code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class A__ :
def __init__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any=13 , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : str=50 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=None , ) -> List[Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = initializer_range
__lowercase = use_labels
__lowercase = scope
def a__ ( self : List[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = self.get_config()
return config, input_ids, input_mask, token_labels
def a__ ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.prepare_config_and_inputs()
__lowercase = True
__lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def a__ ( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , **_UpperCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
__lowercase = BertGenerationEncoder(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , **_UpperCAmelCase : Any , ) -> Dict:
"""simple docstring"""
__lowercase = True
__lowercase = BertGenerationEncoder(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , **_UpperCAmelCase : int , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = True
__lowercase = True
__lowercase = BertGenerationDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval()
# first forward pass
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase , )
__lowercase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__lowercase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__lowercase = torch.cat([input_ids, next_tokens] , dim=-1 )
__lowercase = torch.cat([input_mask, next_mask] , dim=-1 )
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0]
__lowercase = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0]
# select random slice
__lowercase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__lowercase = output_from_no_past[:, -3:, random_slice_idx].detach()
__lowercase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3 ) )
def a__ ( self : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , *_UpperCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BertGenerationDecoder(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
__lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self.prepare_config_and_inputs()
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : int = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowerCAmelCase__ : Tuple = (BertGenerationDecoder,) if is_torch_available() else ()
lowerCAmelCase__ : Optional[Any] = (
{"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder}
if is_torch_available()
else {}
)
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = BertGenerationEncoderTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Any ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : str ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
__lowercase , __lowercase , __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs()
__lowercase = 'bert'
self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase )
def a__ ( self : Tuple ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
__lowercase = None
self.model_tester.create_and_check_model_as_decoder(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , )
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase )
@slow
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
self.assertIsNotNone(_UpperCAmelCase )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
__lowercase = BertGenerationEncoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
__lowercase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = torch.Size([1, 8, 10_24] )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[0.1_775, 0.0_083, -0.0_321], [1.6_002, 0.1_287, 0.3_912], [2.1_473, 0.5_791, 0.6_066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
@require_torch
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = BertGenerationDecoder.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' )
__lowercase = torch.tensor([[1_01, 75_92, 10_10, 20_26, 38_99, 20_03, 1_01_40, 1_02]] )
with torch.no_grad():
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = torch.Size([1, 8, 5_03_58] )
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = torch.tensor(
[[[-0.5_788, -2.5_994, -3.7_054], [0.0_438, 4.7_997, 1.8_795], [1.5_862, 6.6_409, 4.4_638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
| 325 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 1 |
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
'kwargs, expected' , [
({'num_shards': 0, 'max_num_jobs': 1}, []),
({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]),
({'num_shards': 10, 'max_num_jobs': 10}, [range(SCREAMING_SNAKE_CASE , i + 1 ) for i in range(10 )]),
({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]),
({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ) -> List[str]:
__lowercase = _distribute_shards(**SCREAMING_SNAKE_CASE )
assert out == expected
@pytest.mark.parametrize(
'gen_kwargs, max_num_jobs, expected' , [
({'foo': 0}, 10, [{'foo': 0}]),
({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]),
({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]),
({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]),
({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple:
__lowercase = _split_gen_kwargs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
assert out == expected
@pytest.mark.parametrize(
'gen_kwargs, expected' , [
({'foo': 0}, 1),
({'shards': [0]}, 1),
({'shards': [0, 1, 2, 3]}, 4),
({'shards': [0, 1, 2, 3], 'foo': 0}, 4),
({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4),
({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError),
] , )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if expected is RuntimeError:
with pytest.raises(SCREAMING_SNAKE_CASE ):
_number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE )
else:
__lowercase = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE )
assert out == expected
| 325 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 1 |
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any]="shi-labs/oneformer_demo" ) -> Optional[int]:
with open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) as f:
__lowercase = json.load(SCREAMING_SNAKE_CASE )
__lowercase = {}
__lowercase = []
__lowercase = []
for key, info in class_info.items():
__lowercase = info['name']
class_names.append(info['name'] )
if info["isthing"]:
thing_ids.append(int(SCREAMING_SNAKE_CASE ) )
__lowercase = thing_ids
__lowercase = class_names
return metadata
class A__ ( unittest.TestCase ):
def __init__( self : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : Tuple=3 , _UpperCAmelCase : List[Any]=30 , _UpperCAmelCase : int=4_00 , _UpperCAmelCase : int=None , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : str=[0.5, 0.5, 0.5] , _UpperCAmelCase : List[str]=[0.5, 0.5, 0.5] , _UpperCAmelCase : Optional[Any]=10 , _UpperCAmelCase : List[str]=False , _UpperCAmelCase : Any=2_55 , _UpperCAmelCase : Union[str, Any]="shi-labs/oneformer_demo" , _UpperCAmelCase : Any="ade20k_panoptic.json" , _UpperCAmelCase : List[str]=10 , ) -> Dict:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = num_channels
__lowercase = min_resolution
__lowercase = max_resolution
__lowercase = do_resize
__lowercase = {'shortest_edge': 32, 'longest_edge': 13_33} if size is None else size
__lowercase = do_normalize
__lowercase = image_mean
__lowercase = image_std
__lowercase = class_info_file
__lowercase = prepare_metadata(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = num_text
__lowercase = repo_path
# for the post_process_functions
__lowercase = 2
__lowercase = 10
__lowercase = 10
__lowercase = 3
__lowercase = 4
__lowercase = num_labels
__lowercase = do_reduce_labels
__lowercase = ignore_index
def a__ ( self : str ) -> List[Any]:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def a__ ( self : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int]=False ) -> Union[str, Any]:
"""simple docstring"""
if not batched:
__lowercase = image_inputs[0]
if isinstance(_UpperCAmelCase , Image.Image ):
__lowercase , __lowercase = image.size
else:
__lowercase , __lowercase = image.shape[1], image.shape[2]
if w < h:
__lowercase = int(self.size['shortest_edge'] * h / w )
__lowercase = self.size['shortest_edge']
elif w > h:
__lowercase = self.size['shortest_edge']
__lowercase = int(self.size['shortest_edge'] * w / h )
else:
__lowercase = self.size['shortest_edge']
__lowercase = self.size['shortest_edge']
else:
__lowercase = []
for image in image_inputs:
__lowercase , __lowercase = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__lowercase = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[0] )[0]
__lowercase = max(_UpperCAmelCase , key=lambda _UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
def a__ ( self : Any ) -> int:
"""simple docstring"""
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : str = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
lowerCAmelCase__ : Union[str, Any] = image_processing_class
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = OneFormerImageProcessorTester(self )
@property
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
return self.image_processing_tester.prepare_image_processor_dict()
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'ignore_index' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'class_info_file' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'num_text' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'repo_path' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'metadata' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_reduce_labels' ) )
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
pass
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
__lowercase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__lowercase , __lowercase = self.image_processing_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowercase , __lowercase = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
__lowercase = image_processor(
_UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def a__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
__lowercase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__lowercase , __lowercase = self.image_processing_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowercase , __lowercase = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
__lowercase = image_processor(
_UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def a__ ( self : str ) -> Dict:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
__lowercase = image_processor(image_inputs[0] , ['semantic'] , return_tensors='pt' ).pixel_values
__lowercase , __lowercase = self.image_processing_tester.get_expected_values(_UpperCAmelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
__lowercase , __lowercase = self.image_processing_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase )
__lowercase = image_processor(
_UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def a__ ( self : Dict , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple="np" ) -> int:
"""simple docstring"""
__lowercase = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
__lowercase = self.image_processing_tester.num_labels
__lowercase = None
__lowercase = None
__lowercase = prepare_image_inputs(self.image_processing_tester , equal_resolution=_UpperCAmelCase )
if with_segmentation_maps:
__lowercase = num_labels
if is_instance_map:
__lowercase = list(range(_UpperCAmelCase ) ) * 2
__lowercase = dict(enumerate(_UpperCAmelCase ) )
__lowercase = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
__lowercase = [Image.fromarray(_UpperCAmelCase ) for annotation in annotations]
__lowercase = image_processor(
_UpperCAmelCase , ['semantic'] * len(_UpperCAmelCase ) , _UpperCAmelCase , return_tensors='pt' , instance_id_to_semantic_id=_UpperCAmelCase , pad_and_return_pixel_mask=_UpperCAmelCase , )
return inputs
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
pass
def a__ ( self : int ) -> Dict:
"""simple docstring"""
def common(_UpperCAmelCase : str=False , _UpperCAmelCase : Optional[int]=None ):
__lowercase = self.comm_get_image_processor_inputs(
with_segmentation_maps=_UpperCAmelCase , is_instance_map=_UpperCAmelCase , segmentation_type=_UpperCAmelCase )
__lowercase = inputs['mask_labels']
__lowercase = inputs['class_labels']
__lowercase = inputs['pixel_values']
__lowercase = inputs['text_inputs']
# check the batch_size
for mask_label, class_label, text_input in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(_UpperCAmelCase ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=_UpperCAmelCase )
common(is_instance_map=_UpperCAmelCase , segmentation_type='pil' )
common(is_instance_map=_UpperCAmelCase , segmentation_type='pil' )
def a__ ( self : int ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = np.zeros((20, 50) )
__lowercase = 1
__lowercase = 1
__lowercase = 1
__lowercase = binary_mask_to_rle(_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__lowercase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowercase = fature_extractor.post_process_semantic_segmentation(_UpperCAmelCase )
self.assertEqual(len(_UpperCAmelCase ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
__lowercase = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
__lowercase = fature_extractor.post_process_semantic_segmentation(_UpperCAmelCase , target_sizes=_UpperCAmelCase )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__lowercase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowercase = image_processor.post_process_instance_segmentation(_UpperCAmelCase , threshold=0 )
self.assertTrue(len(_UpperCAmelCase ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , _UpperCAmelCase )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def a__ ( self : List[Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file='ade20k_panoptic.json' , num_text=self.image_processing_tester.num_text , repo_path='shi-labs/oneformer_demo' , )
__lowercase = self.image_processing_tester.get_fake_oneformer_outputs()
__lowercase = image_processor.post_process_panoptic_segmentation(_UpperCAmelCase , threshold=0 )
self.assertTrue(len(_UpperCAmelCase ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue('segmentation' in el )
self.assertTrue('segments_info' in el )
self.assertEqual(type(el['segments_info'] ) , _UpperCAmelCase )
self.assertEqual(
el['segmentation'].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
| 325 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 1 |
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : float | Decimal , SCREAMING_SNAKE_CASE : float = 10**-10 ) -> float:
__lowercase = a
while True:
__lowercase = Decimal(SCREAMING_SNAKE_CASE ) - (
Decimal(eval(SCREAMING_SNAKE_CASE ) ) / Decimal(eval(str(diff(SCREAMING_SNAKE_CASE ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(SCREAMING_SNAKE_CASE ) ) < precision: # noqa: S307
return float(SCREAMING_SNAKE_CASE )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''')
# Find root of polynomial
print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''')
# Find Square Root of 5
print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''')
# Exponential Roots
print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
| 325 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 1 |
from math import pi
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ) -> float:
return 2 * pi * radius * (angle / 360)
if __name__ == "__main__":
print(arc_length(90, 10))
| 325 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 1 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[Any] , _UpperCAmelCase : str ) -> List[str]:
"""simple docstring"""
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
__lowercase = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' )
__lowercase = input_file.read()
__lowercase = regexp.search(_UpperCAmelCase )
return match
def a__ ( self : Tuple , _UpperCAmelCase : str ) -> List[Any]:
"""simple docstring"""
with open(_UpperCAmelCase , encoding='utf-8' ) as input_file:
__lowercase = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL )
__lowercase = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
__lowercase = regexp.finditer(_UpperCAmelCase )
__lowercase = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def a__ ( self : Union[str, Any] ) -> int:
"""simple docstring"""
__lowercase = Path('./datasets' )
__lowercase = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
__lowercase = Path('./datasets' )
__lowercase = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_print_statements(str(_UpperCAmelCase ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 325 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 1 |
import os
import sys
import tempfile
import torch
from .state import AcceleratorState
from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any]=() , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]="no" , SCREAMING_SNAKE_CASE : Union[str, Any]="29500" ) -> List[Any]:
__lowercase = False
__lowercase = False
if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ):
__lowercase = True
elif "IPython" in sys.modules:
__lowercase = 'google.colab' in str(sys.modules['IPython'].get_ipython() )
try:
__lowercase = PrecisionType(mixed_precision.lower() )
except ValueError:
raise ValueError(
F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" )
if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME' , SCREAMING_SNAKE_CASE ) is not None):
# TPU launch
import torch_xla.distributed.xla_multiprocessing as xmp
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside '
'your training function. Restart your notebook and make sure no cells initializes an '
'`Accelerator`.' )
if num_processes is None:
__lowercase = 8
__lowercase = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type='TPU' )
print(F"""Launching a training on {num_processes} TPU cores.""" )
xmp.spawn(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method='fork' )
elif in_colab:
# No need for a distributed launch otherwise as it's either CPU or one GPU.
if torch.cuda.is_available():
print('Launching training on one GPU.' )
else:
print('Launching training on one CPU.' )
function(*SCREAMING_SNAKE_CASE )
else:
if num_processes is None:
raise ValueError(
'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' )
if num_processes > 1:
# Multi-GPU launch
from torch.multiprocessing import start_processes
from torch.multiprocessing.spawn import ProcessRaisedException
if len(AcceleratorState._shared_state ) > 0:
raise ValueError(
'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized '
'inside your training function. Restart your notebook and make sure no cells initializes an '
'`Accelerator`.' )
if torch.cuda.is_initialized():
raise ValueError(
'To launch a multi-GPU training from your notebook, you need to avoid running any instruction '
'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA '
'function.' )
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=SCREAMING_SNAKE_CASE , master_addr='127.0.01' , master_port=SCREAMING_SNAKE_CASE , mixed_precision=SCREAMING_SNAKE_CASE ):
__lowercase = PrepareForLaunch(SCREAMING_SNAKE_CASE , distributed_type='MULTI_GPU' )
print(F"""Launching training on {num_processes} GPUs.""" )
try:
start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method='fork' )
except ProcessRaisedException as e:
if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]:
raise RuntimeError(
'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. '
'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. '
'Please review your imports and test them when running the `notebook_launcher()` to identify '
'which one is problematic.' ) from e
else:
