lowercase = AutoModelWithLMHead.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
else:
logger.info('Training new model from scratch' )
__lowercase = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE )
model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) )
if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm:
raise ValueError(
'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the'
'--mlm flag (masked language modeling).' )
if data_args.block_size <= 0:
__lowercase = tokenizer.max_len
# Our input block size will be the max possible for the model
else:
__lowercase = min(data_args.block_size , tokenizer.max_len )
# Get datasets
__lowercase = (
get_dataset(SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_train else None
)
__lowercase = (
get_dataset(SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , evaluate=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir )
if training_args.do_eval
else None
)
if config.model_type == "xlnet":
__lowercase = DataCollatorForPermutationLanguageModeling(
tokenizer=SCREAMING_SNAKE_CASE , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , )
else:
if data_args.mlm and data_args.whole_word_mask:
__lowercase = DataCollatorForWholeWordMask(
tokenizer=SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability )
else:
__lowercase = DataCollatorForLanguageModeling(
tokenizer=SCREAMING_SNAKE_CASE , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__lowercase = Trainer(
model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , prediction_loss_only=SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
__lowercase = (
model_args.model_name_or_path
if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path )
else None
)
trainer.train(model_path=SCREAMING_SNAKE_CASE )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowercase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__lowercase = trainer.evaluate()
__lowercase = math.exp(eval_output['eval_loss'] )
__lowercase = {'perplexity': perplexity}
__lowercase = os.path.join(training_args.output_dir , 'eval_results_lm.txt' )
if trainer.is_world_master():
with open(SCREAMING_SNAKE_CASE , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key in sorted(result.keys() ):
logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , str(result[key] ) )
writer.write('%s = %s\n' % (key, str(result[key] )) )
results.update(SCREAMING_SNAKE_CASE )
return results
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 325 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 1 |
class A__ :
def __init__( self : Any ) -> None:
"""simple docstring"""
__lowercase = {} # Mapping from char to TrieNode
__lowercase = False
def a__ ( self : Any , _UpperCAmelCase : list[str] ) -> None:
"""simple docstring"""
for word in words:
self.insert(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
__lowercase = self
for char in word:
if char not in curr.nodes:
__lowercase = TrieNode()
__lowercase = curr.nodes[char]
__lowercase = True
def a__ ( self : Optional[Any] , _UpperCAmelCase : str ) -> bool:
"""simple docstring"""
__lowercase = self
for char in word:
if char not in curr.nodes:
return False
__lowercase = curr.nodes[char]
return curr.is_leaf
def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> None:
"""simple docstring"""
def _delete(_UpperCAmelCase : TrieNode , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> bool:
if index == len(_UpperCAmelCase ):
# If word does not exist
if not curr.is_leaf:
return False
__lowercase = False
return len(curr.nodes ) == 0
__lowercase = word[index]
__lowercase = curr.nodes.get(_UpperCAmelCase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
__lowercase = _delete(_UpperCAmelCase , _UpperCAmelCase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , _UpperCAmelCase , 0 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : TrieNode , SCREAMING_SNAKE_CASE : str ) -> None:
if node.is_leaf:
print(SCREAMING_SNAKE_CASE , end=' ' )
for key, value in node.nodes.items():
print_words(SCREAMING_SNAKE_CASE , word + key )
def __SCREAMING_SNAKE_CASE ( ) -> bool:
__lowercase = 'banana bananas bandana band apple all beast'.split()
__lowercase = TrieNode()
root.insert_many(SCREAMING_SNAKE_CASE )
# print_words(root, "")
assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words )
assert root.find('banana' )
assert not root.find('bandanas' )
assert not root.find('apps' )
assert root.find('apple' )
assert root.find('all' )
root.delete('all' )
assert not root.find('all' )
root.delete('banana' )
assert not root.find('banana' )
assert root.find('bananas' )
return True
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool ) -> None:
print(str(SCREAMING_SNAKE_CASE ) , 'works!' if passes else 'doesn\'t work :(' )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert test_trie()
def __SCREAMING_SNAKE_CASE ( ) -> None:
print_results('Testing trie functionality' , test_trie() )
if __name__ == "__main__":
main()
| 325 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = " " ) -> list:
__lowercase = []
__lowercase = 0
for index, char in enumerate(SCREAMING_SNAKE_CASE ):
if char == separator:
split_words.append(string[last_index:index] )
__lowercase = index + 1
elif index + 1 == len(SCREAMING_SNAKE_CASE ):
split_words.append(string[last_index : index + 1] )
return split_words
if __name__ == "__main__":
from doctest import testmod
testmod()
| 325 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 1 |
import unittest
from knapsack import knapsack as k
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Any:
"""simple docstring"""
__lowercase = 0
__lowercase = [0]
__lowercase = [0]
__lowercase = len(_UpperCAmelCase )
self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 )
__lowercase = [60]
__lowercase = [10]
__lowercase = len(_UpperCAmelCase )
self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 0 )
def a__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 3
__lowercase = [1, 2, 3]
__lowercase = [3, 2, 1]
__lowercase = len(_UpperCAmelCase )
self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 5 )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = 50
__lowercase = [60, 1_00, 1_20]
__lowercase = [10, 20, 30]
__lowercase = len(_UpperCAmelCase )
self.assertEqual(k.knapsack(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , 2_20 )
if __name__ == "__main__":
unittest.main()
| 325 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_fnet import FNetTokenizer
else:
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE__ = {
"""vocab_file""": {
"""google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/spiece.model""",
"""google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json""",
"""google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE__ = {
"""google/fnet-base""": 512,
"""google/fnet-large""": 512,
}
SCREAMING_SNAKE_CASE__ = """▁"""
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES
lowerCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCAmelCase__ : Optional[Any] = ["input_ids", "token_type_ids"]
lowerCAmelCase__ : Any = FNetTokenizer
def __init__( self : Tuple , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : int="[SEP]" , _UpperCAmelCase : Union[str, Any]="<pad>" , _UpperCAmelCase : Optional[int]="[CLS]" , _UpperCAmelCase : List[Any]="[MASK]" , **_UpperCAmelCase : Optional[Any] , ) -> Optional[int]:
"""simple docstring"""
__lowercase = (
AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase )
else mask_token
)
super().__init__(
_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = do_lower_case
__lowercase = remove_space
__lowercase = keep_accents
__lowercase = vocab_file
__lowercase = False if not self.vocab_file else True
def a__ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a__ ( self : Union[str, Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
__lowercase = [self.sep_token_id]
__lowercase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__lowercase = os.path.join(
_UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ):
copyfile(self.vocab_file , _UpperCAmelCase )
return (out_vocab_file,)
| 325 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 1 |
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'embed_dim' ) )
self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_heads' ) )
class A__ :
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Dict=64 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : int=[16, 48, 96] , _UpperCAmelCase : Dict=[1, 3, 6] , _UpperCAmelCase : List[Any]=[1, 2, 10] , _UpperCAmelCase : str=[7, 3, 3] , _UpperCAmelCase : List[str]=[4, 2, 2] , _UpperCAmelCase : List[Any]=[2, 1, 1] , _UpperCAmelCase : Union[str, Any]=[2, 2, 2] , _UpperCAmelCase : Tuple=[False, False, True] , _UpperCAmelCase : str=[0.0, 0.0, 0.0] , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : List[Any]=1e-1_2 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Union[str, Any]=2 , ) -> str:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = image_size
__lowercase = patch_sizes
__lowercase = patch_stride
__lowercase = patch_padding
__lowercase = is_training
__lowercase = use_labels
__lowercase = num_labels
__lowercase = num_channels
__lowercase = embed_dim
__lowercase = num_heads
__lowercase = stride_kv
__lowercase = depth
__lowercase = cls_token
__lowercase = attention_drop_rate
__lowercase = initializer_range
__lowercase = layer_norm_eps
def a__ ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__lowercase = None
if self.use_labels:
# create a random int32 tensor of given shape
__lowercase = ids_tensor([self.batch_size] , self.num_labels )
__lowercase = self.get_config()
return config, pixel_values, labels
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def a__ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = TFCvtModel(config=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , training=_UpperCAmelCase )
__lowercase = (self.image_size, self.image_size)
__lowercase , __lowercase = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
__lowercase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
__lowercase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def a__ ( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFCvtForImageClassification(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
lowerCAmelCase__ : List[Any] = (
{"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[Any] = False
lowerCAmelCase__ : Optional[Any] = False
lowerCAmelCase__ : Optional[int] = False
lowerCAmelCase__ : Optional[int] = False
lowerCAmelCase__ : Optional[int] = False
def a__ ( self : Any ) -> Any:
"""simple docstring"""
__lowercase = TFCvtModelTester(self )
__lowercase = TFCvtConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason='Cvt does not output attentions' )
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason='Cvt does not use inputs_embeds' )
def a__ ( self : Optional[int] ) -> Dict:
"""simple docstring"""
pass
@unittest.skip(reason='Cvt does not support input and output embeddings' )
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , )
@slow
def a__ ( self : Dict ) -> int:
"""simple docstring"""
super().test_keras_fit()
@unittest.skip(reason='Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8' )
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase = tf.keras.mixed_precision.Policy('mixed_float16' )
tf.keras.mixed_precision.set_global_policy(_UpperCAmelCase )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy('float32' )
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase = [*signature.parameters.keys()]
__lowercase = ['pixel_values']
self.assertListEqual(arg_names[:1] , _UpperCAmelCase )
def a__ ( self : str ) -> str:
"""simple docstring"""
def check_hidden_states_output(_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ):
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = outputs.hidden_states
__lowercase = len(self.model_tester.depth )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__lowercase = True
check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase )
@slow
def a__ ( self : int ) -> int:
"""simple docstring"""
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFCvtModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ) -> Any:
__lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class A__ ( unittest.TestCase ):
@cached_property
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def a__ ( self : List[Any] ) -> str:
"""simple docstring"""
__lowercase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
__lowercase = self.default_image_processor
__lowercase = prepare_img()
__lowercase = image_processor(images=_UpperCAmelCase , return_tensors='tf' )
# forward pass
__lowercase = model(**_UpperCAmelCase )
# verify the logits
__lowercase = tf.TensorShape((1, 10_00) )
self.assertEqual(outputs.logits.shape , _UpperCAmelCase )