# No need for a distributed launch otherwise as it's either CPU, GPU or MPS.
if is_mps_available():
__lowercase = '1'
print('Launching training on MPS.' )
elif torch.cuda.is_available():
print('Launching training on one GPU.' )
else:
print('Launching training on CPU.' )
function(*SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=() , SCREAMING_SNAKE_CASE : List[str]=2 ) -> Tuple:
from torch.multiprocessing import start_processes
with tempfile.NamedTemporaryFile() as tmp_file:
# torch.distributed will expect a few environment variable to be here. We set the ones common to each
# process here (the other ones will be set be the launcher).
with patch_environment(
world_size=SCREAMING_SNAKE_CASE , master_addr='127.0.01' , master_port='29500' , accelerate_mixed_precision='no' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='yes' , ):
__lowercase = PrepareForLaunch(SCREAMING_SNAKE_CASE , debug=SCREAMING_SNAKE_CASE )
start_processes(SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , nprocs=SCREAMING_SNAKE_CASE , start_method='fork' )
| 325 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 1 |
from torch import nn
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = class_size
__lowercase = embed_size
# self.mlp1 = nn.Linear(embed_size, embed_size)
# self.mlp2 = (nn.Linear(embed_size, class_size))
__lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase )
def a__ ( self : Any , _UpperCAmelCase : Union[str, Any] ) -> Dict:
"""simple docstring"""
__lowercase = self.mlp(_UpperCAmelCase )
return logits
| 325 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 1 |
import json
import logging
import os
import sys
from pathlib import Path
import finetune_rag
from transformers.file_utils import is_apex_available
from transformers.testing_utils import (
TestCasePlus,
execute_subprocess_async,
require_ray,
require_torch_gpu,
require_torch_multi_gpu,
)
logging.basicConfig(level=logging.DEBUG)
SCREAMING_SNAKE_CASE__ = logging.getLogger()
SCREAMING_SNAKE_CASE__ = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
class A__ ( lowerCAmelCase__ ):
def a__ ( self : int , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
__lowercase = {'source': 'What is love ?', 'target': 'life'}
__lowercase = {'train': 12, 'val': 2, 'test': 2}
for split in ["train", "test", "val"]:
for field in ["source", "target"]:
__lowercase = '\n'.join([contents[field]] * n_lines[split] )
with open(os.path.join(_UpperCAmelCase , f"""{split}.{field}""" ) , 'w' ) as f:
f.write(_UpperCAmelCase )
def a__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str = "pytorch" ) -> str:
"""simple docstring"""
__lowercase = self.get_auto_remove_tmp_dir()
__lowercase = os.path.join(_UpperCAmelCase , 'output' )
__lowercase = os.path.join(_UpperCAmelCase , 'data' )
self._create_dummy_data(data_dir=_UpperCAmelCase )
__lowercase = f"""
--data_dir {data_dir} \
--output_dir {output_dir} \
--model_name_or_path facebook/rag-sequence-base \
--model_type rag_sequence \
--do_train \
--do_predict \
--n_val -1 \
--val_check_interval 1.0 \
--train_batch_size 2 \
--eval_batch_size 1 \
--max_source_length 25 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-04 \
--num_train_epochs 1 \
--warmup_steps 4 \
--gradient_accumulation_steps 1 \
--distributed-port 8787 \
--use_dummy_dataset 1 \
--distributed_retriever {distributed_retriever} \
""".split()
if gpus > 0:
testargs.append(f"""--gpus={gpus}""" )
if is_apex_available():
testargs.append('--fp16' )
else:
testargs.append('--gpus=0' )
testargs.append('--distributed_backend=ddp_cpu' )
testargs.append('--num_processes=2' )
__lowercase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs
execute_subprocess_async(_UpperCAmelCase , env=self.get_env() )
__lowercase = os.path.join(_UpperCAmelCase , 'metrics.json' )
with open(_UpperCAmelCase ) as f:
__lowercase = json.load(_UpperCAmelCase )
return result
@require_torch_gpu
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = self._run_finetune(gpus=1 )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_multi_gpu
def a__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
__lowercase = self._run_finetune(gpus=2 )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_gpu
@require_ray
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self._run_finetune(gpus=1 , distributed_retriever='ray' )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
@require_torch_multi_gpu
@require_ray
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = self._run_finetune(gpus=1 , distributed_retriever='ray' )
self.assertGreaterEqual(result['test'][0]['test_avg_em'] , 0.2 )
| 325 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "dandelin/vilt-b32-finetuned-vqa"
lowerCAmelCase__ : int = (
"This is a tool that answers a question about an image. It takes an input named `image` which should be the "
"image containing the information, as well as a `question` which should be the question in English. It "
"returns a text that is the answer to the question."
)
lowerCAmelCase__ : List[Any] = "image_qa"
lowerCAmelCase__ : Any = AutoProcessor
lowerCAmelCase__ : Tuple = AutoModelForVisualQuestionAnswering
lowerCAmelCase__ : int = ["image", "text"]
lowerCAmelCase__ : Any = ["text"]
def __init__( self : Optional[Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
requires_backends(self , ['vision'] )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[Any] , _UpperCAmelCase : "Image" , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
return self.pre_processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
def a__ ( self : int , _UpperCAmelCase : Optional[int] ) -> int:
"""simple docstring"""
with torch.no_grad():
return self.model(**_UpperCAmelCase ).logits
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = outputs.argmax(-1 ).item()
return self.model.config.idalabel[idx]
| 325 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 1 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = ["image_processor", "tokenizer"]
lowerCAmelCase__ : str = "ChineseCLIPImageProcessor"
lowerCAmelCase__ : List[str] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self : List[str] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Tuple ) -> Dict:
"""simple docstring"""
__lowercase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
__lowercase = kwargs.pop('feature_extractor' )
__lowercase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.image_processor
def __call__( self : Dict , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Any=None , **_UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
__lowercase = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if images is not None:
__lowercase = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase )
if text is not None and images is not None:
__lowercase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def a__ ( self : int , *_UpperCAmelCase : str , **_UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : List[Any] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase = self.tokenizer.model_input_names
__lowercase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
| 325 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 1 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 | 1 |
from __future__ import annotations
import sys
from collections import deque
from typing import Generic, TypeVar
SCREAMING_SNAKE_CASE__ = TypeVar("""T""")
class A__ ( Generic[T] ):
lowerCAmelCase__ : deque[T] # Cache store of keys
lowerCAmelCase__ : set[T] # References of the keys in cache
lowerCAmelCase__ : int = 10 # Maximum capacity of cache
def __init__( self : Optional[int] , _UpperCAmelCase : int ) -> None:
"""simple docstring"""
__lowercase = deque()
__lowercase = set()
if not n:
__lowercase = sys.maxsize
elif n < 0:
raise ValueError('n should be an integer greater than 0.' )
else:
__lowercase = n
def a__ ( self : int , _UpperCAmelCase : T ) -> None:
"""simple docstring"""
if x not in self.key_reference:
if len(self.dq_store ) == LRUCache._MAX_CAPACITY:
__lowercase = self.dq_store.pop()
self.key_reference.remove(_UpperCAmelCase )
else:
self.dq_store.remove(_UpperCAmelCase )
self.dq_store.appendleft(_UpperCAmelCase )
self.key_reference.add(_UpperCAmelCase )
def a__ ( self : Union[str, Any] ) -> None:
"""simple docstring"""
for k in self.dq_store:
print(_UpperCAmelCase )
def __repr__( self : Union[str, Any] ) -> str:
"""simple docstring"""
return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}"""
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = LRUCache(4)
lru_cache.refer("""A""")
lru_cache.refer(2)
lru_cache.refer(3)
lru_cache.refer("""A""")
lru_cache.refer(4)
lru_cache.refer(5)
lru_cache.display()
print(lru_cache)
assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
| 325 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE__ = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 | 1 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1000 ) -> int:
__lowercase = 1
__lowercase = 0
for divide_by_number in range(SCREAMING_SNAKE_CASE , digit + 1 ):
__lowercase = []
__lowercase = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(SCREAMING_SNAKE_CASE ):
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = divide_by_number
else:
has_been_divided.append(SCREAMING_SNAKE_CASE )
__lowercase = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = "xlm-roberta"
def __init__( self : List[Any] , _UpperCAmelCase : List[str]=3_05_22 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=30_72 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Union[str, Any]=5_12 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[Any]=1e-1_2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]="absolute" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : int , ) -> Dict:
"""simple docstring"""
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = hidden_act
__lowercase = intermediate_size
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = position_embedding_type
__lowercase = use_cache
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
@property
def a__ ( self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
__lowercase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
__lowercase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 325 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 | 1 |
import requests
SCREAMING_SNAKE_CASE__ = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="""
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str ) -> None:
# fetching a list of articles in json format
__lowercase = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['articles'] , 1 ):
print(F"""{i}.) {article["title"]}""" )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
| 325 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
__lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowercase = [3, 3, 3, 3]
__lowercase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowercase = [4, 4, 4, 4]
__lowercase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowercase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowercase = [3, 3, 3, 3]
else:
__lowercase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowercase = 96
elif "small" in model_name:
__lowercase = 96
elif "base" in model_name:
__lowercase = 128
elif "large" in model_name:
__lowercase = 192
elif "xlarge" in model_name:
__lowercase = 256
elif "huge" in model_name:
__lowercase = 352
# set label information
__lowercase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowercase = 'imagenet-22k-id2label.json'
else:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = FocalNetConfig(
embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , )
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if "patch_embed.proj" in name:
__lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowercase = 'encoder.' + name
if "encoder.layers" in name:
__lowercase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowercase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowercase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowercase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowercase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowercase = 'layernorm.weight'
if name == "norm.bias":
__lowercase = 'layernorm.bias'
if "head" in name:
__lowercase = name.replace('head' , 'classifier' )
else:
__lowercase = 'focalnet.' + name
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]:
# fmt: off
__lowercase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowercase = model_name_to_url[model_name]
print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
__lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE )
__lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
# load state dict
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify conversion
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = BitImageProcessor(
do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , )
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
__lowercase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 325 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[int] = "timesformer"
def __init__( self : List[str] , _UpperCAmelCase : List[Any]=2_24 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : int=3 , _UpperCAmelCase : List[Any]=8 , _UpperCAmelCase : Union[str, Any]=7_68 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[Any]=30_72 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Dict=1e-6 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="divided_space_time" , _UpperCAmelCase : int=0 , **_UpperCAmelCase : Optional[int] , ) -> Tuple:
"""simple docstring"""
super().__init__(**_UpperCAmelCase )
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = num_frames
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = initializer_range
__lowercase = layer_norm_eps
__lowercase = qkv_bias
__lowercase = attention_type
__lowercase = drop_path_rate
| 325 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 | 1 |
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
UpperCAmelCase__ = numpy.array([0, 0])
UpperCAmelCase__ = numpy.array([0.5, 0.866_0254])
UpperCAmelCase__ = numpy.array([1, 0])
UpperCAmelCase__ = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def _a ( a :list[numpy.ndarray] , a :int ) -> list[numpy.ndarray]:
a = initial_vectors
for _ in range(a ):
a = iteration_step(a )
return vectors
def _a ( a :list[numpy.ndarray] ) -> list[numpy.ndarray]:
a = []
for i, start_vector in enumerate(vectors[:-1] ):
a = vectors[i + 1]
new_vectors.append(a )
a = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def _a ( a :numpy.ndarray , a :float ) -> numpy.ndarray:
a = numpy.radians(a )
a , a = numpy.cos(a ), numpy.sin(a )
a = numpy.array(((c, -s), (s, c)) )
return numpy.dot(a , a )
def _a ( a :list[numpy.ndarray] ) -> None:
a = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
a , a = zip(*a )
plt.plot(a , a )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase__ = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors)
| 0 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 | 0 |
'''simple docstring'''
import numpy as np
import pandas as pd
from sklearn.preprocessing import Normalizer
from sklearn.svm import SVR
from statsmodels.tsa.statespace.sarimax import SARIMAX
def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float:
'''simple docstring'''
UpperCAmelCase_ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(snake_case_ )] )
UpperCAmelCase_ = np.array(snake_case_ )
UpperCAmelCase_ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , snake_case_ ) ) , x.transpose() ) , snake_case_ )
return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] )
def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float:
'''simple docstring'''
UpperCAmelCase_ = (1, 2, 1)
UpperCAmelCase_ = (1, 1, 0, 7)
UpperCAmelCase_ = SARIMAX(
snake_case_ , exog=snake_case_ , order=snake_case_ , seasonal_order=snake_case_ )
UpperCAmelCase_ = model.fit(disp=snake_case_ , maxiter=6_00 , method="nm" )
UpperCAmelCase_ = model_fit.predict(1 , len(snake_case_ ) , exog=[test_match] )
return result[0]
def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : list , snake_case_ : list ) -> float:
'''simple docstring'''
UpperCAmelCase_ = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 )
regressor.fit(snake_case_ , snake_case_ )
UpperCAmelCase_ = regressor.predict(snake_case_ )
return y_pred[0]
def lowerCAmelCase_ ( snake_case_ : list ) -> float:
'''simple docstring'''
train_user.sort()
UpperCAmelCase_ = np.percentile(snake_case_ , 25 )
UpperCAmelCase_ = np.percentile(snake_case_ , 75 )
UpperCAmelCase_ = qa - qa
UpperCAmelCase_ = qa - (iqr * 0.1)
return low_lim
def lowerCAmelCase_ ( snake_case_ : list , snake_case_ : float ) -> bool:
'''simple docstring'''
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
for i in list_vote:
if i > actual_result:
UpperCAmelCase_ = not_safe + 1
else:
if abs(abs(snake_case_ ) - abs(snake_case_ ) ) <= 0.1:
safe += 1
else:
not_safe += 1
return safe > not_safe
if __name__ == "__main__":
# data_input_df = pd.read_csv("ex_data.csv", header=None)
SCREAMING_SNAKE_CASE_: List[Any] =[[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]]
SCREAMING_SNAKE_CASE_: Dict =pd.DataFrame(
data_input, columns=['total_user', 'total_even', 'days']
)
SCREAMING_SNAKE_CASE_: Any =Normalizer().fit_transform(data_input_df.values)
# split data
SCREAMING_SNAKE_CASE_: List[str] =normalize_df[:, 2].tolist()
SCREAMING_SNAKE_CASE_: str =normalize_df[:, 0].tolist()
SCREAMING_SNAKE_CASE_: str =normalize_df[:, 1].tolist()
# for svr (input variable = total date and total match)
SCREAMING_SNAKE_CASE_: Dict =normalize_df[:, [1, 2]].tolist()
SCREAMING_SNAKE_CASE_: Tuple =x[: len(x) - 1]
SCREAMING_SNAKE_CASE_: List[Any] =x[len(x) - 1 :]
# for linear regression & sarimax
SCREAMING_SNAKE_CASE_: int =total_date[: len(total_date) - 1]
SCREAMING_SNAKE_CASE_: Dict =total_user[: len(total_user) - 1]
SCREAMING_SNAKE_CASE_: Tuple =total_match[: len(total_match) - 1]
SCREAMING_SNAKE_CASE_: Optional[int] =total_date[len(total_date) - 1 :]
SCREAMING_SNAKE_CASE_: str =total_user[len(total_user) - 1 :]
SCREAMING_SNAKE_CASE_: int =total_match[len(total_match) - 1 :]
# voting system with forecasting
SCREAMING_SNAKE_CASE_: Optional[int] =[
linear_regression_prediction(
trn_date, trn_user, trn_match, tst_date, tst_match
),
sarimax_predictor(trn_user, trn_match, tst_match),
support_vector_regressor(x_train, x_test, trn_user),
]
# check the safety of today's data
SCREAMING_SNAKE_CASE_: Optional[int] ='' if data_safety_checker(res_vote, tst_user) else 'not '
print('Today\'s data is {not_str}safe.')
| 1 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase : List[Any] = logging.get_logger(__name__)
lowerCamelCase : int = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'}
class __lowerCAmelCase (lowercase_ ):
'''simple docstring'''
lowerCAmelCase__ : Dict = """ctrl"""
lowerCAmelCase__ : List[Any] = ["""past_key_values"""]
lowerCAmelCase__ : str = {
"""max_position_embeddings""": """n_positions""",
"""hidden_size""": """n_embd""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__(self : Tuple , UpperCamelCase : Optional[Any]=246534 , UpperCamelCase : Union[str, Any]=256 , UpperCamelCase : Optional[int]=1280 , UpperCamelCase : Any=8192 , UpperCamelCase : List[str]=48 , UpperCamelCase : List[Any]=16 , UpperCamelCase : Any=0.1 , UpperCamelCase : List[str]=0.1 , UpperCamelCase : str=1E-6 , UpperCamelCase : Optional[int]=0.02 , UpperCamelCase : Dict=True , **UpperCamelCase : Dict , ):
'''simple docstring'''
lowercase__ = vocab_size
lowercase__ = n_positions
lowercase__ = n_embd
lowercase__ = n_layer
lowercase__ = n_head
lowercase__ = dff
lowercase__ = resid_pdrop
lowercase__ = embd_pdrop
lowercase__ = layer_norm_epsilon
lowercase__ = initializer_range
lowercase__ = use_cache
super().__init__(**UpperCamelCase )
| 2 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 0 |
'''simple docstring'''
from collections.abc import Sequence
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
return sum(c * (x**i) for i, c in enumerate(snake_case__ ) )
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
A : Tuple = 0.0
for coeff in reversed(snake_case__ ):
A : Optional[Any] = result * x + coeff
return result
if __name__ == "__main__":
lowercase : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0)
lowercase : Union[str, Any] = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 3 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__snake_case ={"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case =[
"""VAN_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""VanForImageClassification""",
"""VanModel""",
"""VanPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
__snake_case =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 4 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 0 |
from __future__ import annotations
UpperCAmelCase__ = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> tuple[list[list[int]], list[list[int]]]:
"""simple docstring"""
_lowercase =[
[0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) )
] # the reference grid
_lowercase =1
_lowercase =[
[0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) )
] # the action grid
_lowercase =init[0]
_lowercase =init[1]
_lowercase =0
_lowercase =g + heuristic[x][y] # cost from starting cell to destination cell
_lowercase =[[f, g, x, y]]
_lowercase =False # flag that is set when search is complete
_lowercase =False # flag set if we can't find expand
while not found and not resign:
if len(__snake_case ) == 0:
raise ValueError('''Algorithm is unable to find solution''' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
_lowercase =cell.pop()
_lowercase =next_cell[2]
_lowercase =next_cell[3]
_lowercase =next_cell[1]
if x == goal[0] and y == goal[1]:
_lowercase =True
else:
for i in range(len(__snake_case ) ): # to try out different valid actions
_lowercase =x + DIRECTIONS[i][0]
_lowercase =y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__snake_case ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
_lowercase =g + cost
_lowercase =ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
_lowercase =1
_lowercase =i
_lowercase =[]
_lowercase =goal[0]
_lowercase =goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
_lowercase =x - DIRECTIONS[action[x][y]][0]
_lowercase =y - DIRECTIONS[action[x][y]][1]
_lowercase =xa
_lowercase =ya
invpath.append([x, y] )
_lowercase =[]
for i in range(len(__snake_case ) ):
path.append(invpath[len(__snake_case ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCAmelCase__ = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCAmelCase__ = [0, 0]
# all coordinates are given in format [y,x]
UpperCAmelCase__ = [len(grid) - 1, len(grid[0]) - 1]
UpperCAmelCase__ = 1
# the cost map which pushes the path closer to the goal
UpperCAmelCase__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCAmelCase__ = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCAmelCase__ = 99
UpperCAmelCase__ ,UpperCAmelCase__ = search(grid, init, goal, cost, heuristic)
print('''ACTION MAP''')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 5 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 0 |
from __future__ import annotations
import matplotlib.pyplot as plt # type: ignore
import numpy
# initial triangle of Koch snowflake
A : Any = numpy.array([0, 0])
A : int = numpy.array([0.5, 0.8660254])
A : int = numpy.array([1, 0])
A : Optional[int] = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
def __lowerCAmelCase ( a__ , a__ ) -> list[numpy.ndarray]:
__a = initial_vectors
for _ in range(a__ ):
__a = iteration_step(a__ )
return vectors
def __lowerCAmelCase ( a__ ) -> list[numpy.ndarray]:
__a = []
for i, start_vector in enumerate(vectors[:-1] ):
__a = vectors[i + 1]
new_vectors.append(a__ )
__a = end_vector - start_vector
new_vectors.append(start_vector + difference_vector / 3 )
new_vectors.append(
start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60 ) )
new_vectors.append(start_vector + difference_vector * 2 / 3 )
new_vectors.append(vectors[-1] )
return new_vectors
def __lowerCAmelCase ( a__ , a__ ) -> numpy.ndarray:
__a = numpy.radians(a__ )
__a , __a = numpy.cos(a__ ), numpy.sin(a__ )
__a = numpy.array(((c, -s), (s, c)) )
return numpy.dot(a__ , a__ )
def __lowerCAmelCase ( a__ ) -> None:
__a = plt.gca()
axes.set_aspect('''equal''' )
# matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all
# y-coordinates as inputs, which are constructed from the vector-list using
# zip()
__a , __a = zip(*a__ )
plt.plot(a__ , a__ )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
A : Dict = iterate(INITIAL_VECTORS, 5)
plot(processed_vectors) | 6 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 0 |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
lowercase_ = logging.get_logger(__name__)
lowercase_ = Dict[str, Any]
lowercase_ = List[Prediction]
@add_end_docstrings(_UpperCAmelCase )
class A ( _UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Optional[int],*lowercase_ : Union[str, Any],**lowercase_ : Tuple )-> int:
'''simple docstring'''
super().__init__(*lowercase_,**lowercase_ )
if self.framework == "tf":
raise ValueError(F'The {self.__class__} is only available in PyTorch.' )
requires_backends(self,'vision' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def snake_case__ ( self : Union[str, Any],**lowercase_ : int )-> Any:
'''simple docstring'''
A__ = {}
if "threshold" in kwargs:
A__ = kwargs['threshold']
return {}, {}, postprocess_kwargs
def __call__( self : List[str],*lowercase_ : int,**lowercase_ : Union[str, Any] )-> Union[Predictions, List[Prediction]]:
'''simple docstring'''
return super().__call__(*lowercase_,**lowercase_ )
def snake_case__ ( self : Tuple,lowercase_ : Any )-> List[Any]:
'''simple docstring'''
A__ = load_image(lowercase_ )
A__ = torch.IntTensor([[image.height, image.width]] )
A__ = self.image_processor(images=[image],return_tensors='pt' )
if self.tokenizer is not None:
A__ = self.tokenizer(text=inputs['words'],boxes=inputs['boxes'],return_tensors='pt' )
A__ = target_size
return inputs
def snake_case__ ( self : Dict,lowercase_ : int )-> str:
'''simple docstring'''
A__ = model_inputs.pop('target_size' )
A__ = self.model(**lowercase_ )
A__ = outputs.__class__({'target_size': target_size, **outputs} )
if self.tokenizer is not None:
A__ = model_inputs['bbox']
return model_outputs
def snake_case__ ( self : List[str],lowercase_ : Tuple,lowercase_ : Union[str, Any]=0.9 )-> List[str]:
'''simple docstring'''
A__ = model_outputs['target_size']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A__ , A__ = target_size[0].tolist()
def unnormalize(lowercase_ : List[str] ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 1_0_0_0),
(height * bbox[1] / 1_0_0_0),
(width * bbox[2] / 1_0_0_0),
(height * bbox[3] / 1_0_0_0),
] ) )
A__ , A__ = model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A__ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A__ = [unnormalize(lowercase_ ) for bbox in model_outputs['bbox'].squeeze(0 )]
A__ = ['score', 'label', 'box']
A__ = [dict(zip(lowercase_,lowercase_ ) ) for vals in zip(scores.tolist(),lowercase_,lowercase_ ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A__ = self.image_processor.post_process_object_detection(lowercase_,lowercase_,lowercase_ )
A__ = raw_annotations[0]
A__ = raw_annotation['scores']
A__ = raw_annotation['labels']
A__ = raw_annotation['boxes']
A__ = scores.tolist()
A__ = [self.model.config.idalabel[label.item()] for label in labels]
A__ = [self._get_bounding_box(lowercase_ ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A__ = ['score', 'label', 'box']
A__ = [
dict(zip(lowercase_,lowercase_ ) )
for vals in zip(raw_annotation['scores'],raw_annotation['labels'],raw_annotation['boxes'] )
]
return annotation
def snake_case__ ( self : Optional[int],lowercase_ : "torch.Tensor" )-> Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' )
A__ , A__ , A__ , A__ = box.int().tolist()
A__ = {
'xmin': xmin,
'ymin': ymin,
'xmax': xmax,
'ymax': ymax,
}
return bbox
| 7 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 0 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 ):
snake_case_ = None
if token is not None:
snake_case_ = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F'''Bearer {token}'''}
# The id of a workflow (not of a workflow run)
snake_case_ = '''636036'''
snake_case_ = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs'''
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}'''
snake_case_ = requests.get(SCREAMING_SNAKE_CASE__ , headers=SCREAMING_SNAKE_CASE__ ).json()
return result["workflow_runs"]
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = get_daily_ci_runs(SCREAMING_SNAKE_CASE__ )
snake_case_ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
snake_case_ = workflow_run['''id''']
break
return workflow_run_id
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
snake_case_ = get_last_daily_ci_runs(SCREAMING_SNAKE_CASE__ )
if workflow_run_id is not None:
snake_case_ = get_artifacts_links(worflow_run_id=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
snake_case_ = artifacts_links[artifact_name]
download_artifact(
artifact_name=SCREAMING_SNAKE_CASE__ , artifact_url=SCREAMING_SNAKE_CASE__ , output_dir=SCREAMING_SNAKE_CASE__ , token=SCREAMING_SNAKE_CASE__ )
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
get_last_daily_ci_artifacts(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
snake_case_ = {}
for artifact_name in artifact_names:
snake_case_ = os.path.join(SCREAMING_SNAKE_CASE__ , F'''{artifact_name}.zip''' )
if os.path.isfile(SCREAMING_SNAKE_CASE__ ):
snake_case_ = {}
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
with z.open(SCREAMING_SNAKE_CASE__ ) as f:
snake_case_ = f.read().decode('''UTF-8''' )
return results | 8 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 0 |
from math import ceil
def _UpperCamelCase ( lowercase__ = 1001 ):
__SCREAMING_SNAKE_CASE : Dict = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
__SCREAMING_SNAKE_CASE : Optional[Any] = 2 * i + 1
__SCREAMING_SNAKE_CASE : Tuple = 2 * i
__SCREAMING_SNAKE_CASE : int = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
__lowerCAmelCase : str =int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number')
| 9 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 0 |
from ..utils import DummyObject, requires_backends
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any) ->Optional[int]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int]) ->Tuple:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str) ->List[str]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int) ->str:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int]) ->Optional[int]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any) ->List[Any]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str]) ->List[str]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any]) ->List[Any]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any) ->Dict:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple) ->List[Any]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict) ->Optional[Any]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int) ->Dict:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple) ->Optional[int]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any) ->Optional[int]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]) ->List[str]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str) ->str:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int]) ->Optional[int]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any]) ->Dict:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict) ->Tuple:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict) ->Any:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict) ->int:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int) ->Any:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]) ->Optional[int]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]) ->Tuple:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->int:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str]) ->str:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any]) ->Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any) ->Union[str, Any]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowercase_ = ["sentencepiece"]
def __init__(self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int) ->List[str]:
'''simple docstring'''
requires_backends(self , ["sentencepiece"])
| 10 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 0 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowerCAmelCase__ = logging.get_logger(__name__)
class lowerCAmelCase__ ( a):
'''simple docstring'''
def __init__( self , *__lowerCamelCase , **__lowerCamelCase) -> None:
warnings.warn(
"The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use MobileViTImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase)
| 11 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 0 |
from collections import namedtuple
UpperCAmelCase_ = namedtuple('from_to', 'from_ to')
UpperCAmelCase_ = {
'cubicmeter': from_to(1, 1),
'litre': from_to(0.001, 1_000),
'kilolitre': from_to(1, 1),
'gallon': from_to(0.0_0454, 264.172),
'cubicyard': from_to(0.7_6455, 1.3_0795),
'cubicfoot': from_to(0.028, 35.3147),
'cup': from_to(0.0_0023_6588, 4226.75),
}
def lowerCamelCase__ ( A__ : float , A__ : str , A__ : str ):
'''simple docstring'''
if from_type not in METRIC_CONVERSION:
raise ValueError(
f'Invalid \'from_type\' value: {from_type!r} Supported values are:\n'
+ """, """.join(A__ ) )
if to_type not in METRIC_CONVERSION:
raise ValueError(
f'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n'
+ """, """.join(A__ ) )
return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to
if __name__ == "__main__":
import doctest
doctest.testmod()
| 12 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 0 |
from __future__ import annotations
class __lowercase :
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase__ : List[Any]=None):
SCREAMING_SNAKE_CASE_: str = data
SCREAMING_SNAKE_CASE_: Optional[int] = None
def __repr__( self : Optional[Any]):
SCREAMING_SNAKE_CASE_: Any = []
SCREAMING_SNAKE_CASE_: int = self
while temp:
string_rep.append(F"{temp.data}")
SCREAMING_SNAKE_CASE_: Union[str, Any] = temp.next
return "->".join(lowerCAmelCase__)
def A_ ( _UpperCAmelCase ):
if not elements_list:
raise Exception("The Elements List is empty" )
SCREAMING_SNAKE_CASE_: Tuple = Node(elements_list[0] )
for i in range(1 , len(_UpperCAmelCase ) ):
SCREAMING_SNAKE_CASE_: Tuple = Node(elements_list[i] )
SCREAMING_SNAKE_CASE_: Any = current.next
return head
def A_ ( _UpperCAmelCase ):
if head_node is not None and isinstance(_UpperCAmelCase , _UpperCAmelCase ):
print_reverse(head_node.next )
print(head_node.data )
def A_ ( ):
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE_: Optional[Any] = make_linked_list([14, 52, 14, 12, 43] )
print("Linked List:" )
print(_UpperCAmelCase )
print("Elements in Reverse:" )
print_reverse(_UpperCAmelCase )
if __name__ == "__main__":
main()
| 13 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 0 |
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class UpperCamelCase_ :
'''simple docstring'''
UpperCAmelCase__ = 42
UpperCAmelCase__ = None
UpperCAmelCase__ = None
def SCREAMING_SNAKE_CASE ( ) -> Node | None:
"""simple docstring"""
A__ = Node(1 )
A__ = Node(2 )
A__ = Node(3 )
A__ = Node(4 )
A__ = Node(5 )
return tree
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]:
"""simple docstring"""
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> int:
"""simple docstring"""
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Sequence[Node | None]:
"""simple docstring"""
A__ = []
if root is None:
return output
A__ = deque([root] )
while process_queue:
A__ = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Sequence[Node | None]:
"""simple docstring"""
A__ = []
def populate_output(lowercase_ , lowercase_ ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(lowercase_ , lowercase_ )
return output
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Sequence[Node | None]:
"""simple docstring"""
A__ = []
def populate_output(lowercase_ , lowercase_ ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(lowercase_ , lowercase_ )
return output
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Sequence[Node | None] | list[Any]:
"""simple docstring"""
if root is None:
return []
A__ = []
A__ = 0
A__ = height(lowercase_ )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(lowercase_ , lowercase_ ) )
A__ = 1
else:
output.append(get_nodes_from_right_to_left(lowercase_ , lowercase_ ) )
A__ = 0
return output
def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing.