__lowercase = tf.constant([0.9_285, 0.9_015, -0.3_150] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1e-4 ) )
| 325 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 1 |
from pathlib import Path
import fire
from tqdm import tqdm
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any]="ro" , SCREAMING_SNAKE_CASE : Tuple="en" , SCREAMING_SNAKE_CASE : Dict="wmt16" , SCREAMING_SNAKE_CASE : int=None ) -> None:
try:
import datasets
except (ModuleNotFoundError, ImportError):
raise ImportError('run pip install datasets' )
__lowercase = F"""{src_lang}-{tgt_lang}"""
print(F"""Converting {dataset}-{pair}""" )
__lowercase = datasets.load_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if save_dir is None:
__lowercase = F"""{dataset}-{pair}"""
__lowercase = Path(SCREAMING_SNAKE_CASE )
save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE )
for split in ds.keys():
print(F"""Splitting {split} with {ds[split].num_rows} records""" )
# to save to val.source, val.target like summary datasets
__lowercase = 'val' if split == 'validation' else split
__lowercase = save_dir.joinpath(F"""{fn}.source""" )
__lowercase = save_dir.joinpath(F"""{fn}.target""" )
__lowercase = src_path.open('w+' )
__lowercase = tgt_path.open('w+' )
# reader is the bottleneck so writing one record at a time doesn't slow things down
for x in tqdm(ds[split] ):
__lowercase = x['translation']
src_fp.write(ex[src_lang] + '\n' )
tgt_fp.write(ex[tgt_lang] + '\n' )
print(F"""Saved {dataset} dataset to {save_dir}""" )
if __name__ == "__main__":
fire.Fire(download_wmt_dataset)
| 325 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 1 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = ["pixel_values"]
def __init__( self : Tuple , _UpperCAmelCase : bool = True , _UpperCAmelCase : Dict[str, int] = None , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[int, float] = 1 / 2_55 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : bool = True , **_UpperCAmelCase : int , ) -> None:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = size if size is not None else {'height': 3_84, 'width': 3_84}
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = do_resize
__lowercase = size
__lowercase = resample
__lowercase = do_rescale
__lowercase = rescale_factor
__lowercase = do_normalize
__lowercase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
__lowercase = image_std if image_std is not None else OPENAI_CLIP_STD
__lowercase = do_convert_rgb
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Dict[str, int] , _UpperCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : str , ) -> np.ndarray:
"""simple docstring"""
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" )
__lowercase = (size['height'], size['width'])
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[int, float] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : Optional[int] , ) -> str:
"""simple docstring"""
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] , _UpperCAmelCase : np.ndarray , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Union[float, List[float]] , _UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **_UpperCAmelCase : List[str] , ) -> np.ndarray:
"""simple docstring"""
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : ImageInput , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Dict[str, int]] = None , _UpperCAmelCase : PILImageResampling = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[float] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[float, List[float]]] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : bool = None , _UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **_UpperCAmelCase : Tuple , ) -> PIL.Image.Image:
"""simple docstring"""
__lowercase = do_resize if do_resize is not None else self.do_resize
__lowercase = resample if resample is not None else self.resample
__lowercase = do_rescale if do_rescale is not None else self.do_rescale
__lowercase = rescale_factor if rescale_factor is not None else self.rescale_factor
__lowercase = do_normalize if do_normalize is not None else self.do_normalize
__lowercase = image_mean if image_mean is not None else self.image_mean
__lowercase = image_std if image_std is not None else self.image_std
__lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
__lowercase = size if size is not None else self.size
__lowercase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase )
__lowercase = make_list_of_images(_UpperCAmelCase )
if not valid_images(_UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
__lowercase = [convert_to_rgb(_UpperCAmelCase ) for image in images]
# All transformations expect numpy arrays.
__lowercase = [to_numpy_array(_UpperCAmelCase ) for image in images]
if do_resize:
__lowercase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images]
if do_rescale:
__lowercase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images]
if do_normalize:
__lowercase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images]
__lowercase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images]
__lowercase = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase )
return encoded_outputs
| 325 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 1 |
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class A__ :
lowerCAmelCase__ : Dict = BlenderbotSmallConfig
lowerCAmelCase__ : List[Any] = {}
lowerCAmelCase__ : int = "gelu"
def __init__( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : int=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=20 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Union[str, Any]=0 , ) -> int:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = eos_token_id
__lowercase = pad_token_id
__lowercase = bos_token_id
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
__lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
__lowercase = tf.concat([input_ids, eos_tensor] , axis=1 )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
__lowercase = prepare_blenderbot_small_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def a__ ( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = TFBlenderbotSmallModel(config=_UpperCAmelCase ).get_decoder()
__lowercase = inputs_dict['input_ids']
__lowercase = input_ids[:1, :]
__lowercase = inputs_dict['attention_mask'][:1, :]
__lowercase = inputs_dict['head_mask']
__lowercase = 1
# first forward pass
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
__lowercase , __lowercase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
__lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
__lowercase = tf.concat([input_ids, next_tokens] , axis=-1 )
__lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
__lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
__lowercase = output_from_no_past[:, -3:, random_slice_idx]
__lowercase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ) -> Tuple:
if attention_mask is None:
__lowercase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
__lowercase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
__lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
__lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
__lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Any = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
lowerCAmelCase__ : int = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
lowerCAmelCase__ : int = (
{
"conversational": TFBlenderbotSmallForConditionalGeneration,
"feature-extraction": TFBlenderbotSmallModel,
"summarization": TFBlenderbotSmallForConditionalGeneration,
"text2text-generation": TFBlenderbotSmallForConditionalGeneration,
"translation": TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : int = True
lowerCAmelCase__ : Tuple = False
lowerCAmelCase__ : Any = False
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__lowercase = TFBlenderbotSmallModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_tokenizers
@require_tf
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : List[str] = [
"Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like "
" i'm going to throw up.\nand why is that?"
]
lowerCAmelCase__ : Dict = "facebook/blenderbot_small-90M"
@cached_property
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' )
@cached_property
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.tokenizer(self.src_text , return_tensors='tf' )
__lowercase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_UpperCAmelCase , )
__lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_UpperCAmelCase )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 325 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 1 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 1 |
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = AutoencoderKL
lowerCAmelCase__ : Dict = "sample"
lowerCAmelCase__ : Tuple = 1e-2
@property
def a__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
__lowercase = 4
__lowercase = 3
__lowercase = (32, 32)
__lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(_UpperCAmelCase )
return {"sample": image}
@property
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return (3, 32, 32)
@property
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
return (3, 32, 32)
def a__ ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = {
'block_out_channels': [32, 64],
'in_channels': 3,
'out_channels': 3,
'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'],
'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'],
'latent_channels': 4,
}
__lowercase = self.dummy_input
return init_dict, inputs_dict
def a__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
pass
def a__ ( self : Optional[int] ) -> str:
"""simple docstring"""
pass
@unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' )
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.prepare_init_args_and_inputs_for_common()
__lowercase = self.model_class(**_UpperCAmelCase )
model.to(_UpperCAmelCase )
assert not model.is_gradient_checkpointing and model.training
__lowercase = model(**_UpperCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
__lowercase = torch.randn_like(_UpperCAmelCase )
__lowercase = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
__lowercase = self.model_class(**_UpperCAmelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(_UpperCAmelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
__lowercase = model_a(**_UpperCAmelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
__lowercase = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
__lowercase = dict(model.named_parameters() )
__lowercase = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) )
def a__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__lowercase , __lowercase = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
self.assertEqual(len(loading_info['missing_keys'] ) , 0 )
model.to(_UpperCAmelCase )
__lowercase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' )
__lowercase = model.to(_UpperCAmelCase )
model.eval()
if torch_device == "mps":
__lowercase = torch.manual_seed(0 )
else:
__lowercase = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
__lowercase = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
__lowercase = image.to(_UpperCAmelCase )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , sample_posterior=_UpperCAmelCase , generator=_UpperCAmelCase ).sample
__lowercase = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
__lowercase = torch.tensor(
[
-4.0_0_7_8e-0_1,
-3.8_3_2_3e-0_4,
-1.2_6_8_1e-0_1,
-1.1_4_6_2e-0_1,
2.0_0_9_5e-0_1,
1.0_8_9_3e-0_1,
-8.8_2_4_7e-0_2,
-3.0_3_6_1e-0_1,
-9.8_6_4_4e-0_3,
] )
elif torch_device == "cpu":
__lowercase = torch.tensor(
[-0.1_352, 0.0_878, 0.0_419, -0.0_818, -0.1_069, 0.0_688, -0.1_458, -0.4_446, -0.0_026] )
else:
__lowercase = torch.tensor(
[-0.2_421, 0.4_642, 0.2_507, -0.0_438, 0.0_682, 0.3_160, -0.2_018, -0.0_727, 0.2_485] )
self.assertTrue(torch_all_close(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-2 ) )
@slow
class A__ ( unittest.TestCase ):
def a__ ( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
return f"""gaussian_noise_s={seed}_shape={"_".join([str(_UpperCAmelCase ) for s in shape] )}.npy"""
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[Any]=(4, 3, 5_12, 5_12) , _UpperCAmelCase : Optional[int]=False ) -> Optional[Any]:
"""simple docstring"""
__lowercase = torch.floataa if fpaa else torch.floataa
__lowercase = torch.from_numpy(load_hf_numpy(self.get_file_format(_UpperCAmelCase , _UpperCAmelCase ) ) ).to(_UpperCAmelCase ).to(_UpperCAmelCase )
return image
def a__ ( self : Dict , _UpperCAmelCase : Tuple="CompVis/stable-diffusion-v1-4" , _UpperCAmelCase : Optional[int]=False ) -> List[str]:
"""simple docstring"""