"""simple docstring"""
A__ = make_tree()
print(f"""In-order Traversal: {inorder(lowercase_ )}""" )
print(f"""Pre-order Traversal: {preorder(lowercase_ )}""" )
print(f"""Post-order Traversal: {postorder(lowercase_ )}""" , '''\n''' )
print(f"""Height of Tree: {height(lowercase_ )}""" , '''\n''' )
print('''Complete Level Order Traversal: ''' )
print(level_order(lowercase_ ) , '''\n''' )
print('''Level-wise order Traversal: ''' )
for level in range(1 , height(lowercase_ ) + 1 ):
print(f"""Level {level}:""" , get_nodes_from_left_to_right(lowercase_ , level=lowercase_ ) )
print('''\nZigZag order Traversal: ''' )
print(zigzag(lowercase_ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 14 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 0 |
def UpperCAmelCase ( a_ , a_ ) -> int:
"""simple docstring"""
return 1 if input_a == input_a else 0
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 15 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 | 0 |
"""simple docstring"""
from math import isclose, sqrt
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> tuple[float, float, float]:
lowercase__ : Union[str, Any] = point_y / 4 / point_x
lowercase__ : Any = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
lowercase__ : Dict = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
lowercase__ : Any = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
lowercase__ : Optional[Any] = outgoing_gradient**2 + 4
lowercase__ : List[str] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
lowercase__ : Union[str, Any] = (point_y - outgoing_gradient * point_x) ** 2 - 1_00
lowercase__ : List[Any] = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
lowercase__ : Optional[int] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
lowercase__ : Any = x_minus if isclose(__lowerCamelCase , __lowerCamelCase ) else x_plus
lowercase__ : Dict = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def __UpperCAmelCase ( __lowerCamelCase = 1.4 , __lowerCamelCase = -9.6 ) -> int:
lowercase__ : int = 0
lowercase__ : float = first_x_coord
lowercase__ : float = first_y_coord
lowercase__ : float = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
lowercase__ , lowercase__ , lowercase__ : List[Any] = next_point(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F'''{solution() = }''')
| 16 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Dict = LDMTextToImagePipeline
__UpperCAmelCase : str = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
__UpperCAmelCase : Optional[Any] = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
__UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
__UpperCAmelCase : List[str] = False
def _lowercase ( self : str ):
torch.manual_seed(0 )
__lowercase = UNetaDConditionModel(
block_out_channels=(3_2, 6_4), layers_per_block=2, sample_size=3_2, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=3_2, )
__lowercase = DDIMScheduler(
beta_start=0.00_085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=UpperCAmelCase__, set_alpha_to_one=UpperCAmelCase__, )
torch.manual_seed(0 )
__lowercase = AutoencoderKL(
block_out_channels=(3_2, 6_4), in_channels=3, out_channels=3, down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D"), up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D"), latent_channels=4, )
torch.manual_seed(0 )
__lowercase = CLIPTextConfig(
bos_token_id=0, eos_token_id=2, hidden_size=3_2, intermediate_size=3_7, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1_0_0_0, )
__lowercase = CLIPTextModel(UpperCAmelCase__ )
__lowercase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__lowercase = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any]=0 ):
if str(UpperCAmelCase__ ).startswith("mps" ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
else:
__lowercase = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : int ):
__lowercase = "cpu" # ensure determinism for the device-dependent torch.Generator
__lowercase = self.get_dummy_components()
__lowercase = LDMTextToImagePipeline(**UpperCAmelCase__ )
pipe.to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_dummy_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1]
assert image.shape == (1, 1_6, 1_6, 3)
__lowercase = np.array([0.6_101, 0.6_156, 0.5_622, 0.4_895, 0.6_661, 0.3_804, 0.5_748, 0.6_136, 0.5_014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : Dict ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict=torch.floataa, UpperCAmelCase__ : Dict=0 ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) )
__lowercase = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : Tuple ):
__lowercase = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ ).images
__lowercase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 2_5_6, 2_5_6, 3)
__lowercase = np.array([0.51_825, 0.52_850, 0.52_543, 0.54_258, 0.52_304, 0.52_569, 0.54_363, 0.55_276, 0.56_878] )
__lowercase = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def _lowercase ( self : List[str] ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[str]=torch.floataa, UpperCAmelCase__ : List[str]=0 ):
__lowercase = torch.manual_seed(UpperCAmelCase__ )
__lowercase = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 3_2, 3_2) )
__lowercase = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__, dtype=UpperCAmelCase__ )
__lowercase = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 5_0,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def _lowercase ( self : int ):
__lowercase = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCAmelCase__ )
pipe.set_progress_bar_config(disable=UpperCAmelCase__ )
__lowercase = self.get_inputs(UpperCAmelCase__ )
__lowercase = pipe(**UpperCAmelCase__ ).images[0]
__lowercase = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" )
__lowercase = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 17 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCamelCase : Tuple = logging.get_logger(__name__)
__lowerCamelCase : str = {
'''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''',
}
class a__ ( A__ ):
A = 'git_vision_model'
def __init__( self : Any,_A : str=768,_A : Union[str, Any]=3072,_A : List[Any]=12,_A : Dict=12,_A : List[Any]=3,_A : Union[str, Any]=224,_A : Any=16,_A : Union[str, Any]="quick_gelu",_A : List[str]=1E-5,_A : str=0.0,_A : Tuple=0.02,**_A : Tuple,):
"""simple docstring"""
super().__init__(**_A )
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_size
SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size
SCREAMING_SNAKE_CASE_ : Tuple = num_hidden_layers
SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads
SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels
SCREAMING_SNAKE_CASE_ : List[str] = patch_size
SCREAMING_SNAKE_CASE_ : Tuple = image_size
SCREAMING_SNAKE_CASE_ : Dict = initializer_range
SCREAMING_SNAKE_CASE_ : Optional[Any] = attention_dropout
SCREAMING_SNAKE_CASE_ : Dict = layer_norm_eps
SCREAMING_SNAKE_CASE_ : str = hidden_act
@classmethod
def __UpperCamelCase ( cls : int,_A : Union[str, os.PathLike],**_A : str ):
"""simple docstring"""
cls._set_token_in_kwargs(_A )
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = cls.get_config_dict(_A,**_A )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("model_type" ) == "git":
SCREAMING_SNAKE_CASE_ : Optional[int] = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls,"model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type '
F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' )
return cls.from_dict(_A,**_A )
class a__ ( A__ ):
A = 'git'
def __init__( self : Dict,_A : Optional[Any]=None,_A : int=3_0522,_A : Dict=768,_A : str=6,_A : str=12,_A : Optional[int]=3072,_A : List[str]="gelu",_A : Tuple=0.1,_A : Optional[int]=0.1,_A : Any=1024,_A : Optional[Any]=0.02,_A : Optional[int]=1E-12,_A : Any=0,_A : List[str]="absolute",_A : List[str]=True,_A : List[str]=False,_A : Optional[int]=101,_A : Optional[int]=102,_A : List[str]=None,**_A : str,):
"""simple docstring"""
super().__init__(bos_token_id=_A,eos_token_id=_A,pad_token_id=_A,**_A )
if vision_config is None:
SCREAMING_SNAKE_CASE_ : Optional[int] = {}
logger.info("vision_config is None. initializing the GitVisionConfig with default values." )
SCREAMING_SNAKE_CASE_ : List[str] = GitVisionConfig(**_A )
SCREAMING_SNAKE_CASE_ : List[str] = vocab_size
SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_size
SCREAMING_SNAKE_CASE_ : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE_ : str = num_attention_heads
SCREAMING_SNAKE_CASE_ : List[Any] = hidden_act
SCREAMING_SNAKE_CASE_ : Any = intermediate_size
SCREAMING_SNAKE_CASE_ : int = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ : Dict = max_position_embeddings
SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range
SCREAMING_SNAKE_CASE_ : str = layer_norm_eps
SCREAMING_SNAKE_CASE_ : Tuple = position_embedding_type
SCREAMING_SNAKE_CASE_ : Tuple = use_cache
SCREAMING_SNAKE_CASE_ : List[Any] = tie_word_embeddings
SCREAMING_SNAKE_CASE_ : Any = num_image_with_embedding
SCREAMING_SNAKE_CASE_ : List[str] = bos_token_id
SCREAMING_SNAKE_CASE_ : Dict = eos_token_id
def __UpperCamelCase ( self : Any ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.__class__.model_type
return output
| 18 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 | 0 |
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ):
lowerCamelCase_ = [0 for i in range(r + 1 )]
# nc0 = 1
lowerCamelCase_ = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
lowerCamelCase_ = min(lowerCamelCase__ , lowerCamelCase__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=1_0, r=5))
| 19 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 | 0 |
import argparse
import re
import torch
from CLAP import create_model
from transformers import AutoFeatureExtractor, ClapConfig, ClapModel
lowercase : List[str] = {
"""text_branch""": """text_model""",
"""audio_branch""": """audio_model.audio_encoder""",
"""attn""": """attention.self""",
"""self.proj""": """output.dense""",
"""attention.self_mask""": """attn_mask""",
"""mlp.fc1""": """intermediate.dense""",
"""mlp.fc2""": """output.dense""",
"""norm1""": """layernorm_before""",
"""norm2""": """layernorm_after""",
"""bn0""": """batch_norm""",
}
lowercase : Dict = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""")
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Optional[Any]:
lowercase , lowercase : Any = create_model(
"""HTSAT-tiny""" , """roberta""" , SCREAMING_SNAKE_CASE__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=SCREAMING_SNAKE_CASE__ , fusion_type="""aff_2d""" if enable_fusion else None , )
return model, model_cfg
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]:
lowercase : Optional[int] = {}
lowercase : Optional[int] = R""".*sequential.(\d+).*"""
lowercase : Dict = R""".*_projection.(\d+).*"""
for key, value in state_dict.items():
# check if any key needs to be modified
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
lowercase : Dict = key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
# replace sequential layers with list
lowercase : Optional[int] = re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).group(1 )
lowercase : Optional[Any] = key.replace(f"sequential.{sequential_layer}." , f"layers.{int(SCREAMING_SNAKE_CASE__ )//3}.linear." )
elif re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowercase : Dict = int(re.match(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).group(1 ) )
# Because in CLAP they use `nn.Sequential`...
lowercase : Any = 1 if projecton_layer == 0 else 2
lowercase : Dict = key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." )
if "audio" and "qkv" in key:
# split qkv into query key and value
lowercase : Dict = value
lowercase : Union[str, Any] = mixed_qkv.size(0 ) // 3
lowercase : Any = mixed_qkv[:qkv_dim]
lowercase : str = mixed_qkv[qkv_dim : qkv_dim * 2]
lowercase : Optional[Any] = mixed_qkv[qkv_dim * 2 :]
lowercase : Tuple = query_layer
lowercase : Dict = key_layer
lowercase : Union[str, Any] = value_layer
else:
lowercase : Tuple = value
return model_state_dict
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ) -> Tuple:
lowercase , lowercase : List[str] = init_clap(SCREAMING_SNAKE_CASE__ , enable_fusion=SCREAMING_SNAKE_CASE__ )
clap_model.eval()
lowercase : List[Any] = clap_model.state_dict()
lowercase : str = rename_state_dict(SCREAMING_SNAKE_CASE__ )
lowercase : Union[str, Any] = ClapConfig()
lowercase : List[str] = enable_fusion
lowercase : Tuple = ClapModel(SCREAMING_SNAKE_CASE__ )
# ignore the spectrogram embedding layer
model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
transformers_config.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
lowercase : int = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""")
lowercase : Union[str, Any] = parser.parse_args()
convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
| 20 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
__lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowercase = [3, 3, 3, 3]
__lowercase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowercase = [4, 4, 4, 4]
__lowercase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowercase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowercase = [3, 3, 3, 3]
else:
__lowercase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowercase = 96
elif "small" in model_name:
__lowercase = 96
elif "base" in model_name:
__lowercase = 128
elif "large" in model_name:
__lowercase = 192
elif "xlarge" in model_name:
__lowercase = 256
elif "huge" in model_name:
__lowercase = 352
# set label information
__lowercase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowercase = 'imagenet-22k-id2label.json'
else:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = FocalNetConfig(
embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , )
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if "patch_embed.proj" in name:
__lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowercase = 'encoder.' + name
if "encoder.layers" in name:
__lowercase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowercase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowercase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowercase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowercase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowercase = 'layernorm.weight'
if name == "norm.bias":
__lowercase = 'layernorm.bias'
if "head" in name:
__lowercase = name.replace('head' , 'classifier' )
else:
__lowercase = 'focalnet.' + name
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]:
# fmt: off
__lowercase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowercase = model_name_to_url[model_name]
print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
__lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE )
__lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
# load state dict
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify conversion
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = BitImageProcessor(
do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , )
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
__lowercase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 325 | 0 |
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 21 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 | 0 |
'''simple docstring'''
def UpperCAmelCase_ ( __lowercase : int = 100 ) -> int:
'''simple docstring'''
_UpperCAmelCase = set()
_UpperCAmelCase = 0
_UpperCAmelCase = n + 1 # maximum limit
for a in range(2 , __lowercase ):
for b in range(2 , __lowercase ):
_UpperCAmelCase = a**b # calculates the current power
collect_powers.add(__lowercase ) # adds the result to the set
return len(__lowercase )
if __name__ == "__main__":
print('''Number of terms ''', solution(int(str(input()).strip())))
| 22 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 | 0 |
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
UpperCamelCase__: List[str] = logging.get_logger("transformers.models.speecht5")
def snake_case_ ( _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ) -> List[Any]:
hf_model.apply_weight_norm()
UpperCAmelCase : List[Any] = checkpoint['''input_conv.weight_g''']
UpperCAmelCase : Optional[int] = checkpoint['''input_conv.weight_v''']
UpperCAmelCase : Any = checkpoint['''input_conv.bias''']
for i in range(len(config.upsample_rates ) ):
UpperCAmelCase : str = checkpoint[f"""upsamples.{i}.1.weight_g"""]
UpperCAmelCase : Optional[int] = checkpoint[f"""upsamples.{i}.1.weight_v"""]
UpperCAmelCase : str = checkpoint[f"""upsamples.{i}.1.bias"""]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
UpperCAmelCase : str = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_g"""]
UpperCAmelCase : List[str] = checkpoint[f"""blocks.{i}.convs1.{j}.1.weight_v"""]
UpperCAmelCase : Optional[int] = checkpoint[f"""blocks.{i}.convs1.{j}.1.bias"""]
UpperCAmelCase : List[Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_g"""]
UpperCAmelCase : Union[str, Any] = checkpoint[f"""blocks.{i}.convs2.{j}.1.weight_v"""]
UpperCAmelCase : str = checkpoint[f"""blocks.{i}.convs2.{j}.1.bias"""]
UpperCAmelCase : Tuple = checkpoint['''output_conv.1.weight_g''']
UpperCAmelCase : Union[str, Any] = checkpoint['''output_conv.1.weight_v''']
UpperCAmelCase : Dict = checkpoint['''output_conv.1.bias''']
hf_model.remove_weight_norm()
@torch.no_grad()
def snake_case_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : List[str]=None , ) -> List[Any]:
if config_path is not None:
UpperCAmelCase : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(_lowerCAmelCase )
else:
UpperCAmelCase : Optional[Any] = SpeechTaHifiGanConfig()
UpperCAmelCase : Dict = SpeechTaHifiGan(_lowerCAmelCase )
UpperCAmelCase : List[str] = torch.load(_lowerCAmelCase )
load_weights(orig_checkpoint['''model''']['''generator'''] , _lowerCAmelCase , _lowerCAmelCase )
UpperCAmelCase : Any = np.load(_lowerCAmelCase )
UpperCAmelCase : Dict = stats[0].reshape(-1 )
UpperCAmelCase : Tuple = stats[1].reshape(-1 )
UpperCAmelCase : Tuple = torch.from_numpy(_lowerCAmelCase ).float()
UpperCAmelCase : List[str] = torch.from_numpy(_lowerCAmelCase ).float()
model.save_pretrained(_lowerCAmelCase )
if repo_id:
print('''Pushing to the hub...''' )
model.push_to_hub(_lowerCAmelCase )
if __name__ == "__main__":
UpperCamelCase__: List[Any] = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint")
parser.add_argument("--stats_path", required=True, default=None, type=str, help="Path to stats.npy file")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model."
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
UpperCamelCase__: Optional[int] = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 23 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ = logging.get_logger(__name__)
snake_case_ = {
'tanreinama/GPTSAN-2.8B-spout_is_uniform': (
'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json'
),
}
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
A_ : Optional[int] = 'gptsan-japanese'
A_ : Any = [
'past_key_values',
]
A_ : Any = {
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__(self : Optional[int] , a__ : Optional[Any]=3_6000 , a__ : Union[str, Any]=1280 , a__ : List[Any]=1024 , a__ : List[str]=8192 , a__ : Union[str, Any]=4096 , a__ : int=128 , a__ : Optional[int]=10 , a__ : Tuple=0 , a__ : List[str]=16 , a__ : Any=16 , a__ : Dict=128 , a__ : str=0.0 , a__ : Tuple=1E-5 , a__ : Any=False , a__ : List[Any]=0.0 , a__ : Optional[Any]="float32" , a__ : int=False , a__ : Optional[int]=False , a__ : List[str]=False , a__ : Optional[int]=0.0_0_2 , a__ : List[Any]=False , a__ : List[Any]=True , a__ : Any=3_5998 , a__ : int=3_5995 , a__ : Union[str, Any]=3_5999 , **a__ : Tuple , ):
"""simple docstring"""
__snake_case = vocab_size
__snake_case = max_position_embeddings
__snake_case = d_model
__snake_case = d_ff
__snake_case = d_ext
__snake_case = d_spout
__snake_case = num_switch_layers
__snake_case = num_ext_layers
__snake_case = num_switch_layers + num_ext_layers
__snake_case = num_heads
__snake_case = num_experts
__snake_case = expert_capacity
__snake_case = dropout_rate
__snake_case = layer_norm_epsilon
__snake_case = router_bias
__snake_case = router_jitter_noise
__snake_case = router_dtype
__snake_case = router_ignore_padding_tokens
__snake_case = output_hidden_states
__snake_case = output_attentions
__snake_case = initializer_factor
__snake_case = output_router_logits
__snake_case = use_cache
super().__init__(
separator_token_id=a__ , pad_token_id=a__ , eos_token_id=a__ , **a__ , )
| 24 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 0 |
"""simple docstring"""
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class lowerCAmelCase_ (datasets.BeamBasedBuilder ):
"""simple docstring"""
def __magic_name__ (self ) -> str:
"""simple docstring"""
return datasets.DatasetInfo(
features=datasets.Features({"""content""": datasets.Value("""string""" )} ) , supervised_keys=SCREAMING_SNAKE_CASE__ , )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any:
"""simple docstring"""
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_dummy_examples()} )]
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]:
"""simple docstring"""
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE__ )
class lowerCAmelCase_ (datasets.BeamBasedBuilder ):
"""simple docstring"""
def __magic_name__ (self ) -> Optional[Any]:
"""simple docstring"""
return datasets.DatasetInfo(
features=datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) , supervised_keys=SCREAMING_SNAKE_CASE__ , )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict:
"""simple docstring"""
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""examples""": get_test_nested_examples()} )
]
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int:
"""simple docstring"""
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(SCREAMING_SNAKE_CASE__ )
def lowercase_ ( ):
return [(i, {"content": content}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
def lowercase_ ( ):
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["""foo""", """bar""", """foobar"""] )]
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
@require_beam
def __magic_name__ (self ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
SCREAMING_SNAKE_CASE__ : Optional[Any] = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE__ , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
SCREAMING_SNAKE_CASE__ : str = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , SCREAMING_SNAKE_CASE__ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , SCREAMING_SNAKE_CASE__ )
self.assertDictEqual(dset["""train"""][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def __magic_name__ (self ) -> Tuple:
"""simple docstring"""
import apache_beam as beam
SCREAMING_SNAKE_CASE__ : Optional[Any] = beam.io.parquetio.WriteToParquet
SCREAMING_SNAKE_CASE__ : int = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
SCREAMING_SNAKE_CASE__ : Dict = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE__ , beam_runner="""DirectRunner""" )
with patch("""apache_beam.io.parquetio.WriteToParquet""" ) as write_parquet_mock:
SCREAMING_SNAKE_CASE__ : str = partial(SCREAMING_SNAKE_CASE__ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
SCREAMING_SNAKE_CASE__ , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
SCREAMING_SNAKE_CASE__ , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({"""content""": datasets.Value("""string""" )} ) )
SCREAMING_SNAKE_CASE__ : Optional[int] = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , SCREAMING_SNAKE_CASE__ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , SCREAMING_SNAKE_CASE__ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset["""train"""]["""content"""] ) , sorted(["""foo""", """bar""", """foobar"""] ) )
self.assertTrue(
os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
@require_beam
def __magic_name__ (self ) -> Tuple:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_cache_dir:
SCREAMING_SNAKE_CASE__ : Tuple = DummyBeamDataset(cache_dir=SCREAMING_SNAKE_CASE__ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def __magic_name__ (self ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
SCREAMING_SNAKE_CASE__ : Dict = NestedBeamDataset(cache_dir=SCREAMING_SNAKE_CASE__ , beam_runner="""DirectRunner""" )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , """default""" , """0.0.0""" , F'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({"""a""": datasets.Sequence({"""b""": datasets.Value("""string""" )} )} ) )
SCREAMING_SNAKE_CASE__ : Any = builder.as_dataset()
self.assertEqual(dset["""train"""].num_rows , SCREAMING_SNAKE_CASE__ )
self.assertEqual(dset["""train"""].info.splits["""train"""].num_examples , SCREAMING_SNAKE_CASE__ )
self.assertDictEqual(dset["""train"""][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset["""train"""][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , builder.name , """default""" , """0.0.0""" , """dataset_info.json""" ) ) )
del dset
| 25 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 0 |
from __future__ import annotations
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A , _A : Any = set(snake_case_ ), [start]
while stack:
_A : Union[str, Any] = stack.pop()
explored.add(snake_case_ )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(snake_case_ )
return explored
_snake_case = {
"A": ["B", "C", "D"],
"B": ["A", "D", "E"],
"C": ["A", "F"],
"D": ["B", "D"],
"E": ["B", "F"],
"F": ["C", "E", "G"],
"G": ["F"],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, "A"))
| 26 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 0 |
'''simple docstring'''
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
__lowercase : Union[str, Any] = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8')
__lowercase : List[Any] = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode('utf-8').split()
__lowercase : Optional[int] = '|'.join(sys.argv[1:])
__lowercase : Tuple = re.compile(Rf'''^({joined_dirs}).*?\.py$''')
__lowercase : Dict = [x for x in modified_files if regex.match(x)]
print(' '.join(relevant_modified_files), end='')
| 27 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 0 |
'''simple docstring'''
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class SCREAMING_SNAKE_CASE ( _a ):
"""simple docstring"""
def A ( self : Dict , UpperCamelCase__ : str ):
"""simple docstring"""
with open(UpperCamelCase__ , encoding='utf-8' ) as input_file:
UpperCamelCase = re.compile(R'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' )
UpperCamelCase = input_file.read()