__lowercase = 'fp16' if fpaa else None
__lowercase = torch.floataa if fpaa else torch.floataa
__lowercase = AutoencoderKL.from_pretrained(
_UpperCAmelCase , subfolder='vae' , torch_dtype=_UpperCAmelCase , revision=_UpperCAmelCase , )
model.to(_UpperCAmelCase ).eval()
return model
def a__ ( self : str , _UpperCAmelCase : int=0 ) -> Tuple:
"""simple docstring"""
if torch_device == "mps":
return torch.manual_seed(_UpperCAmelCase )
return torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_603, 0.9_878, -0.0_495, -0.0_790, -0.2_709, 0.8_375, -0.2_060, -0.0_824], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]],
[47, [-0.2_376, 0.1_168, 0.1_332, -0.4_840, -0.2_508, -0.0_791, -0.0_493, -0.4_089], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]],
# fmt: on
] )
def a__ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
__lowercase = self.get_sd_vae_model()
__lowercase = self.get_sd_image(_UpperCAmelCase )
__lowercase = self.get_generator(_UpperCAmelCase )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , generator=_UpperCAmelCase , sample_posterior=_UpperCAmelCase ).sample
assert sample.shape == image.shape
__lowercase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__lowercase = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice )
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0_513, 0.0_289, 1.3_799, 0.2_166, -0.2_573, -0.0_871, 0.5_103, -0.0_999]],
[47, [-0.4_128, -0.1_320, -0.3_704, 0.1_965, -0.4_116, -0.2_332, -0.3_340, 0.2_247]],
# fmt: on
] )
@require_torch_gpu
def a__ ( self : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_sd_vae_model(fpaa=_UpperCAmelCase )
__lowercase = self.get_sd_image(_UpperCAmelCase , fpaa=_UpperCAmelCase )
__lowercase = self.get_generator(_UpperCAmelCase )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase , generator=_UpperCAmelCase , sample_posterior=_UpperCAmelCase ).sample
assert sample.shape == image.shape
__lowercase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__lowercase = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_609, 0.9_866, -0.0_487, -0.0_777, -0.2_716, 0.8_368, -0.2_055, -0.0_814], [-0.2_395, 0.0_098, 0.0_102, -0.0_709, -0.2_840, -0.0_274, -0.0_718, -0.1_824]],
[47, [-0.2_377, 0.1_147, 0.1_333, -0.4_841, -0.2_506, -0.0_805, -0.0_491, -0.4_085], [0.0_350, 0.0_847, 0.0_467, 0.0_344, -0.0_842, -0.0_547, -0.0_633, -0.1_131]],
# fmt: on
] )
def a__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.get_sd_vae_model()
__lowercase = self.get_sd_image(_UpperCAmelCase )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase ).sample
assert sample.shape == image.shape
__lowercase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
__lowercase = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice )
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2_051, -0.1_803, -0.2_311, -0.2_114, -0.3_292, -0.3_574, -0.2_953, -0.3_323]],
[37, [-0.2_632, -0.2_625, -0.2_199, -0.2_741, -0.4_539, -0.4_990, -0.3_720, -0.4_925]],
# fmt: on
] )
@require_torch_gpu
def a__ ( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.get_sd_vae_model()
__lowercase = self.get_sd_image(_UpperCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
__lowercase = model.decode(_UpperCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
__lowercase = sample[-1, -2:, :2, -2:].flatten().cpu()
__lowercase = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0_369, 0.0_207, -0.0_776, -0.0_682, -0.1_747, -0.1_930, -0.1_465, -0.2_039]],
[16, [-0.1_628, -0.2_134, -0.2_747, -0.2_642, -0.3_774, -0.4_404, -0.3_687, -0.4_277]],
# fmt: on
] )
@require_torch_gpu
def a__ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = self.get_sd_vae_model(fpaa=_UpperCAmelCase )
__lowercase = self.get_sd_image(_UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=_UpperCAmelCase )
with torch.no_grad():
__lowercase = model.decode(_UpperCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
__lowercase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
__lowercase = torch.tensor(_UpperCAmelCase )
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' )
def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> str:
"""simple docstring"""
__lowercase = self.get_sd_vae_model(fpaa=_UpperCAmelCase )
__lowercase = self.get_sd_image(_UpperCAmelCase , shape=(3, 4, 64, 64) , fpaa=_UpperCAmelCase )
with torch.no_grad():
__lowercase = model.decode(_UpperCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__lowercase = model.decode(_UpperCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' )
def a__ ( self : List[Any] , _UpperCAmelCase : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_sd_vae_model()
__lowercase = self.get_sd_image(_UpperCAmelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
__lowercase = model.decode(_UpperCAmelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
__lowercase = model.decode(_UpperCAmelCase ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3_001, 0.0_918, -2.6_984, -3.9_720, -3.2_099, -5.0_353, 1.7_338, -0.2_065, 3.4_267]],
[47, [-1.5_030, -4.3_871, -6.0_355, -9.1_157, -1.6_661, -2.7_853, 2.1_607, -5.0_823, 2.5_633]],
# fmt: on
] )
def a__ ( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_sd_vae_model()
__lowercase = self.get_sd_image(_UpperCAmelCase )
__lowercase = self.get_generator(_UpperCAmelCase )
with torch.no_grad():
__lowercase = model.encode(_UpperCAmelCase ).latent_dist
__lowercase = dist.sample(generator=_UpperCAmelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
__lowercase = sample[0, -1, -3:, -3:].flatten().cpu()
__lowercase = torch.tensor(_UpperCAmelCase )
__lowercase = 3e-3 if torch_device != 'mps' else 1e-2
assert torch_all_close(_UpperCAmelCase , _UpperCAmelCase , atol=_UpperCAmelCase )
| 325 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_llama""": ["""LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LlamaConfig"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""LlamaTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""LlamaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""LlamaForCausalLM""",
"""LlamaModel""",
"""LlamaPreTrainedModel""",
"""LlamaForSequenceClassification""",
]
if TYPE_CHECKING:
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama import LlamaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_llama_fast import LlamaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 1 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ) -> Any:
print('\nThe shortest path matrix using Floyd Warshall algorithm\n' )
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
if dist[i][j] != float('inf' ):
print(int(dist[i][j] ) , end='\t' )
else:
print('INF' , end='\t' )
print()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ) -> List[Any]:
__lowercase = [[float('inf' ) for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )]
for i in range(SCREAMING_SNAKE_CASE ):
for j in range(SCREAMING_SNAKE_CASE ):
__lowercase = graph[i][j]
# check vertex k against all other vertices (i, j)
for k in range(SCREAMING_SNAKE_CASE ):
# looping through rows of graph array
for i in range(SCREAMING_SNAKE_CASE ):
# looping through columns of graph array
for j in range(SCREAMING_SNAKE_CASE ):
if (
dist[i][k] != float('inf' )
and dist[k][j] != float('inf' )
and dist[i][k] + dist[k][j] < dist[i][j]
):
__lowercase = dist[i][k] + dist[k][j]
_print_dist(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return dist, v
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = int(input("""Enter number of vertices: """))
SCREAMING_SNAKE_CASE__ = int(input("""Enter number of edges: """))
SCREAMING_SNAKE_CASE__ = [[float("""inf""") for i in range(v)] for j in range(v)]
for i in range(v):
SCREAMING_SNAKE_CASE__ = 0.0
# src and dst are indices that must be within the array size graph[e][v]
# failure to follow this will result in an error
for i in range(e):
print("""\nEdge """, i + 1)
SCREAMING_SNAKE_CASE__ = int(input("""Enter source:"""))
SCREAMING_SNAKE_CASE__ = int(input("""Enter destination:"""))
SCREAMING_SNAKE_CASE__ = float(input("""Enter weight:"""))
SCREAMING_SNAKE_CASE__ = weight
floyd_warshall(graph, v)
# Example Input
# Enter number of vertices: 3
# Enter number of edges: 2
# # generated graph from vertex and edge inputs
# [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]]
# [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]]
# specify source, destination and weight for edge #1
# Edge 1
# Enter source:1
# Enter destination:2
# Enter weight:2
# specify source, destination and weight for edge #2
# Edge 2
# Enter source:2
# Enter destination:1
# Enter weight:1
# # Expected Output from the vertice, edge and src, dst, weight inputs!!
# 0 INF INF
# INF 0 2
# INF 1 0
| 325 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 | 1 |
import qiskit
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 2 ) -> qiskit.result.counts.Counts:
__lowercase = qubits
# Using Aer's simulator
__lowercase = qiskit.Aer.get_backend('aer_simulator' )
# Creating a Quantum Circuit acting on the q register
__lowercase = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1 , SCREAMING_SNAKE_CASE ):
# Adding CX (CNOT) gate
circuit.cx(i - 1 , SCREAMING_SNAKE_CASE )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(SCREAMING_SNAKE_CASE ) ) , list(range(SCREAMING_SNAKE_CASE ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
__lowercase = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1000 )
return job.result().get_counts(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F'''Total count for various states are: {quantum_entanglement(3)}''')
| 325 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
__lowercase = str(bin(SCREAMING_SNAKE_CASE ) )
binary_number += "0" * shift_amount
return binary_number
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> str:
if number < 0 or shift_amount < 0:
raise ValueError('both inputs must be positive integers' )
__lowercase = str(bin(SCREAMING_SNAKE_CASE ) )[2:]
if shift_amount >= len(SCREAMING_SNAKE_CASE ):
return "0b0"
__lowercase = binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount]
return "0b" + shifted_binary_number
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> str:
if number >= 0: # Get binary representation of positive number
__lowercase = '0' + str(bin(SCREAMING_SNAKE_CASE ) ).strip('-' )[2:]
else: # Get binary (2's complement) representation of negative number
__lowercase = len(bin(SCREAMING_SNAKE_CASE )[3:] ) # Find 2's complement of number
__lowercase = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:]
__lowercase = (
'1' + '0' * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + binary_number
)
if shift_amount >= len(SCREAMING_SNAKE_CASE ):
return "0b" + binary_number[0] * len(SCREAMING_SNAKE_CASE )
return (
"0b"
+ binary_number[0] * shift_amount
+ binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 | 1 |
from ...processing_utils import ProcessorMixin
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "WhisperFeatureExtractor"
lowerCAmelCase__ : List[str] = "WhisperTokenizer"
def __init__( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.feature_extractor
__lowercase = False
def a__ ( self : str , _UpperCAmelCase : Any=None , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=True ) -> Optional[Any]:
"""simple docstring"""
return self.tokenizer.get_decoder_prompt_ids(task=_UpperCAmelCase , language=_UpperCAmelCase , no_timestamps=_UpperCAmelCase )
def __call__( self : Optional[int] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : str ) -> str:
"""simple docstring"""
if self._in_target_context_manager:
return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = kwargs.pop('audio' , _UpperCAmelCase )
__lowercase = kwargs.pop('sampling_rate' , _UpperCAmelCase )
__lowercase = kwargs.pop('text' , _UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
__lowercase = args[0]
__lowercase = args[1:]
if audio is None and text is None:
raise ValueError('You need to specify either an `audio` or `text` input to process.' )
if audio is not None:
__lowercase = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase )
if text is not None:
__lowercase = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
__lowercase = encodings['input_ids']
return inputs
def a__ ( self : Optional[int] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Tuple , *_UpperCAmelCase : Any , **_UpperCAmelCase : Tuple ) -> Any:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]="np" ) -> str:
"""simple docstring"""
return self.tokenizer.get_prompt_ids(_UpperCAmelCase , return_tensors=_UpperCAmelCase )
| 325 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = (
"This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image."
"It takes two arguments named `image` which should be the original image, and `label` which should be a text "
"describing the elements what should be identified in the segmentation mask. The tool returns the mask."
)
lowerCAmelCase__ : List[Any] = "CIDAS/clipseg-rd64-refined"
lowerCAmelCase__ : Dict = "image_segmenter"
lowerCAmelCase__ : Union[str, Any] = CLIPSegForImageSegmentation
lowerCAmelCase__ : List[Any] = ["image", "text"]
lowerCAmelCase__ : Union[str, Any] = ["image"]
def __init__( self : Optional[Any] , *_UpperCAmelCase : int , **_UpperCAmelCase : int ) -> int:
"""simple docstring"""
requires_backends(self , ['vision'] )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Any:
"""simple docstring"""
return self.pre_processor(text=[label] , images=[image] , padding=_UpperCAmelCase , return_tensors='pt' )
def a__ ( self : List[Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
with torch.no_grad():
__lowercase = self.model(**_UpperCAmelCase ).logits
return logits
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = outputs.cpu().detach().numpy()
__lowercase = 0
__lowercase = 1
return Image.fromarray((array * 2_55).astype(np.uinta ) )
| 325 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = [
["""attention""", """attn"""],
["""encoder_attention""", """encoder_attn"""],
["""q_lin""", """q_proj"""],
["""k_lin""", """k_proj"""],
["""v_lin""", """v_proj"""],
["""out_lin""", """out_proj"""],
["""norm_embeddings""", """layernorm_embedding"""],
["""position_embeddings""", """embed_positions"""],
["""embeddings""", """embed_tokens"""],
["""ffn.lin""", """fc"""],
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> str:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
__lowercase = k.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if k.startswith('encoder' ):
__lowercase = k.replace('.attn' , '.self_attn' )
__lowercase = k.replace('norm1' , 'self_attn_layer_norm' )
__lowercase = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
__lowercase = k.replace('norm1' , 'self_attn_layer_norm' )
__lowercase = k.replace('norm2' , 'encoder_attn_layer_norm' )
__lowercase = k.replace('norm3' , 'final_layer_norm' )
return k
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]:
__lowercase = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
__lowercase = sd.pop(SCREAMING_SNAKE_CASE )
__lowercase = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
__lowercase = v
SCREAMING_SNAKE_CASE__ = ["""START"""]
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple ) -> int:
__lowercase = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' )
__lowercase = model['model']
__lowercase = BlenderbotConfig.from_json_file(SCREAMING_SNAKE_CASE )
__lowercase = BlenderbotForConditionalGeneration(SCREAMING_SNAKE_CASE )
__lowercase = m.model.state_dict().keys()
__lowercase = []
__lowercase = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
__lowercase = rename_state_dict_key(SCREAMING_SNAKE_CASE )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
__lowercase = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(SCREAMING_SNAKE_CASE )
m.model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE )
m.half()
m.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""")
parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""")
parser.add_argument(
"""--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use"""
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 325 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
__lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowercase = [3, 3, 3, 3]
__lowercase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowercase = [4, 4, 4, 4]
__lowercase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowercase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowercase = [3, 3, 3, 3]
else:
__lowercase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowercase = 96
elif "small" in model_name:
__lowercase = 96
elif "base" in model_name:
__lowercase = 128
elif "large" in model_name:
__lowercase = 192
elif "xlarge" in model_name:
__lowercase = 256
elif "huge" in model_name:
__lowercase = 352
# set label information
__lowercase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowercase = 'imagenet-22k-id2label.json'
else:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = FocalNetConfig(
embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , )
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if "patch_embed.proj" in name:
__lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowercase = 'encoder.' + name
if "encoder.layers" in name:
__lowercase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowercase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowercase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowercase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowercase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowercase = 'layernorm.weight'
if name == "norm.bias":
__lowercase = 'layernorm.bias'
if "head" in name:
__lowercase = name.replace('head' , 'classifier' )
else:
__lowercase = 'focalnet.' + name
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]:
# fmt: off
__lowercase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowercase = model_name_to_url[model_name]
print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
__lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE )
__lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
# load state dict
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify conversion
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = BitImageProcessor(
do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , )
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
__lowercase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 325 | 1 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_configuration import CustomConfig # noqa E402
SCREAMING_SNAKE_CASE__ = {
"""return_dict""": False,
"""output_hidden_states""": True,
"""output_attentions""": True,
"""torchscript""": True,
"""torch_dtype""": """float16""",
"""use_bfloat16""": True,
"""tf_legacy_loss""": True,
"""pruned_heads""": {"""a""": 1},
"""tie_word_embeddings""": False,
"""is_decoder""": True,
"""cross_attention_hidden_size""": 128,
"""add_cross_attention""": True,
"""tie_encoder_decoder""": True,
"""max_length""": 50,
"""min_length""": 3,
"""do_sample""": True,
"""early_stopping""": True,
"""num_beams""": 3,
"""num_beam_groups""": 3,
"""diversity_penalty""": 0.5,
"""temperature""": 2.0,
"""top_k""": 10,
"""top_p""": 0.7,
"""typical_p""": 0.2,
"""repetition_penalty""": 0.8,
"""length_penalty""": 0.8,
"""no_repeat_ngram_size""": 5,
"""encoder_no_repeat_ngram_size""": 5,
"""bad_words_ids""": [1, 2, 3],
"""num_return_sequences""": 3,
"""chunk_size_feed_forward""": 5,
"""output_scores""": True,
"""return_dict_in_generate""": True,
"""forced_bos_token_id""": 2,
"""forced_eos_token_id""": 3,
"""remove_invalid_values""": True,
"""architectures""": ["""BertModel"""],
"""finetuning_task""": """translation""",
"""id2label""": {0: """label"""},
"""label2id""": {"""label""": """0"""},
"""tokenizer_class""": """BertTokenizerFast""",
"""prefix""": """prefix""",
"""bos_token_id""": 6,
"""pad_token_id""": 7,
"""eos_token_id""": 8,
"""sep_token_id""": 9,
"""decoder_start_token_id""": 10,
"""exponential_decay_length_penalty""": (5, 1.01),
"""suppress_tokens""": [0, 1],
"""begin_suppress_tokens""": 2,
"""task_specific_params""": {"""translation""": """some_params"""},
"""problem_type""": """regression""",
}
@is_staging_test
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : str ) -> Any:
"""simple docstring"""
__lowercase = TOKEN
HfFolder.save_token(_UpperCAmelCase )
@classmethod
def a__ ( cls : Optional[int] ) -> List[Any]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id='test-config' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-config-org' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='test-dynamic-config' )
except HTTPError:
pass
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub('test-config' , use_auth_token=self._token )
__lowercase = BertConfig.from_pretrained(f"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='test-config' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(_UpperCAmelCase , repo_id='test-config' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token )
__lowercase = BertConfig.from_pretrained(f"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token )
__lowercase = BertConfig.from_pretrained('valid_org/test-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-config-org' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
_UpperCAmelCase , repo_id='valid_org/test-config-org' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token )
__lowercase = BertConfig.from_pretrained('valid_org/test-config-org' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
CustomConfig.register_for_auto_class()
__lowercase = CustomConfig(attribute=42 )
config.push_to_hub('test-dynamic-config' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} )
__lowercase = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=_UpperCAmelCase )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' )
self.assertEqual(new_config.attribute , 42 )
class A__ ( unittest.TestCase ):
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
__lowercase = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
__lowercase = c.n_embd + 1 # int
__lowercase = c.resid_pdrop + 1.0 # float
__lowercase = not c.scale_attn_weights # bool
__lowercase = c.summary_type + 'foo' # str
c.update_from_string(
f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" )
self.assertEqual(_UpperCAmelCase , c.n_embd , 'mismatch for key: n_embd' )
self.assertEqual(_UpperCAmelCase , c.resid_pdrop , 'mismatch for key: resid_pdrop' )
self.assertEqual(_UpperCAmelCase , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' )
self.assertEqual(_UpperCAmelCase , c.summary_type , 'mismatch for key: summary_type' )
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
__lowercase = PretrainedConfig()
__lowercase = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
_UpperCAmelCase , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] )
__lowercase = [key for key, value in config_common_kwargs.items() if value == getattr(_UpperCAmelCase , _UpperCAmelCase )]
if len(_UpperCAmelCase ) > 0:
raise ValueError(
'The following keys are set with the default values in'
' `test_configuration_common.config_common_kwargs` pick another value for them:'
f""" {", ".join(_UpperCAmelCase )}.""" )
def a__ ( self : Any ) -> Any:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# config is in subfolder, the following should not work without specifying the subfolder