UpperCamelCase = regexp.search(UpperCamelCase__ )
return match
def A ( self : Optional[int] , UpperCamelCase__ : str ):
"""simple docstring"""
with open(UpperCamelCase__ , encoding='utf-8' ) as input_file:
UpperCamelCase = re.compile(R'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL )
UpperCamelCase = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
UpperCamelCase = regexp.finditer(UpperCamelCase__ )
UpperCamelCase = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = Path('./datasets' )
UpperCamelCase = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(UpperCamelCase__ ) ):
raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" )
def A ( self : Dict ):
"""simple docstring"""
UpperCamelCase = Path('./datasets' )
UpperCamelCase = list(dataset_paths.absolute().glob('**/*.py' ) )
for dataset in dataset_files:
if self._no_print_statements(str(UpperCamelCase__ ) ):
raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
| 28 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__UpperCAmelCase = {'configuration_opt': ['OPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OPTConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'OPT_PRETRAINED_MODEL_ARCHIVE_LIST',
'OPTForCausalLM',
'OPTModel',
'OPTPreTrainedModel',
'OPTForSequenceClassification',
'OPTForQuestionAnswering',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['TFOPTForCausalLM', 'TFOPTModel', 'TFOPTPreTrainedModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'FlaxOPTForCausalLM',
'FlaxOPTModel',
'FlaxOPTPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 29 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 0 |
import json
import os
from typing import Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__a = logging.get_logger(__name__)
__a = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
}
__a = {
'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'},
'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'},
}
__a = {
'ctrl': 2_5_6,
}
__a = {
'Pregnancy': 1_6_8_6_2_9,
'Christianity': 7_6_7_5,
'Explain': 1_0_6_4_2_3,
'Fitness': 6_3_4_4_0,
'Saving': 6_3_1_6_3,
'Ask': 2_7_1_7_1,
'Ass': 9_5_9_8_5,
'Joke': 1_6_3_5_0_9,
'Questions': 4_5_6_2_2,
'Thoughts': 4_9_6_0_5,
'Retail': 5_2_3_4_2,
'Feminism': 1_6_4_3_3_8,
'Writing': 1_1_9_9_2,
'Atheism': 1_9_2_2_6_3,
'Netflix': 4_8_6_1_6,
'Computing': 3_9_6_3_9,
'Opinion': 4_3_2_1_3,
'Alone': 4_4_9_6_7,
'Funny': 5_8_9_1_7,
'Gaming': 4_0_3_5_8,
'Human': 4_0_8_8,
'India': 1_3_3_1,
'Joker': 7_7_1_3_8,
'Diet': 3_6_2_0_6,
'Legal': 1_1_8_5_9,
'Norman': 4_9_3_9,
'Tip': 7_2_6_8_9,
'Weight': 5_2_3_4_3,
'Movies': 4_6_2_7_3,
'Running': 2_3_4_2_5,
'Science': 2_0_9_0,
'Horror': 3_7_7_9_3,
'Confession': 6_0_5_7_2,
'Finance': 1_2_2_5_0,
'Politics': 1_6_3_6_0,
'Scary': 1_9_1_9_8_5,
'Support': 1_2_6_5_4,
'Technologies': 3_2_5_1_6,
'Teenage': 6_6_1_6_0,
'Event': 3_2_7_6_9,
'Learned': 6_7_4_6_0,
'Notion': 1_8_2_7_7_0,
'Wikipedia': 3_7_5_8_3,
'Books': 6_6_6_5,
'Extract': 7_6_0_5_0,
'Confessions': 1_0_2_7_0_1,
'Conspiracy': 7_5_9_3_2,
'Links': 6_3_6_7_4,
'Narcissus': 1_5_0_4_2_5,
'Relationship': 5_4_7_6_6,
'Relationships': 1_3_4_7_9_6,
'Reviews': 4_1_6_7_1,
'News': 4_2_5_6,
'Translation': 2_6_8_2_0,
'multilingual': 1_2_8_4_0_6,
}
def a ( snake_case__: List[str] ):
'''simple docstring'''
lowercase_ = set()
lowercase_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowercase_ = char
lowercase_ = set(snake_case__ )
return pairs
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
a :List[Any] = VOCAB_FILES_NAMES
a :int = PRETRAINED_VOCAB_FILES_MAP
a :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a :Any = CONTROL_CODES
def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict="<unk>" , **SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
super().__init__(unk_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
lowercase_ = json.load(SCREAMING_SNAKE_CASE_ )
lowercase_ = {v: k for k, v in self.encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
lowercase_ = merges_handle.read().split('''\n''' )[1:-1]
lowercase_ = [tuple(merge.split() ) for merge in merges]
lowercase_ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
lowercase_ = {}
@property
def _lowercase ( self : List[Any] ) -> Dict:
return len(self.encoder )
def _lowercase ( self : List[Any] ) -> List[str]:
return dict(self.encoder , **self.added_tokens_encoder )
def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Any:
if token in self.cache:
return self.cache[token]
lowercase_ = tuple(SCREAMING_SNAKE_CASE_ )
lowercase_ = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] )
lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
lowercase_ = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
lowercase_ , lowercase_ = bigram
lowercase_ = []
lowercase_ = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
lowercase_ = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowercase_ = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowercase_ = tuple(SCREAMING_SNAKE_CASE_ )
lowercase_ = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
lowercase_ = get_pairs(SCREAMING_SNAKE_CASE_ )
lowercase_ = '''@@ '''.join(SCREAMING_SNAKE_CASE_ )
lowercase_ = word[:-4]
lowercase_ = word
return word
def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Optional[Any]:
lowercase_ = []
lowercase_ = re.findall(R'''\S+\n?''' , SCREAMING_SNAKE_CASE_ )
for token in words:
split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) )
return split_tokens
def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Optional[int]:
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[str]:
return self.decoder.get(SCREAMING_SNAKE_CASE_ , self.unk_token )
def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[str]:
lowercase_ = ''' '''.join(SCREAMING_SNAKE_CASE_ ).replace('''@@ ''' , '''''' ).strip()
return out_string
def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowercase_ = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase_ = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
lowercase_ = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
lowercase_ = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
# def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True):
# filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens))
# tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens)
# tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far)
# return ''.join(tokens_generated_so_far)
| 30 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class lowerCamelCase_ (snake_case__ ):
'''simple docstring'''
__UpperCamelCase: "DiagonalGaussianDistribution"
class lowerCamelCase_ (snake_case__ , snake_case__ ):
'''simple docstring'''
__UpperCamelCase: Dict = True
@register_to_config
def __init__( self : Dict , A : int = 3 , A : int = 3 , A : Tuple[str] = ("DownEncoderBlock2D",) , A : Tuple[str] = ("UpDecoderBlock2D",) , A : Tuple[int] = (64,) , A : int = 1 , A : str = "silu" , A : int = 4 , A : int = 32 , A : int = 32 , A : float = 0.18_215 , ):
super().__init__()
# pass init params to Encoder
_UpperCAmelCase : Union[str, Any] = Encoder(
in_channels=A , out_channels=A , down_block_types=A , block_out_channels=A , layers_per_block=A , act_fn=A , norm_num_groups=A , double_z=A , )
# pass init params to Decoder
_UpperCAmelCase : List[str] = Decoder(
in_channels=A , out_channels=A , up_block_types=A , block_out_channels=A , layers_per_block=A , norm_num_groups=A , act_fn=A , )
_UpperCAmelCase : Union[str, Any] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
_UpperCAmelCase : Optional[Any] = nn.Convad(A , A , 1 )
_UpperCAmelCase : List[Any] = False
_UpperCAmelCase : List[Any] = False
# only relevant if vae tiling is enabled
_UpperCAmelCase : Union[str, Any] = self.config.sample_size
_UpperCAmelCase : Any = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
_UpperCAmelCase : Dict = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
_UpperCAmelCase : Any = 0.25
def _A ( self : Optional[Any] , A : str , A : Union[str, Any]=False ):
if isinstance(A , (Encoder, Decoder) ):
_UpperCAmelCase : Union[str, Any] = value
def _A ( self : int , A : bool = True ):
_UpperCAmelCase : Any = use_tiling
def _A ( self : Dict ):
self.enable_tiling(A )
def _A ( self : str ):
_UpperCAmelCase : Optional[Any] = True
def _A ( self : Optional[int] ):
_UpperCAmelCase : Tuple = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def _A ( self : Union[str, Any] ):
_UpperCAmelCase : List[str] = {}
def fn_recursive_add_processors(A : str , A : torch.nn.Module , A : Dict[str, AttentionProcessor] ):
if hasattr(A , "set_processor" ):
_UpperCAmelCase : Any = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"""{name}.{sub_name}""" , A , A )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(A , A , A )
return processors
def _A ( self : Optional[int] , A : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
_UpperCAmelCase : str = len(self.attn_processors.keys() )
if isinstance(A , A ) and len(A ) != count:
raise ValueError(
F"""A dict of processors was passed, but the number of processors {len(A )} does not match the"""
F""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(A : str , A : torch.nn.Module , A : str ):
if hasattr(A , "set_processor" ):
if not isinstance(A , A ):
module.set_processor(A )
else:
module.set_processor(processor.pop(F"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"""{name}.{sub_name}""" , A , A )
for name, module in self.named_children():
fn_recursive_attn_processor(A , A , A )
def _A ( self : Optional[int] ):
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def _A ( self : Optional[Any] , A : torch.FloatTensor , A : bool = True ):
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(A , return_dict=A )
if self.use_slicing and x.shape[0] > 1:
_UpperCAmelCase : Dict = [self.encoder(A ) for x_slice in x.split(1 )]
_UpperCAmelCase : str = torch.cat(A )
else:
_UpperCAmelCase : str = self.encoder(A )
_UpperCAmelCase : Union[str, Any] = self.quant_conv(A )
_UpperCAmelCase : str = DiagonalGaussianDistribution(A )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=A )
def _A ( self : List[str] , A : torch.FloatTensor , A : bool = True ):
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(A , return_dict=A )
_UpperCAmelCase : Dict = self.post_quant_conv(A )
_UpperCAmelCase : Any = self.decoder(A )
if not return_dict:
return (dec,)
return DecoderOutput(sample=A )
@apply_forward_hook
def _A ( self : List[str] , A : torch.FloatTensor , A : bool = True ):
if self.use_slicing and z.shape[0] > 1:
_UpperCAmelCase : List[Any] = [self._decode(A ).sample for z_slice in z.split(1 )]
_UpperCAmelCase : str = torch.cat(A )
else:
_UpperCAmelCase : Optional[int] = self._decode(A ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=A )
def _A ( self : Tuple , A : Any , A : Tuple , A : Optional[int] ):
_UpperCAmelCase : int = min(a.shape[2] , b.shape[2] , A )
for y in range(A ):
_UpperCAmelCase : Tuple = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def _A ( self : Optional[Any] , A : Dict , A : Union[str, Any] , A : List[str] ):
_UpperCAmelCase : Optional[int] = min(a.shape[3] , b.shape[3] , A )
for x in range(A ):
_UpperCAmelCase : Optional[int] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def _A ( self : Any , A : torch.FloatTensor , A : bool = True ):
_UpperCAmelCase : str = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
_UpperCAmelCase : Optional[Any] = int(self.tile_latent_min_size * self.tile_overlap_factor )
_UpperCAmelCase : List[Any] = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
_UpperCAmelCase : List[Any] = []
for i in range(0 , x.shape[2] , A ):
_UpperCAmelCase : Any = []
for j in range(0 , x.shape[3] , A ):
_UpperCAmelCase : str = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
_UpperCAmelCase : int = self.encoder(A )
_UpperCAmelCase : Optional[int] = self.quant_conv(A )
row.append(A )
rows.append(A )
_UpperCAmelCase : Dict = []
for i, row in enumerate(A ):
_UpperCAmelCase : Union[str, Any] = []
for j, tile in enumerate(A ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
_UpperCAmelCase : Union[str, Any] = self.blend_v(rows[i - 1][j] , A , A )
if j > 0:
_UpperCAmelCase : Tuple = self.blend_h(row[j - 1] , A , A )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(A , dim=3 ) )
_UpperCAmelCase : Optional[int] = torch.cat(A , dim=2 )
_UpperCAmelCase : List[Any] = DiagonalGaussianDistribution(A )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=A )
def _A ( self : str , A : torch.FloatTensor , A : bool = True ):
_UpperCAmelCase : Any = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
_UpperCAmelCase : List[Any] = int(self.tile_sample_min_size * self.tile_overlap_factor )
_UpperCAmelCase : Optional[Any] = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
_UpperCAmelCase : str = []
for i in range(0 , z.shape[2] , A ):
_UpperCAmelCase : List[str] = []
for j in range(0 , z.shape[3] , A ):
_UpperCAmelCase : Tuple = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
_UpperCAmelCase : List[str] = self.post_quant_conv(A )
_UpperCAmelCase : Dict = self.decoder(A )
row.append(A )
rows.append(A )
_UpperCAmelCase : List[Any] = []
for i, row in enumerate(A ):
_UpperCAmelCase : List[str] = []
for j, tile in enumerate(A ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
_UpperCAmelCase : List[Any] = self.blend_v(rows[i - 1][j] , A , A )
if j > 0:
_UpperCAmelCase : Optional[int] = self.blend_h(row[j - 1] , A , A )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(A , dim=3 ) )
_UpperCAmelCase : Any = torch.cat(A , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=A )
def _A ( self : List[Any] , A : torch.FloatTensor , A : bool = False , A : bool = True , A : Optional[torch.Generator] = None , ):
_UpperCAmelCase : Union[str, Any] = sample
_UpperCAmelCase : Tuple = self.encode(A ).latent_dist
if sample_posterior:
_UpperCAmelCase : Any = posterior.sample(generator=A )
else:
_UpperCAmelCase : Tuple = posterior.mode()
_UpperCAmelCase : List[Any] = self.decode(A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=A )
| 31 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 0 |
from math import factorial
def SCREAMING_SNAKE_CASE_ ( __A : int = 20 ) -> int:
"""simple docstring"""
a_ : str = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
a_ : Dict = n // 2
return int(factorial(__A ) / (factorial(__A ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
UpperCAmelCase_ : int = int(sys.argv[1])
print(solution(n))
except ValueError:
print('Invalid entry - please enter a number.')
| 32 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( __snake_case : list[float] ):
lowercase_ : str = 0.00
lowercase_ : str = 0
for resistor in resistors:
if resistor <= 0:
lowercase_ : str = F'''Resistor at index {index} has a negative or zero value!'''
raise ValueError(__snake_case )
first_sum += 1 / float(__snake_case )
index += 1
return 1 / first_sum
def lowercase ( __snake_case : list[float] ):
lowercase_ : Optional[int] = 0.00
lowercase_ : Dict = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
lowercase_ : str = F'''Resistor at index {index} has a negative value!'''