__lowercase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' )
__lowercase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
__lowercase = mock.Mock()
__lowercase = 5_00
__lowercase = {}
__lowercase = HTTPError
__lowercase = {}
# Download this model to make sure it's in the cache.
__lowercase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase ) as mock_head:
__lowercase = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' )
# This check we did call the fake head request
mock_head.assert_called()
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = BertConfig.from_pretrained(
'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' )
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = AutoConfig.from_pretrained('bert-base-cased' )
__lowercase = ['config.4.0.0.json']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(_UpperCAmelCase )
__lowercase = 2
json.dump(configuration.to_dict() , open(os.path.join(_UpperCAmelCase , 'config.4.0.0.json' ) , 'w' ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
__lowercase = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
__lowercase = ['config.42.0.0.json']
__lowercase = 7_68
configuration.save_pretrained(_UpperCAmelCase )
shutil.move(os.path.join(_UpperCAmelCase , 'config.4.0.0.json' ) , os.path.join(_UpperCAmelCase , 'config.42.0.0.json' ) )
__lowercase = AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 7_68 )
def a__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'hf-internal-testing/test-two-configs'
import transformers as new_transformers
__lowercase = 'v4.0.0'
__lowercase , __lowercase = new_transformers.models.auto.AutoConfig.from_pretrained(
_UpperCAmelCase , return_unused_kwargs=_UpperCAmelCase )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(_UpperCAmelCase , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
__lowercase = 'v3.0.0'
__lowercase = old_transformers.models.auto.AutoConfig.from_pretrained(_UpperCAmelCase )
self.assertEqual(old_configuration.hidden_size , 7_68 )
| 325 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 | 1 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 | 1 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
SCREAMING_SNAKE_CASE__ = pytest.mark.integration
@pytest.mark.parametrize('path' , ['paws', 'csv'] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ) -> List[Any]:
inspect_dataset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = path + '.py'
assert script_name in os.listdir(SCREAMING_SNAKE_CASE )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE )
@pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.parametrize('path' , ['accuracy'] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int:
inspect_metric(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = path + '.py'
assert script_name in os.listdir(SCREAMING_SNAKE_CASE )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'path, config_name, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ) -> Optional[int]:
__lowercase = get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> List[str]:
with pytest.raises(SCREAMING_SNAKE_CASE ):
get_dataset_config_info(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE )
@pytest.mark.parametrize(
'path, expected' , [
('squad', 'plain_text'),
('acronym_identification', 'default'),
('lhoestq/squad', 'plain_text'),
('lhoestq/test', 'default'),
('lhoestq/demo1', 'lhoestq--demo1'),
('dalle-mini/wit', 'dalle-mini--wit'),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Any:
__lowercase = get_dataset_config_names(SCREAMING_SNAKE_CASE )
assert expected in config_names
@pytest.mark.parametrize(
'path, expected_configs, expected_splits_in_first_config' , [
('squad', ['plain_text'], ['train', 'validation']),
('dalle-mini/wit', ['dalle-mini--wit'], ['train']),
('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ) -> Optional[Any]:
__lowercase = get_dataset_infos(SCREAMING_SNAKE_CASE )
assert list(infos.keys() ) == expected_configs
__lowercase = expected_configs[0]
assert expected_config in infos
__lowercase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
'path, expected_config, expected_splits' , [
('squad', 'plain_text', ['train', 'validation']),
('dalle-mini/wit', 'dalle-mini--wit', ['train']),
('paws', 'labeled_final', ['train', 'test', 'validation']),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> List[str]:
__lowercase = get_dataset_infos(SCREAMING_SNAKE_CASE )
assert expected_config in infos
__lowercase = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
'path, config_name, expected_exception' , [
('paws', None, ValueError),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]:
with pytest.raises(SCREAMING_SNAKE_CASE ):
get_dataset_split_names(SCREAMING_SNAKE_CASE , config_name=SCREAMING_SNAKE_CASE )
| 325 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_xlm_roberta""": [
"""XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""XLMRobertaConfig""",
"""XLMRobertaOnnxConfig""",
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""XLMRobertaTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""XLMRobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMRobertaForCausalLM""",
"""XLMRobertaForMaskedLM""",
"""XLMRobertaForMultipleChoice""",
"""XLMRobertaForQuestionAnswering""",
"""XLMRobertaForSequenceClassification""",
"""XLMRobertaForTokenClassification""",
"""XLMRobertaModel""",
"""XLMRobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLMRobertaForCausalLM""",
"""TFXLMRobertaForMaskedLM""",
"""TFXLMRobertaForMultipleChoice""",
"""TFXLMRobertaForQuestionAnswering""",
"""TFXLMRobertaForSequenceClassification""",
"""TFXLMRobertaForTokenClassification""",
"""TFXLMRobertaModel""",
"""TFXLMRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FlaxXLMRobertaForMaskedLM""",
"""FlaxXLMRobertaForCausalLM""",
"""FlaxXLMRobertaForMultipleChoice""",
"""FlaxXLMRobertaForQuestionAnswering""",
"""FlaxXLMRobertaForSequenceClassification""",
"""FlaxXLMRobertaForTokenClassification""",
"""FlaxXLMRobertaModel""",
"""FlaxXLMRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
SCREAMING_SNAKE_CASE__ = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 1 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 1000 ) -> int:
__lowercase = -1
__lowercase = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
__lowercase = (n * n - 2 * a * n) // (2 * n - 2 * a)
__lowercase = n - a - b
if c * c == (a * a + b * b):
__lowercase = a * b * c
if candidate >= product:
__lowercase = candidate
return product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 1 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 1 |
from __future__ import annotations
class A__ :
def __init__( self : Optional[Any] , _UpperCAmelCase : int = 0 ) -> Dict:
"""simple docstring"""
__lowercase = key
def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> list[str]:
"""simple docstring"""
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_55
return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content]
def a__ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> list[str]:
"""simple docstring"""
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_55
return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content]
def a__ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> str:
"""simple docstring"""
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = key or self.__key or 1
# make sure key can be any size
while key > 2_55:
key -= 2_55
# This will be returned
__lowercase = ''
for ch in content:
ans += chr(ord(_UpperCAmelCase ) ^ key )
return ans
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> str:
"""simple docstring"""
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = key or self.__key or 1
# make sure key can be any size
while key > 2_55:
key -= 2_55
# This will be returned
__lowercase = ''
for ch in content:
ans += chr(ord(_UpperCAmelCase ) ^ key )
return ans
def a__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : int = 0 ) -> bool:
"""simple docstring"""
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
try:
with open(_UpperCAmelCase ) as fin, open('encrypt.out' , 'w+' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) )
except OSError:
return False
return True
def a__ ( self : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : int ) -> bool:
"""simple docstring"""
assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase )
try:
with open(_UpperCAmelCase ) as fin, open('decrypt.out' , 'w+' ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 325 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = torch.device("""cpu""")
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
return im
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] ) -> Optional[int]:
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = dct.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> str:
__lowercase = []
for k in state_dict.keys():
__lowercase = k
if ".pwconv" in k:
__lowercase = k_new.replace('.pwconv' , '.point_wise_conv' )
if ".dwconv" in k:
__lowercase = k_new.replace('.dwconv' , '.depth_wise_conv' )
if ".Proj." in k:
__lowercase = k_new.replace('.Proj.' , '.proj.' )
if "patch_embed" in k_new:
__lowercase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' )
if "network" in k_new:
__lowercase = k_new.split('.' )
if ls[2].isdigit():
__lowercase = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] )
else:
__lowercase = k_new.replace('network' , 'swiftformer.encoder.network' )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]:
__lowercase = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
__lowercase = 1000
__lowercase = 'huggingface/label-files'
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = idalabel
__lowercase = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
__lowercase = [3, 3, 6, 4]
__lowercase = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
__lowercase = [3, 3, 9, 6]
__lowercase = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
__lowercase = [4, 3, 10, 5]
__lowercase = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
__lowercase = [4, 4, 12, 6]
__lowercase = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith('https' ):
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' , check_hash=SCREAMING_SNAKE_CASE )
else:
__lowercase = torch.load(SCREAMING_SNAKE_CASE , map_location='cpu' )
__lowercase = checkpoint
__lowercase = create_rename_keys(SCREAMING_SNAKE_CASE )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# load HuggingFace model
__lowercase = SwiftFormerForImageClassification(SCREAMING_SNAKE_CASE ).eval()
hf_model.load_state_dict(SCREAMING_SNAKE_CASE )
# prepare test inputs
__lowercase = prepare_img()
__lowercase = ViTImageProcessor.from_pretrained('preprocessor_config' )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
# compare outputs from both models
__lowercase = get_expected_output(SCREAMING_SNAKE_CASE )
__lowercase = hf_model(inputs['pixel_values'] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , SCREAMING_SNAKE_CASE , atol=1E-3 )
Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE )
print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" )
hf_model.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--swiftformer_name""",
default="""swiftformer_xs""",
choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""],
type=str,
help="""Name of the SwiftFormer model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""./converted_outputs/""",
type=str,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 325 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 1 |
import comet # From: unbabel-comet
import torch
import datasets
SCREAMING_SNAKE_CASE__ = datasets.logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = """\
@inproceedings{rei-EtAl:2020:WMT,
author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},
title = {Unbabel's Participation in the WMT20 Metrics Shared Task},
booktitle = {Proceedings of the Fifth Conference on Machine Translation},
month = {November},
year = {2020},
address = {Online},
publisher = {Association for Computational Linguistics},
pages = {909--918},
}
@inproceedings{rei-etal-2020-comet,
title = \"{COMET}: A Neural Framework for {MT} Evaluation\",
author = \"Rei, Ricardo and
Stewart, Craig and
Farinha, Ana C and
Lavie, Alon\",
booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",
month = nov,
year = \"2020\",
address = \"Online\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",
pages = \"2685--2702\",
}
"""
SCREAMING_SNAKE_CASE__ = """\
Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).
With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.
See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.
"""
SCREAMING_SNAKE_CASE__ = """
COMET score.
Args:
`sources` (list of str): Source sentences
`predictions` (list of str): candidate translations
`references` (list of str): reference translations
`cuda` (bool): If set to True, runs COMET using GPU
`show_progress` (bool): Shows progress
`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.
Returns:
`samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.
`scores`: List of scores.
Examples:
>>> comet_metric = datasets.load_metric('comet')
>>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use
>>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]
>>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]
>>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]
>>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)
>>> print([round(v, 2) for v in results[\"scores\"]])
[0.19, 0.92]
"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='https://unbabel.github.io/COMET/html/index.html' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'sources': datasets.Value('string' , id='sequence' ),
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , codebase_urls=['https://github.com/Unbabel/COMET'] , reference_urls=[
'https://github.com/Unbabel/COMET',
'https://www.aclweb.org/anthology/2020.emnlp-main.213/',
'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6',
] , )
def a__ ( self : str , _UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
if self.config_name == "default":
__lowercase = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) )
else:
__lowercase = comet.load_from_checkpoint(comet.download_model(self.config_name ) )
def a__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any=None , _UpperCAmelCase : Union[str, Any]=False ) -> List[str]:
"""simple docstring"""
if gpus is None:
__lowercase = 1 if torch.cuda.is_available() else 0
__lowercase = {'src': sources, 'mt': predictions, 'ref': references}
__lowercase = [dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) for t in zip(*data.values() )]
__lowercase , __lowercase = self.scorer.predict(_UpperCAmelCase , gpus=_UpperCAmelCase , progress_bar=_UpperCAmelCase )
return {"mean_score": mean_score, "scores": scores}
| 325 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 1 |
from __future__ import annotations
import typing
from collections import Counter
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> typing.Counter[int]:
__lowercase = Counter()
for base in range(1 , max_perimeter + 1 ):
for perpendicular in range(SCREAMING_SNAKE_CASE , max_perimeter + 1 ):
__lowercase = (base * base + perpendicular * perpendicular) ** 0.5
if hypotenuse == int(SCREAMING_SNAKE_CASE ):
__lowercase = int(base + perpendicular + hypotenuse )
if perimeter > max_perimeter:
continue
triplets[perimeter] += 1
return triplets
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 1000 ) -> int:
__lowercase = pythagorean_triple(SCREAMING_SNAKE_CASE )
return triplets.most_common(1 )[0][0]
if __name__ == "__main__":
print(F'''Perimeter {solution()} has maximum solutions''')
| 325 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 1 |
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
SCREAMING_SNAKE_CASE__ = importlib.util.find_spec("""s3fs""") is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
SCREAMING_SNAKE_CASE__ = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''')
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> str:
if "://" in dataset_path:
__lowercase = dataset_path.split('://' )[1]
return dataset_path
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem ) -> bool:
if fs is not None and fs.protocol != "file":
return True
else:
return False
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]:
__lowercase = not is_remote_filesystem(SCREAMING_SNAKE_CASE )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE ) , fs._strip_protocol(SCREAMING_SNAKE_CASE ) )
else:
fs.mv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , recursive=SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( ) -> None:
if hasattr(fsspec.asyn , 'reset_lock' ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
__lowercase = None
__lowercase = None
__lowercase = threading.Lock()
| 325 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 1 |
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ = TypeVar("""T""")
class A__ ( Generic[T] ):
def __init__( self : int , _UpperCAmelCase : bool = True ) -> None:
"""simple docstring"""
__lowercase = {} # dictionary of lists
__lowercase = directed
def a__ ( self : Optional[Any] , _UpperCAmelCase : T , _UpperCAmelCase : T ) -> GraphAdjacencyList[T]:
"""simple docstring"""
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_UpperCAmelCase )
self.adj_list[destination_vertex].append(_UpperCAmelCase )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_UpperCAmelCase )
__lowercase = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(_UpperCAmelCase )
__lowercase = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
__lowercase = [destination_vertex]
__lowercase = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_UpperCAmelCase )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_UpperCAmelCase )
__lowercase = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
__lowercase = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
__lowercase = [destination_vertex]
__lowercase = []
return self
def __repr__( self : Any ) -> str:
"""simple docstring"""
return pformat(self.adj_list )
| 325 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ = {
"""configuration_jukebox""": [
"""JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""JukeboxConfig""",
"""JukeboxPriorConfig""",
"""JukeboxVQVAEConfig""",
],
"""tokenization_jukebox""": ["""JukeboxTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""JukeboxModel""",
"""JukeboxPreTrainedModel""",
"""JukeboxVQVAE""",
"""JukeboxPrior""",
]
if TYPE_CHECKING:
from .configuration_jukebox import (
JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP,
JukeboxConfig,
JukeboxPriorConfig,
JukeboxVQVAEConfig,
)
from .tokenization_jukebox import JukeboxTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_jukebox import (
JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST,
JukeboxModel,
JukeboxPreTrainedModel,
JukeboxPrior,
JukeboxVQVAE,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[torch.FloatTensor] = None
lowerCAmelCase__ : torch.FloatTensor = None
lowerCAmelCase__ : Optional[Tuple[torch.FloatTensor]] = None
lowerCAmelCase__ : Optional[Tuple[torch.FloatTensor]] = None
class A__ ( lowerCAmelCase__ ):
def __init__( self : int , _UpperCAmelCase : Optional[int]=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : int=2 , _UpperCAmelCase : List[Any]=5_12 , _UpperCAmelCase : str="cls" , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : List[Any]=True , **_UpperCAmelCase : Any , ) -> Dict:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = project_dim
__lowercase = pooler_fn
__lowercase = learn_encoder
__lowercase = use_attention_mask
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Dict = [R"pooler", R"logit_scale"]
lowerCAmelCase__ : Any = [R"position_ids", R"predictions.decoder.bias"]
lowerCAmelCase__ : Dict = "roberta"
lowerCAmelCase__ : List[str] = RobertaSeriesConfig
def __init__( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = XLMRobertaModel(_UpperCAmelCase )
__lowercase = nn.Linear(config.hidden_size , config.project_dim )
__lowercase = getattr(_UpperCAmelCase , 'has_pre_transformation' , _UpperCAmelCase )
if self.has_pre_transformation:
__lowercase = nn.Linear(config.hidden_size , config.project_dim )
__lowercase = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps )
self.post_init()
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[torch.Tensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> Dict:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.base_model(
input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_attentions=_UpperCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_UpperCAmelCase , )
if self.has_pre_transformation:
__lowercase = outputs['hidden_states'][-2]
__lowercase = self.pre_LN(_UpperCAmelCase )
__lowercase = self.transformation_pre(_UpperCAmelCase )
return TransformationModelOutput(
projection_state=_UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
else:
__lowercase = self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=_UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
| 325 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 1 |
from math import isclose, sqrt
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ) -> tuple[float, float, float]:
__lowercase = point_y / 4 / point_x
__lowercase = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
__lowercase = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
__lowercase = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
__lowercase = outgoing_gradient**2 + 4
__lowercase = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
__lowercase = (point_y - outgoing_gradient * point_x) ** 2 - 100
__lowercase = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
__lowercase = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
__lowercase = x_minus if isclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else x_plus
__lowercase = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float = 1.4 , SCREAMING_SNAKE_CASE : float = -9.6 ) -> int:
__lowercase = 0
__lowercase = first_x_coord
__lowercase = first_y_coord
__lowercase = (10.1 - point_y) / (0.0 - point_x)
while not (-0.01 <= point_x <= 0.01 and point_y > 0):
__lowercase , __lowercase , __lowercase = next_point(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 | 1 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple:
return (preds == labels).mean()
@dataclass
class A__ :
lowerCAmelCase__ : str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCAmelCase__ : Optional[str] = field(
default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class A__ :
lowerCAmelCase__ : str = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} )
lowerCAmelCase__ : str = field(metadata={"help": "Should contain the data files for the task."} )
lowerCAmelCase__ : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCAmelCase__ : bool = field(
default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
__lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use"""
' --overwrite_output_dir to overcome.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE )
# Set seed
set_seed(training_args.seed )
try:
__lowercase = processors[data_args.task_name]()
__lowercase = processor.get_labels()
__lowercase = len(SCREAMING_SNAKE_CASE )
except KeyError:
raise ValueError('Task not found: %s' % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowercase = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
__lowercase = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
__lowercase = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , )
# Get datasets
__lowercase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
__lowercase = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(SCREAMING_SNAKE_CASE : EvalPrediction ) -> Dict:
__lowercase = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(SCREAMING_SNAKE_CASE , p.label_ids )}
# Data collator
__lowercase = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
__lowercase = Trainer(
model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , compute_metrics=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__lowercase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__lowercase = trainer.evaluate()
__lowercase = os.path.join(training_args.output_dir , 'eval_results.txt' )
if trainer.is_world_master():
with open(SCREAMING_SNAKE_CASE , 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in result.items():
logger.info(' %s = %s' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
writer.write('%s = %s\n' % (key, value) )
results.update(SCREAMING_SNAKE_CASE )
return results
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> Optional[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 325 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 | 1 |
from manim import *
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = Rectangle(height=0.5 , width=0.5 )
__lowercase = Rectangle(height=0.25 , width=0.25 )
__lowercase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
__lowercase = [mem.copy() for i in range(6 )]
__lowercase = [mem.copy() for i in range(6 )]
__lowercase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = Text('CPU' , font_size=24 )
__lowercase = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
__lowercase = [mem.copy() for i in range(4 )]
__lowercase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = Text('GPU' , font_size=24 )
__lowercase = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
__lowercase = [mem.copy() for i in range(6 )]
__lowercase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = Text('Model' , font_size=24 )
__lowercase = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
__lowercase = []
__lowercase = []
__lowercase = []
for i, rect in enumerate(_UpperCAmelCase ):
rect.set_stroke(_UpperCAmelCase )
__lowercase = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_UpperCAmelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] , direction=_UpperCAmelCase , buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] , direction=_UpperCAmelCase , buff=0.0 )
self.add(_UpperCAmelCase )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase , *_UpperCAmelCase )
__lowercase = [mem.copy() for i in range(6 )]
__lowercase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = Text('Loaded Checkpoint' , font_size=24 )
__lowercase = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
checkpoint.move_to([3, 0.5, 0] )
self.add(_UpperCAmelCase )
__lowercase = []
__lowercase = []
for i, rect in enumerate(_UpperCAmelCase ):
__lowercase = fill.copy().set_fill(_UpperCAmelCase , opacity=0.7 )
target.move_to(_UpperCAmelCase )
ckpt_arr.append(_UpperCAmelCase )
__lowercase = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
__lowercase = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__lowercase = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = MarkupText(
f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
__lowercase = MarkupText(
f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
__lowercase = [meta_mem.copy() for i in range(6 )]
__lowercase = [meta_mem.copy() for i in range(6 )]
__lowercase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
__lowercase = Text('Disk' , font_size=24 )
__lowercase = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4.0, -1.25, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , Write(_UpperCAmelCase , run_time=1 ) , Create(_UpperCAmelCase , run_time=1 ) )
__lowercase = []
for i, rect in enumerate(_UpperCAmelCase ):
__lowercase = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(_UpperCAmelCase , run_time=1.5 ) )
self.play(*_UpperCAmelCase )
self.play(FadeOut(_UpperCAmelCase ) )
__lowercase = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
self.play(
FadeOut(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , *_UpperCAmelCase ) , )
self.wait()
| 325 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 | 1 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = "naver-clova-ix/donut-base-finetuned-docvqa"
lowerCAmelCase__ : List[Any] = (
"This is a tool that answers a question about an document (pdf). It takes an input named `document` which "
"should be the document containing the information, as well as a `question` that is the question about the "
"document. It returns a text that contains the answer to the question."