raise ValueError(__snake_case )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 33 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A =logging.get_logger(__name__)
A ={
'google/mobilenet_v2_1.4_224': 'https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json',
'google/mobilenet_v2_1.0_224': 'https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json',
'google/mobilenet_v2_0.75_160': 'https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json',
'google/mobilenet_v2_0.35_96': 'https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json',
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class _a ( __a ):
__a : List[str] = """mobilenet_v2"""
def __init__( self : List[Any] , lowercase : Any=3 , lowercase : Tuple=224 , lowercase : Dict=1.0 , lowercase : Union[str, Any]=8 , lowercase : str=8 , lowercase : Dict=6 , lowercase : Dict=32 , lowercase : Optional[int]=True , lowercase : Any=True , lowercase : List[Any]="relu6" , lowercase : Tuple=True , lowercase : Dict=0.8 , lowercase : int=0.02 , lowercase : List[Any]=0.001 , lowercase : Union[str, Any]=255 , **lowercase : List[str] , ):
'''simple docstring'''
super().__init__(**lowercase )
if depth_multiplier <= 0:
raise ValueError('''depth_multiplier must be greater than zero.''' )
UpperCAmelCase = num_channels
UpperCAmelCase = image_size
UpperCAmelCase = depth_multiplier
UpperCAmelCase = depth_divisible_by
UpperCAmelCase = min_depth
UpperCAmelCase = expand_ratio
UpperCAmelCase = output_stride
UpperCAmelCase = first_layer_is_expansion
UpperCAmelCase = finegrained_output
UpperCAmelCase = hidden_act
UpperCAmelCase = tf_padding
UpperCAmelCase = classifier_dropout_prob
UpperCAmelCase = initializer_range
UpperCAmelCase = layer_norm_eps
UpperCAmelCase = semantic_loss_ignore_index
class _a ( __a ):
__a : List[Any] = version.parse("""1.11""" )
@property
def A ( self : str ):
'''simple docstring'''
return OrderedDict([('''pixel_values''', {0: '''batch'''})] )
@property
def A ( self : Dict ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([('''logits''', {0: '''batch'''})] )
else:
return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] )
@property
def A ( self : str ):
'''simple docstring'''
return 1E-4
| 34 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__a = {
"configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"],
"tokenization_electra": ["ElectraTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = ["ElectraTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
"ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"ElectraForCausalLM",
"ElectraForMaskedLM",
"ElectraForMultipleChoice",
"ElectraForPreTraining",
"ElectraForQuestionAnswering",
"ElectraForSequenceClassification",
"ElectraForTokenClassification",
"ElectraModel",
"ElectraPreTrainedModel",
"load_tf_weights_in_electra",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
"TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFElectraForMaskedLM",
"TFElectraForMultipleChoice",
"TFElectraForPreTraining",
"TFElectraForQuestionAnswering",
"TFElectraForSequenceClassification",
"TFElectraForTokenClassification",
"TFElectraModel",
"TFElectraPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
"FlaxElectraForCausalLM",
"FlaxElectraForMaskedLM",
"FlaxElectraForMultipleChoice",
"FlaxElectraForPreTraining",
"FlaxElectraForQuestionAnswering",
"FlaxElectraForSequenceClassification",
"FlaxElectraForTokenClassification",
"FlaxElectraModel",
"FlaxElectraPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 35 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 0 |
import os
from distutils.util import strtobool
def A ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
for e in env_keys:
_lowerCAmelCase : int = int(os.environ.get(_lowerCamelCase , -1 ) )
if val >= 0:
return val
return default
def A ( _lowerCamelCase , _lowerCamelCase=False ):
'''simple docstring'''
_lowerCAmelCase : List[str] = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) )
return strtobool(_lowerCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int...
def A ( _lowerCamelCase , _lowerCamelCase="no" ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = os.environ.get(_lowerCamelCase , str(_lowerCamelCase ) )
return value
| 36 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 0 |
'''simple docstring'''
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
lowerCAmelCase__ : Union[str, Any] = (low + high) // 2
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Dict = max_subarray(UpperCamelCase , UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = max_subarray(UpperCamelCase , mid + 1 , UpperCamelCase )
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = max_cross_sum(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : Any = float("""-inf""" ), -1
lowerCAmelCase__ , lowerCAmelCase__ : str = float("""-inf""" ), -1
lowerCAmelCase__ : int | float = 0
for i in range(UpperCamelCase , low - 1 , -1 ):
summ += arr[i]
if summ > left_sum:
lowerCAmelCase__ : Optional[int] = summ
lowerCAmelCase__ : List[Any] = i
lowerCAmelCase__ : Optional[Any] = 0
for i in range(mid + 1 , high + 1 ):
summ += arr[i]
if summ > right_sum:
lowerCAmelCase__ : Optional[Any] = summ
lowerCAmelCase__ : List[str] = i
return max_left, max_right, (left_sum + right_sum)
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = [randint(1 , UpperCamelCase ) for _ in range(UpperCamelCase )]
lowerCAmelCase__ : Union[str, Any] = time.time()
max_subarray(UpperCamelCase , 0 , input_size - 1 )
lowerCAmelCase__ : str = time.time()
return end - start
def _SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowerCAmelCase__ : Any = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
lowerCAmelCase__ : List[Any] = [time_max_subarray(UpperCamelCase ) for input_size in input_sizes]
print("""No of Inputs\t\tTime Taken""" )
for input_size, runtime in zip(UpperCamelCase , UpperCamelCase ):
print(UpperCamelCase , """\t\t""" , UpperCamelCase )
plt.plot(UpperCamelCase , UpperCamelCase )
plt.xlabel("""Number of Inputs""" )
plt.ylabel("""Time taken in seconds""" )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 37 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ : Dict = {
'''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig''']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Dict = ['''RemBertTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : int = ['''RemBertTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Union[str, Any] = [
'''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RemBertForCausalLM''',
'''RemBertForMaskedLM''',
'''RemBertForMultipleChoice''',
'''RemBertForQuestionAnswering''',
'''RemBertForSequenceClassification''',
'''RemBertForTokenClassification''',
'''RemBertLayer''',
'''RemBertModel''',
'''RemBertPreTrainedModel''',
'''load_tf_weights_in_rembert''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[int] = [
'''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRemBertForCausalLM''',
'''TFRemBertForMaskedLM''',
'''TFRemBertForMultipleChoice''',
'''TFRemBertForQuestionAnswering''',
'''TFRemBertForSequenceClassification''',
'''TFRemBertForTokenClassification''',
'''TFRemBertLayer''',
'''TFRemBertModel''',
'''TFRemBertPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 38 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 | 0 |
from ... import PretrainedConfig
_a = {
'''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''',
}
class __lowerCamelCase ( snake_case__):
"""simple docstring"""
UpperCamelCase__ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
UpperCamelCase__ = "nezha"
def __init__( self , UpperCAmelCase=2_1128 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=64 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0.1 , UpperCAmelCase=0 , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , **UpperCAmelCase , ):
"""simple docstring"""
super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = max_relative_position
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = classifier_dropout
_UpperCAmelCase = use_cache
| 39 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 | 0 |
"""simple docstring"""
from itertools import permutations
def lowercase ( A_ )-> bool:
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
a : Optional[int] = [7, 11, 13, 17]
for i, test in enumerate(A_ ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowercase ( A_ = 10 )-> int:
'''simple docstring'''
return sum(
int("".join(map(A_ , A_ ) ) )
for num in permutations(range(A_ ) )
if is_substring_divisible(A_ ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 40 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 | 0 |
'''simple docstring'''
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
_A : List[Any] =logging.get_logger(__name__)
_A : Dict =['''model.decoder.embed_positions.weights''']
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str:
if "emb" in name:
lowerCamelCase__ : Dict = name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
lowerCamelCase__ : List[str] = name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
lowerCamelCase__ : List[str] = name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
lowerCamelCase__ : Optional[int] = name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
lowerCamelCase__ : Union[str, Any] = name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
lowerCamelCase__ : Dict = name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
lowerCamelCase__ : Optional[Any] = name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
lowerCamelCase__ : Dict = name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
lowerCamelCase__ : Optional[Any] = name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
lowerCamelCase__ : Optional[Any] = name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
lowerCamelCase__ : int = name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple[Dict, Dict]:
lowerCamelCase__ : int = list(state_dict.keys() )
lowerCamelCase__ : Tuple = {}
for key in keys:
lowerCamelCase__ : Any = state_dict.pop(UpperCamelCase )
lowerCamelCase__ : Union[str, Any] = rename_keys(UpperCamelCase )
if "in_proj_weight" in key:
# split fused qkv proj
lowerCamelCase__ : Union[str, Any] = val[:hidden_size, :]
lowerCamelCase__ : Any = val[hidden_size : 2 * hidden_size, :]
lowerCamelCase__ : Optional[int] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
lowerCamelCase__ : str = val
else:
lowerCamelCase__ : Union[str, Any] = val
return state_dict, enc_dec_proj_state_dict
def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
lowerCamelCase__ : int = 1024
lowerCamelCase__ : int = 24
lowerCamelCase__ : List[Any] = 16
elif checkpoint == "medium":
lowerCamelCase__ : Any = 1536
lowerCamelCase__ : Union[str, Any] = 48
lowerCamelCase__ : Optional[int] = 24
elif checkpoint == "large":
lowerCamelCase__ : Optional[Any] = 2048
lowerCamelCase__ : Dict = 48
lowerCamelCase__ : List[Any] = 32
else:
raise ValueError(f'''Checkpoint should be one of `[\'small\', \'medium\', \'large\']`, got {checkpoint}.''' )
lowerCamelCase__ : Any = MusicgenDecoderConfig(
hidden_size=UpperCamelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=UpperCamelCase , num_attention_heads=UpperCamelCase , )
return config
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="cpu" ) -> Optional[Any]:
lowerCamelCase__ : Optional[int] = MusicGen.get_pretrained(UpperCamelCase , device=UpperCamelCase )
lowerCamelCase__ : List[Any] = decoder_config_from_checkpoint(UpperCamelCase )
lowerCamelCase__ : Any = fairseq_model.lm.state_dict()
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = rename_state_dict(
UpperCamelCase , hidden_size=decoder_config.hidden_size )
lowerCamelCase__ : str = TaEncoderModel.from_pretrained("""t5-base""" )
lowerCamelCase__ : Tuple = EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
lowerCamelCase__ : Optional[int] = MusicgenForCausalLM(UpperCamelCase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
lowerCamelCase__ , lowerCamelCase__ : List[str] = decoder.load_state_dict(UpperCamelCase , strict=UpperCamelCase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(UpperCamelCase )
if len(UpperCamelCase ) > 0:
raise ValueError(f'''Missing key(s) in state_dict: {missing_keys}''' )
if len(UpperCamelCase ) > 0:
raise ValueError(f'''Unexpected key(s) in state_dict: {unexpected_keys}''' )
# init the composite model
lowerCamelCase__ : Optional[Any] = MusicgenForConditionalGeneration(text_encoder=UpperCamelCase , audio_encoder=UpperCamelCase , decoder=UpperCamelCase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(UpperCamelCase )
# check we can do a forward pass
lowerCamelCase__ : Dict = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
lowerCamelCase__ : Optional[Any] = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
lowerCamelCase__ : Union[str, Any] = model(input_ids=UpperCamelCase , decoder_input_ids=UpperCamelCase ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
lowerCamelCase__ : str = AutoTokenizer.from_pretrained("""t5-base""" )
lowerCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
lowerCamelCase__ : Optional[int] = MusicgenProcessor(feature_extractor=UpperCamelCase , tokenizer=UpperCamelCase )
# set the appropriate bos/pad token ids
lowerCamelCase__ : Union[str, Any] = 2048
lowerCamelCase__ : List[str] = 2048
# set other default generation config params
lowerCamelCase__ : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
lowerCamelCase__ : Union[str, Any] = True
lowerCamelCase__ : List[Any] = 3.0
if pytorch_dump_folder is not None:
Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase )
logger.info(f'''Saving model {checkpoint} to {pytorch_dump_folder}''' )
model.save_pretrained(UpperCamelCase )
processor.save_pretrained(UpperCamelCase )
if repo_id:
logger.info(f'''Pushing model {checkpoint} to {repo_id}''' )
model.push_to_hub(UpperCamelCase )
processor.push_to_hub(UpperCamelCase )
if __name__ == "__main__":
_A : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint''',
default='''small''',
type=str,
help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''',
)
parser.add_argument(
'''--pytorch_dump_folder''',
required=True,
default=None,
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
parser.add_argument(
'''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.'''