)
lowerCAmelCase__ : Union[str, Any] = "document_qa"
lowerCAmelCase__ : Any = AutoProcessor
lowerCAmelCase__ : Union[str, Any] = VisionEncoderDecoderModel
lowerCAmelCase__ : Optional[Any] = ["image", "text"]
lowerCAmelCase__ : List[Any] = ["text"]
def __init__( self : Any , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
if not is_vision_available():
raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>'
__lowercase = task_prompt.replace('{user_input}' , _UpperCAmelCase )
__lowercase = self.pre_processor.tokenizer(
_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors='pt' ).input_ids
__lowercase = self.pre_processor(_UpperCAmelCase , return_tensors='pt' ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def a__ ( self : Dict , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
return self.model.generate(
inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=_UpperCAmelCase , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=_UpperCAmelCase , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=_UpperCAmelCase , ).sequences
def a__ ( self : str , _UpperCAmelCase : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.pre_processor.batch_decode(_UpperCAmelCase )[0]
__lowercase = sequence.replace(self.pre_processor.tokenizer.eos_token , '' )
__lowercase = sequence.replace(self.pre_processor.tokenizer.pad_token , '' )
__lowercase = re.sub(R'<.*?>' , '' , _UpperCAmelCase , count=1 ).strip() # remove first task start token
__lowercase = self.pre_processor.tokenajson(_UpperCAmelCase )
return sequence["answer"]
| 325 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
__lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowercase = [3, 3, 3, 3]
__lowercase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowercase = [4, 4, 4, 4]
__lowercase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowercase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowercase = [3, 3, 3, 3]
else:
__lowercase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowercase = 96
elif "small" in model_name:
__lowercase = 96
elif "base" in model_name:
__lowercase = 128
elif "large" in model_name:
__lowercase = 192
elif "xlarge" in model_name:
__lowercase = 256
elif "huge" in model_name:
__lowercase = 352
# set label information
__lowercase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowercase = 'imagenet-22k-id2label.json'
else:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = FocalNetConfig(
embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , )
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if "patch_embed.proj" in name:
__lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowercase = 'encoder.' + name
if "encoder.layers" in name:
__lowercase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowercase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowercase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowercase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowercase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowercase = 'layernorm.weight'
if name == "norm.bias":
__lowercase = 'layernorm.bias'
if "head" in name:
__lowercase = name.replace('head' , 'classifier' )
else:
__lowercase = 'focalnet.' + name
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]:
# fmt: off
__lowercase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowercase = model_name_to_url[model_name]
print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
__lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE )
__lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
# load state dict
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify conversion
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = BitImageProcessor(
do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , )
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
__lowercase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 325 | 1 |
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""",
"""facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "encodec"
def __init__( self : Dict , _UpperCAmelCase : List[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , _UpperCAmelCase : Any=2_40_00 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=1_28 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : List[Any]=[8, 5, 4, 2] , _UpperCAmelCase : Union[str, Any]="weight_norm" , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=3 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]="reflect" , _UpperCAmelCase : Any=2 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[Any]=10_24 , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=True , **_UpperCAmelCase : str , ) -> str:
"""simple docstring"""
__lowercase = target_bandwidths
__lowercase = sampling_rate
__lowercase = audio_channels
__lowercase = normalize
__lowercase = chunk_length_s
__lowercase = overlap
__lowercase = hidden_size
__lowercase = num_filters
__lowercase = num_residual_layers
__lowercase = upsampling_ratios
__lowercase = norm_type
__lowercase = kernel_size
__lowercase = last_kernel_size
__lowercase = residual_kernel_size
__lowercase = dilation_growth_rate
__lowercase = use_causal_conv
__lowercase = pad_mode
__lowercase = compress
__lowercase = num_lstm_layers
__lowercase = trim_right_ratio
__lowercase = codebook_size
__lowercase = codebook_dim if codebook_dim is not None else hidden_size
__lowercase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" )
super().__init__(**_UpperCAmelCase )
@property
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def a__ ( self : int ) -> int:
"""simple docstring"""
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 325 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 | 1 |
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
SCREAMING_SNAKE_CASE__ = """sshleifer/mar_enro_6_3_student"""
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
super().setUp()
__lowercase = cached_path(
'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=_UpperCAmelCase , )
__lowercase = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"""
@slow
@require_torch_gpu
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
MarianMTModel.from_pretrained(_UpperCAmelCase )
@slow
@require_torch_gpu
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = {
'$MAX_LEN': 64,
'$BS': 64,
'$GAS': 1,
'$ENRO_DIR': self.data_dir,
'facebook/mbart-large-cc25': MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
'--learning_rate=3e-5': '--learning_rate 3e-4',
'--num_train_epochs 6': '--num_train_epochs 1',
}
# Clean up bash script
__lowercase = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip()
__lowercase = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' )
for k, v in env_vars_to_replace.items():
__lowercase = bash_script.replace(_UpperCAmelCase , str(_UpperCAmelCase ) )
__lowercase = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
__lowercase = f"""
--output_dir {output_dir}
--tokenizer_name Helsinki-NLP/opus-mt-en-ro
--sortish_sampler
--do_predict
--gpus 1
--freeze_encoder
--n_train 40000
--n_val 500
--n_test 500
--fp16_opt_level O1
--num_sanity_val_steps 0
--eval_beams 2
""".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
__lowercase = ['finetune.py'] + bash_script.split() + args
with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ):
__lowercase = argparse.ArgumentParser()
__lowercase = pl.Trainer.add_argparse_args(_UpperCAmelCase )
__lowercase = SummarizationModule.add_model_specific_args(_UpperCAmelCase , os.getcwd() )
__lowercase = parser.parse_args()
__lowercase = main(_UpperCAmelCase )
# Check metrics
__lowercase = load_json(model.metrics_save_path )
__lowercase = metrics['val'][0]
__lowercase = metrics['val'][-1]
self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) )
assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , _UpperCAmelCase )
self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 )
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 )
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 )
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats['val_avg_bleu'] , 17 )
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 )
# check lightning ckpt can be loaded and has a reasonable statedict
__lowercase = os.listdir(_UpperCAmelCase )
__lowercase = [x for x in contents if x.endswith('.ckpt' )][0]
__lowercase = os.path.join(args.output_dir , _UpperCAmelCase )
__lowercase = torch.load(_UpperCAmelCase , map_location='cpu' )
__lowercase = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
__lowercase = {os.path.basename(_UpperCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
class A__ ( lowerCAmelCase__ ):
@timeout_decorator.timeout(6_00 )
@slow
@require_torch_gpu
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = f"""{self.test_file_dir_str}/test_data/wmt_en_ro"""
__lowercase = {
'--fp16_opt_level=O1': '',
'$MAX_LEN': 1_28,
'$BS': 16,
'$GAS': 1,
'$ENRO_DIR': data_dir,
'$m': 'sshleifer/student_marian_en_ro_6_1',
'val_check_interval=0.25': 'val_check_interval=1.0',
}
# Clean up bash script
__lowercase = (
(self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip()
)
__lowercase = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' )
__lowercase = bash_script.replace('--fp16 ' , ' ' )
for k, v in env_vars_to_replace.items():
__lowercase = bash_script.replace(_UpperCAmelCase , str(_UpperCAmelCase ) )
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = bash_script.replace('--fp16' , '' )
__lowercase = 6
__lowercase = (
['distillation.py']
+ bash_script.split()
+ [
f"""--output_dir={output_dir}""",
'--gpus=1',
'--learning_rate=1e-3',
f"""--num_train_epochs={epochs}""",
'--warmup_steps=10',
'--val_check_interval=1.0',
'--do_predict',
]
)
with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ):
__lowercase = argparse.ArgumentParser()
__lowercase = pl.Trainer.add_argparse_args(_UpperCAmelCase )
__lowercase = SummarizationDistiller.add_model_specific_args(_UpperCAmelCase , os.getcwd() )
__lowercase = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
__lowercase = distill_main(_UpperCAmelCase )
# Check metrics
__lowercase = load_json(model.metrics_save_path )
__lowercase = metrics['val'][0]
__lowercase = metrics['val'][-1]
assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , _UpperCAmelCase )
# check lightning ckpt can be loaded and has a reasonable statedict
__lowercase = os.listdir(_UpperCAmelCase )
__lowercase = [x for x in contents if x.endswith('.ckpt' )][0]
__lowercase = os.path.join(args.output_dir , _UpperCAmelCase )
__lowercase = torch.load(_UpperCAmelCase , map_location='cpu' )
__lowercase = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight'
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
__lowercase = {os.path.basename(_UpperCAmelCase ) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics['test'] ) == 1
| 325 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""",
# See all ViT MSN models at https://huggingface.co/models?filter=vit_msn
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[str] = "vit_msn"
def __init__( self : int , _UpperCAmelCase : Optional[int]=7_68 , _UpperCAmelCase : str=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : str=30_72 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : List[str]=1e-0_6 , _UpperCAmelCase : Union[str, Any]=2_24 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Union[str, Any]=True , **_UpperCAmelCase : Any , ) -> Dict:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = qkv_bias
| 325 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 1 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = ""
lowerCAmelCase__ : List[str] = "hf-legacy" # "hf://"" is reserved for hffs
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : int , ) -> List[Any]:
"""simple docstring"""
super().__init__(self , **_UpperCAmelCase )
__lowercase = repo_info
__lowercase = token
__lowercase = None
def a__ ( self : int ) -> int:
"""simple docstring"""
if self.dir_cache is None:
__lowercase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
__lowercase = {
'name': hf_file.rfilename,
'size': None,
'type': 'file',
}
self.dir_cache.update(
{
str(_UpperCAmelCase ): {'name': str(_UpperCAmelCase ), 'size': None, 'type': 'directory'}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : str = "rb" , **_UpperCAmelCase : Any , ) -> Tuple:
"""simple docstring"""
if not isinstance(self.repo_info , _UpperCAmelCase ):
raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
__lowercase = hf_hub_url(self.repo_info.id , _UpperCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
_UpperCAmelCase , mode=_UpperCAmelCase , headers=get_authentication_headers_for_url(_UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open()
def a__ ( self : Optional[int] , _UpperCAmelCase : Dict , **_UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
self._get_dirs()
__lowercase = self._strip_protocol(_UpperCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_UpperCAmelCase )
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : str=False , **_UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
self._get_dirs()
__lowercase = PurePosixPath(path.strip('/' ) )
__lowercase = {}
for p, f in self.dir_cache.items():
__lowercase = PurePosixPath(p.strip('/' ) )
__lowercase = p.parent
if root == path:
__lowercase = f
__lowercase = list(paths.values() )
if detail:
return out
else:
return sorted(f['name'] for f in out )
| 325 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
raise ValueError('check_bouncy() accepts only integer arguments' )
__lowercase = str(SCREAMING_SNAKE_CASE )
__lowercase = ''.join(sorted(SCREAMING_SNAKE_CASE ) )
return sorted_str_n != str_n and sorted_str_n[::-1] != str_n
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : float = 99 ) -> int:
if not 0 < percent < 100:
raise ValueError('solution() only accepts values from 0 to 100' )
__lowercase = 0
__lowercase = 1
while True:
if check_bouncy(SCREAMING_SNAKE_CASE ):
bouncy_num += 1
if (bouncy_num / num) * 100 >= percent:
return num
num += 1
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'''{solution(99)}''')
| 325 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 1 |
from __future__ import annotations
import requests
SCREAMING_SNAKE_CASE__ = set(
"""approved_at_utc approved_by author_flair_background_color
author_flair_css_class author_flair_richtext author_flair_template_id author_fullname
author_premium can_mod_post category clicked content_categories created_utc downs
edited gilded gildings hidden hide_score is_created_from_ads_ui is_meta
is_original_content is_reddit_media_domain is_video link_flair_css_class
link_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title
name permalink pwls quarantine saved score secure_media secure_media_embed selftext
subreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type
total_awards_received ups upvote_ratio url user_reports""".split()
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : str = "new" , SCREAMING_SNAKE_CASE : list | None = None ) -> dict:
__lowercase = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(SCREAMING_SNAKE_CASE ) - valid_terms ) ):
__lowercase = F"""Invalid search term: {invalid_search_terms}"""
raise ValueError(SCREAMING_SNAKE_CASE )
__lowercase = requests.get(
F"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'User-agent': 'A random string'} , )
if response.status_code == 429:
raise requests.HTTPError
__lowercase = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(SCREAMING_SNAKE_CASE )}
__lowercase = {}
for id_ in range(SCREAMING_SNAKE_CASE ):
__lowercase = {
item: data['data']['children'][id_]['data'][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data("""learnpython""", wanted_data=["""title""", """url""", """selftext"""]))
| 325 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : str = "mobilenet_v1"
def __init__( self : str , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : List[str]=2_24 , _UpperCAmelCase : int=1.0 , _UpperCAmelCase : Optional[Any]=8 , _UpperCAmelCase : List[str]="relu6" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=0.999 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Any=0.001 , **_UpperCAmelCase : Optional[int] , ) -> Any:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
if depth_multiplier <= 0:
raise ValueError('depth_multiplier must be greater than zero.' )
__lowercase = num_channels
__lowercase = image_size
__lowercase = depth_multiplier
__lowercase = min_depth
__lowercase = hidden_act
__lowercase = tf_padding
__lowercase = classifier_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : str = version.parse("1.11" )
@property
def a__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict([('pixel_values', {0: 'batch'})] )
@property
def a__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "image-classification":
return OrderedDict([('logits', {0: 'batch'})] )
else:
return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] )
@property
def a__ ( self : str ) -> float:
"""simple docstring"""
return 1e-4
| 325 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 1 |
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class A__ ( unittest.TestCase ):
def __init__( self : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Optional[int]=7 , _UpperCAmelCase : Any=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=99 , _UpperCAmelCase : str=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Union[str, Any]=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : Tuple=5_12 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : List[Any]=4 , ) -> Tuple:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_attention_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_choices
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_attention_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def a__ ( self : int ) -> List[Any]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase , __lowercase = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = True
lowerCAmelCase__ : Tuple = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = FlaxRoFormerModelTester(self )
@slow
def a__ ( self : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
__lowercase = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=_UpperCAmelCase )
__lowercase = model(np.ones((1, 1) ) )
self.assertIsNotNone(_UpperCAmelCase )
@require_flax
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
__lowercase = jnp.array([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = 5_00_00
__lowercase = (1, 6, vocab_size)
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = jnp.array(
[[[-0.1_205, -1.0_265, 0.2_922], [-1.5_134, 0.1_974, 0.1_519], [-5.0_135, -3.9_003, -0.8_404]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 325 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 1 |
import os
import pytest
from transformers.dynamic_module_utils import get_imports
SCREAMING_SNAKE_CASE__ = """
import os
"""
SCREAMING_SNAKE_CASE__ = """
def foo():
import os
return False
"""
SCREAMING_SNAKE_CASE__ = """
def foo():
def bar():
if True:
import os
return False
return bar()
"""
SCREAMING_SNAKE_CASE__ = """
import os
try:
import bar
except ImportError:
raise ValueError()
"""
SCREAMING_SNAKE_CASE__ = """
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
"""
SCREAMING_SNAKE_CASE__ = """
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
"""
SCREAMING_SNAKE_CASE__ = """
import os
try:
import bar
except ImportError as e:
raise ValueError()
"""
SCREAMING_SNAKE_CASE__ = """
import os
try:
import bar
except:
raise ValueError()
"""
SCREAMING_SNAKE_CASE__ = """
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
"""
SCREAMING_SNAKE_CASE__ = """
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
"""
SCREAMING_SNAKE_CASE__ = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('case' , SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ) -> List[str]:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , 'test_file.py' )
with open(SCREAMING_SNAKE_CASE , 'w' ) as _tmp_file:
_tmp_file.write(SCREAMING_SNAKE_CASE )
__lowercase = get_imports(SCREAMING_SNAKE_CASE )
assert parsed_imports == ["os"]
| 325 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : jnp.ndarray
@flax_register_to_config
class A__ ( nn.Module , lowerCAmelCase__ , lowerCAmelCase__ ):
lowerCAmelCase__ : int = 32
lowerCAmelCase__ : int = 4
lowerCAmelCase__ : int = 4
lowerCAmelCase__ : Tuple[str] = (
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
"DownBlock2D",
)
lowerCAmelCase__ : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")
lowerCAmelCase__ : Union[bool, Tuple[bool]] = False
lowerCAmelCase__ : Tuple[int] = (320, 640, 1280, 1280)
lowerCAmelCase__ : int = 2
lowerCAmelCase__ : Union[int, Tuple[int]] = 8
lowerCAmelCase__ : Optional[Union[int, Tuple[int]]] = None
lowerCAmelCase__ : int = 1280
lowerCAmelCase__ : float = 0.0
lowerCAmelCase__ : bool = False
lowerCAmelCase__ : jnp.dtype = jnp.floataa
lowerCAmelCase__ : bool = True
lowerCAmelCase__ : int = 0
lowerCAmelCase__ : bool = False
def a__ ( self : int , _UpperCAmelCase : jax.random.KeyArray ) -> FrozenDict:
"""simple docstring"""
__lowercase = (1, self.in_channels, self.sample_size, self.sample_size)
__lowercase = jnp.zeros(_UpperCAmelCase , dtype=jnp.floataa )
__lowercase = jnp.ones((1,) , dtype=jnp.intaa )
__lowercase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
__lowercase , __lowercase = jax.random.split(_UpperCAmelCase )
__lowercase = {'params': params_rng, 'dropout': dropout_rng}
return self.init(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )["params"]
def a__ ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.block_out_channels
__lowercase = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
__lowercase = self.num_attention_heads or self.attention_head_dim
# input
__lowercase = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
__lowercase = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
__lowercase = FlaxTimestepEmbedding(_UpperCAmelCase , dtype=self.dtype )
__lowercase = self.only_cross_attention
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = (only_cross_attention,) * len(self.down_block_types )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = (num_attention_heads,) * len(self.down_block_types )
# down
__lowercase = []
__lowercase = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
__lowercase = output_channel
__lowercase = block_out_channels[i]
__lowercase = i == len(_UpperCAmelCase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
__lowercase = FlaxCrossAttnDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
__lowercase = FlaxDownBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(_UpperCAmelCase )
__lowercase = down_blocks
# mid
__lowercase = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
__lowercase = []
__lowercase = list(reversed(_UpperCAmelCase ) )
__lowercase = list(reversed(_UpperCAmelCase ) )
__lowercase = list(reversed(_UpperCAmelCase ) )
__lowercase = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
__lowercase = output_channel
__lowercase = reversed_block_out_channels[i]
__lowercase = reversed_block_out_channels[min(i + 1 , len(_UpperCAmelCase ) - 1 )]
__lowercase = i == len(_UpperCAmelCase ) - 1
if up_block_type == "CrossAttnUpBlock2D":
__lowercase = FlaxCrossAttnUpBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , prev_output_channel=_UpperCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
__lowercase = FlaxUpBlockaD(
in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , prev_output_channel=_UpperCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(_UpperCAmelCase )
__lowercase = output_channel
__lowercase = up_blocks
# out
__lowercase = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
__lowercase = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=None , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , jnp.ndarray ):
__lowercase = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(_UpperCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0:
__lowercase = timesteps.astype(dtype=jnp.floataa )
__lowercase = jnp.expand_dims(_UpperCAmelCase , 0 )
__lowercase = self.time_proj(_UpperCAmelCase )
__lowercase = self.time_embedding(_UpperCAmelCase )
# 2. pre-process
__lowercase = jnp.transpose(_UpperCAmelCase , (0, 2, 3, 1) )
__lowercase = self.conv_in(_UpperCAmelCase )
# 3. down
__lowercase = (sample,)
for down_block in self.down_blocks:
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase , __lowercase = down_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
else:
__lowercase , __lowercase = down_block(_UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
__lowercase = ()
for down_block_res_sample, down_block_additional_residual in zip(
_UpperCAmelCase , _UpperCAmelCase ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
__lowercase = new_down_block_res_samples
# 4. mid
__lowercase = self.mid_block(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
__lowercase = down_block_res_samples[-(self.layers_per_block + 1) :]
__lowercase = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = up_block(
_UpperCAmelCase , temb=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , deterministic=not train , )
else:
__lowercase = up_block(_UpperCAmelCase , temb=_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , deterministic=not train )
# 6. post-process
__lowercase = self.conv_norm_out(_UpperCAmelCase )
__lowercase = nn.silu(_UpperCAmelCase )
__lowercase = self.conv_out(_UpperCAmelCase )
__lowercase = jnp.transpose(_UpperCAmelCase , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=_UpperCAmelCase )
| 325 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 1 |
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = ["image_processor", "tokenizer"]
lowerCAmelCase__ : int = "BlipImageProcessor"
lowerCAmelCase__ : List[Any] = "AutoTokenizer"
def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
# add QFormer tokenizer
__lowercase = qformer_tokenizer
def __call__( self : int , _UpperCAmelCase : ImageInput = None , _UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[str] , ) -> BatchFeature:
"""simple docstring"""
if images is None and text is None:
raise ValueError('You have to specify at least images or text.' )
__lowercase = BatchFeature()
if text is not None:
__lowercase = self.tokenizer(
text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
encoding.update(_UpperCAmelCase )
__lowercase = self.qformer_tokenizer(
text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = qformer_text_encoding.pop('input_ids' )
__lowercase = qformer_text_encoding.pop('attention_mask' )
if images is not None:
__lowercase = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase )
encoding.update(_UpperCAmelCase )
return encoding
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : str , **_UpperCAmelCase : Union[str, Any] ) -> Any:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : List[Any] ) -> List[str]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def a__ ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.tokenizer.model_input_names
__lowercase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def a__ ( self : List[str] , _UpperCAmelCase : Any , **_UpperCAmelCase : Optional[int] ) -> List[Any]:
"""simple docstring"""
if os.path.isfile(_UpperCAmelCase ):
raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'qformer_tokenizer' )
self.qformer_tokenizer.save_pretrained(_UpperCAmelCase )
return super().save_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
@classmethod
def a__ ( cls : str , _UpperCAmelCase : List[str] , **_UpperCAmelCase : int ) -> Tuple:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(_UpperCAmelCase , subfolder='qformer_tokenizer' )
__lowercase = cls._get_arguments_from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
args.append(_UpperCAmelCase )
return cls(*_UpperCAmelCase )
| 325 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 1 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 1 |
import os
def __SCREAMING_SNAKE_CASE ( ) -> List[Any]:
with open(os.path.dirname(SCREAMING_SNAKE_CASE ) + '/p022_names.txt' ) as file:
__lowercase = str(file.readlines()[0] )
__lowercase = names.replace('"' , '' ).split(',' )
names.sort()
__lowercase = 0
__lowercase = 0
for i, name in enumerate(SCREAMING_SNAKE_CASE ):
for letter in name:
name_score += ord(SCREAMING_SNAKE_CASE ) - 64
total_score += (i + 1) * name_score
__lowercase = 0
return total_score
if __name__ == "__main__":
print(solution())
| 325 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.