)
_A : List[str] =parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 41 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 | 0 |
'''simple docstring'''
from math import isclose, sqrt
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> tuple[float, float, float]:
_snake_case = point_y / 4 / point_x
_snake_case = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
_snake_case = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
_snake_case = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
_snake_case = outgoing_gradient**2 + 4
_snake_case = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
_snake_case = (point_y - outgoing_gradient * point_x) ** 2 - 100
_snake_case = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
_snake_case = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
_snake_case = x_minus if isclose(__A , __A ) else x_plus
_snake_case = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def SCREAMING_SNAKE_CASE__ ( __A = 1.4 , __A = -9.6 ) -> int:
_snake_case = 0
_snake_case = first_x_coord
_snake_case = first_y_coord
_snake_case = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
_snake_case , _snake_case , _snake_case = next_point(__A , __A , __A )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(F'''{solution() = }''')
| 42 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
__lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowercase = [3, 3, 3, 3]
__lowercase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowercase = [4, 4, 4, 4]
__lowercase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowercase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowercase = [3, 3, 3, 3]
else:
__lowercase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowercase = 96
elif "small" in model_name:
__lowercase = 96
elif "base" in model_name:
__lowercase = 128
elif "large" in model_name:
__lowercase = 192
elif "xlarge" in model_name:
__lowercase = 256
elif "huge" in model_name:
__lowercase = 352
# set label information
__lowercase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowercase = 'imagenet-22k-id2label.json'
else:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = FocalNetConfig(
embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , )
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if "patch_embed.proj" in name:
__lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowercase = 'encoder.' + name
if "encoder.layers" in name:
__lowercase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowercase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowercase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowercase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowercase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowercase = 'layernorm.weight'
if name == "norm.bias":
__lowercase = 'layernorm.bias'
if "head" in name:
__lowercase = name.replace('head' , 'classifier' )
else:
__lowercase = 'focalnet.' + name
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]:
# fmt: off
__lowercase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowercase = model_name_to_url[model_name]
print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
__lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE )
__lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
# load state dict
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify conversion
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = BitImageProcessor(
do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , )
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
__lowercase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 325 | 0 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=2 , __lowercase=99 , __lowercase=0 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=12 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase="last" , __lowercase=None , __lowercase=None , ) -> Optional[Any]:
__UpperCamelCase :Union[str, Any] = parent
__UpperCamelCase :Dict = batch_size
__UpperCamelCase :Any = seq_length
__UpperCamelCase :List[str] = is_training
__UpperCamelCase :Dict = use_input_lengths
__UpperCamelCase :Tuple = use_token_type_ids
__UpperCamelCase :Union[str, Any] = use_labels
__UpperCamelCase :Dict = gelu_activation
__UpperCamelCase :int = sinusoidal_embeddings
__UpperCamelCase :Optional[int] = causal
__UpperCamelCase :int = asm
__UpperCamelCase :Tuple = n_langs
__UpperCamelCase :Optional[int] = vocab_size
__UpperCamelCase :Tuple = n_special
__UpperCamelCase :str = hidden_size
__UpperCamelCase :int = num_hidden_layers
__UpperCamelCase :int = num_attention_heads
__UpperCamelCase :Optional[Any] = hidden_dropout_prob
__UpperCamelCase :Union[str, Any] = attention_probs_dropout_prob
__UpperCamelCase :Tuple = max_position_embeddings
__UpperCamelCase :Dict = type_vocab_size
__UpperCamelCase :Tuple = type_sequence_label_size
__UpperCamelCase :List[Any] = initializer_range
__UpperCamelCase :int = num_labels
__UpperCamelCase :Optional[Any] = num_choices
__UpperCamelCase :List[Any] = summary_type
__UpperCamelCase :str = use_proj
__UpperCamelCase :List[Any] = scope
def UpperCamelCase__ ( self) -> Optional[int]:
__UpperCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
__UpperCamelCase :Any = random_attention_mask([self.batch_size, self.seq_length])
__UpperCamelCase :Optional[Any] = None
if self.use_input_lengths:
__UpperCamelCase :str = (
ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2
) # small variation of seq_length
__UpperCamelCase :List[str] = None
if self.use_token_type_ids:
__UpperCamelCase :Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs)
__UpperCamelCase :Optional[int] = None
__UpperCamelCase :List[str] = None
__UpperCamelCase :str = None
if self.use_labels:
__UpperCamelCase :int = ids_tensor([self.batch_size] , self.type_sequence_label_size)
__UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
__UpperCamelCase :List[str] = ids_tensor([self.batch_size] , 2).float()
__UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size] , self.num_choices)
__UpperCamelCase :Optional[Any] = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCamelCase__ ( self) -> Optional[Any]:
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]:
__UpperCamelCase :Dict = FlaubertModel(config=__lowercase)
model.to(__lowercase)
model.eval()
__UpperCamelCase :str = model(__lowercase , lengths=__lowercase , langs=__lowercase)
__UpperCamelCase :Tuple = model(__lowercase , langs=__lowercase)
__UpperCamelCase :Optional[Any] = model(__lowercase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[str]:
__UpperCamelCase :Optional[int] = FlaubertWithLMHeadModel(__lowercase)
model.to(__lowercase)
model.eval()
__UpperCamelCase :Optional[int] = model(__lowercase , token_type_ids=__lowercase , labels=__lowercase)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> int:
__UpperCamelCase :int = FlaubertForQuestionAnsweringSimple(__lowercase)
model.to(__lowercase)
model.eval()
__UpperCamelCase :Union[str, Any] = model(__lowercase)
__UpperCamelCase :Optional[int] = model(__lowercase , start_positions=__lowercase , end_positions=__lowercase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Tuple:
__UpperCamelCase :Tuple = FlaubertForQuestionAnswering(__lowercase)
model.to(__lowercase)
model.eval()
__UpperCamelCase :Union[str, Any] = model(__lowercase)
__UpperCamelCase :Dict = model(
__lowercase , start_positions=__lowercase , end_positions=__lowercase , cls_index=__lowercase , is_impossible=__lowercase , p_mask=__lowercase , )
__UpperCamelCase :int = model(
__lowercase , start_positions=__lowercase , end_positions=__lowercase , cls_index=__lowercase , is_impossible=__lowercase , )
((__UpperCamelCase) , ) :Dict = result_with_labels.to_tuple()
__UpperCamelCase :Union[str, Any] = model(__lowercase , start_positions=__lowercase , end_positions=__lowercase)
((__UpperCamelCase) , ) :Any = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , ())
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top))
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top))
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top))
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,))
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Any:
__UpperCamelCase :int = FlaubertForSequenceClassification(__lowercase)
model.to(__lowercase)
model.eval()
__UpperCamelCase :Union[str, Any] = model(__lowercase)
__UpperCamelCase :List[Any] = model(__lowercase , labels=__lowercase)
self.parent.assertEqual(result.loss.shape , ())
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Optional[int]:
__UpperCamelCase :Union[str, Any] = self.num_labels
__UpperCamelCase :List[str] = FlaubertForTokenClassification(__lowercase)
model.to(__lowercase)
model.eval()
__UpperCamelCase :Any = model(__lowercase , attention_mask=__lowercase , labels=__lowercase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Dict:
__UpperCamelCase :List[str] = self.num_choices
__UpperCamelCase :int = FlaubertForMultipleChoice(config=__lowercase)
model.to(__lowercase)
model.eval()
__UpperCamelCase :Any = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
__UpperCamelCase :Tuple = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
__UpperCamelCase :Dict = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous()
__UpperCamelCase :int = model(
__lowercase , attention_mask=__lowercase , token_type_ids=__lowercase , labels=__lowercase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCamelCase__ ( self) -> List[Any]:
__UpperCamelCase :Union[str, Any] = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) :int = config_and_inputs
__UpperCamelCase :List[Any] = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''lengths''': input_lengths,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
a__ : Dict = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
a__ : Optional[int] = (
{
"""feature-extraction""": FlaubertModel,
"""fill-mask""": FlaubertWithLMHeadModel,
"""question-answering""": FlaubertForQuestionAnsweringSimple,
"""text-classification""": FlaubertForSequenceClassification,
"""token-classification""": FlaubertForTokenClassification,
"""zero-shot""": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Tuple:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''')
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase=False) -> int:
__UpperCamelCase :Union[str, Any] = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase)
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
__UpperCamelCase :Tuple = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowercase)
__UpperCamelCase :Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowercase)
return inputs_dict
def UpperCamelCase__ ( self) -> Any:
__UpperCamelCase :Optional[Any] = FlaubertModelTester(self)
__UpperCamelCase :Any = ConfigTester(self , config_class=__lowercase , emb_dim=37)
def UpperCamelCase__ ( self) -> Optional[Any]:
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self) -> int:
__UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__lowercase)
def UpperCamelCase__ ( self) -> int:
__UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__lowercase)
def UpperCamelCase__ ( self) -> List[str]:
__UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__lowercase)
def UpperCamelCase__ ( self) -> Dict:
__UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__lowercase)
def UpperCamelCase__ ( self) -> List[str]:
__UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__lowercase)
def UpperCamelCase__ ( self) -> str:
__UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__lowercase)
def UpperCamelCase__ ( self) -> List[str]:
__UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__lowercase)
@slow
def UpperCamelCase__ ( self) -> Any:
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase :Tuple = FlaubertModel.from_pretrained(__lowercase)
self.assertIsNotNone(__lowercase)
@slow
@require_torch_gpu
def UpperCamelCase__ ( self) -> Optional[int]:
__UpperCamelCase , __UpperCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
__UpperCamelCase :int = True
__UpperCamelCase :List[str] = model_class(config=__lowercase)
__UpperCamelCase :Dict = self._prepare_for_class(__lowercase , __lowercase)
__UpperCamelCase :List[str] = torch.jit.trace(
__lowercase , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu''')))
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__lowercase , os.path.join(__lowercase , '''traced_model.pt'''))
__UpperCamelCase :Optional[Any] = torch.jit.load(os.path.join(__lowercase , '''traced_model.pt''') , map_location=__lowercase)
loaded(inputs_dict['''input_ids'''].to(__lowercase) , inputs_dict['''attention_mask'''].to(__lowercase))
@require_torch
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ ( self) -> Any:
__UpperCamelCase :List[Any] = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''')
__UpperCamelCase :Tuple = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]])
with torch.no_grad():
__UpperCamelCase :str = model(__lowercase)[0]
__UpperCamelCase :Optional[Any] = torch.Size((1, 11, 768))
self.assertEqual(output.shape , __lowercase)
__UpperCamelCase :Dict = torch.tensor(
[[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]])
self.assertTrue(torch.allclose(output[:, :3, :3] , __lowercase , atol=1E-4))
| 43 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 | 0 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
_a : int = 16
_a : str = 32
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Accelerator ,_lowerCamelCase : int = 16 ) -> List[str]:
_lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_lowerCAmelCase : Any = load_dataset("""glue""" ,"""mrpc""" )
def tokenize_function(_lowerCamelCase : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
_lowerCAmelCase : Optional[int] = tokenizer(examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=_lowerCamelCase ,max_length=_lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_lowerCAmelCase : Tuple = datasets.map(
_lowerCamelCase ,batched=_lowerCamelCase ,remove_columns=["""idx""", """sentence1""", """sentence2"""] ,)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_lowerCAmelCase : Tuple = tokenized_datasets.rename_column("""label""" ,"""labels""" )
def collate_fn(_lowerCamelCase : List[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_lowerCAmelCase : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_lowerCAmelCase : Any = 16
elif accelerator.mixed_precision != "no":
_lowerCAmelCase : List[Any] = 8
else:
_lowerCAmelCase : Dict = None
return tokenizer.pad(
_lowerCamelCase ,padding="""longest""" ,max_length=_lowerCamelCase ,pad_to_multiple_of=_lowerCamelCase ,return_tensors="""pt""" ,)
# Instantiate dataloaders.
_lowerCAmelCase : List[str] = DataLoader(
tokenized_datasets["""train"""] ,shuffle=_lowerCamelCase ,collate_fn=_lowerCamelCase ,batch_size=_lowerCamelCase )
_lowerCAmelCase : List[Any] = DataLoader(
tokenized_datasets["""validation"""] ,shuffle=_lowerCamelCase ,collate_fn=_lowerCamelCase ,batch_size=_lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
_a : Any = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ) -> List[str]:
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" ,_lowerCamelCase ) == "1":
_lowerCAmelCase : str = 2
# Initialize accelerator
_lowerCAmelCase : List[str] = Accelerator(cpu=args.cpu ,mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_lowerCAmelCase : List[str] = config["""lr"""]
_lowerCAmelCase : Tuple = int(config["""num_epochs"""] )
_lowerCAmelCase : List[str] = int(config["""seed"""] )
_lowerCAmelCase : Union[str, Any] = int(config["""batch_size"""] )
_lowerCAmelCase : List[Any] = evaluate.load("""glue""" ,"""mrpc""" )
# If the batch size is too big we use gradient accumulation
_lowerCAmelCase : Tuple = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_lowerCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE
_lowerCAmelCase : Optional[int] = MAX_GPU_BATCH_SIZE
set_seed(_lowerCamelCase )
_lowerCAmelCase , _lowerCAmelCase : int = get_dataloaders(_lowerCamelCase ,_lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_lowerCAmelCase : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" ,return_dict=_lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_lowerCAmelCase : Dict = model.to(accelerator.device )
# Instantiate optimizer
_lowerCAmelCase : List[str] = AdamW(params=model.parameters() ,lr=_lowerCamelCase )
# Instantiate scheduler
_lowerCAmelCase : Union[str, Any] = get_linear_schedule_with_warmup(
optimizer=_lowerCamelCase ,num_warmup_steps=100 ,num_training_steps=(len(_lowerCamelCase ) * num_epochs) // gradient_accumulation_steps ,)
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = accelerator.prepare(
_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase )
# Now we train the model
for epoch in range(_lowerCamelCase ):
model.train()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_lowerCAmelCase : Optional[int] = model(**_lowerCamelCase )
_lowerCAmelCase : Optional[Any] = outputs.loss
_lowerCAmelCase : Optional[int] = loss / gradient_accumulation_steps
accelerator.backward(_lowerCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
_lowerCAmelCase : List[str] = 0
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_lowerCAmelCase : Union[str, Any] = model(**_lowerCamelCase )
_lowerCAmelCase : Optional[Any] = outputs.logits.argmax(dim=-1 )
_lowerCAmelCase , _lowerCAmelCase : str = accelerator.gather((predictions, batch["""labels"""]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(_lowerCamelCase ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
_lowerCAmelCase : List[str] = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_lowerCAmelCase : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=_lowerCamelCase ,references=_lowerCamelCase ,)
_lowerCAmelCase : List[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" ,_lowerCamelCase )
def SCREAMING_SNAKE_CASE ( ) -> str:
_lowerCAmelCase : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" ,type=_lowerCamelCase ,default=_lowerCamelCase ,choices=["""no""", """fp16""", """bf16""", """fp8"""] ,help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" ,)
parser.add_argument("""--cpu""" ,action="""store_true""" ,help="""If passed, will train on the CPU.""" )
_lowerCAmelCase : Union[str, Any] = parser.parse_args()
_lowerCAmelCase : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(_lowerCamelCase ,_lowerCamelCase )
if __name__ == "__main__":
main()
| 44 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 | 0 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : list[str] ) -> str:
__a = ''''''
for word_or_phrase in separated:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise Exception('''join() accepts only strings to be joined''' )
joined += word_or_phrase + separator
return joined.strip(lowerCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 45 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
StableDiffusionAttendAndExcitePipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_numpy, skip_mps, slow
from diffusers.utils.testing_utils import require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
SCREAMING_SNAKE_CASE__ = False
@skip_mps
class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
_SCREAMING_SNAKE_CASE = StableDiffusionAttendAndExcitePipeline
_SCREAMING_SNAKE_CASE = False
_SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} )
_SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS
_SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS
@classmethod
def _snake_case ( cls ) -> str:
super().setUpClass()
torch.use_deterministic_algorithms(lowercase )
@classmethod
def _snake_case ( cls ) -> List[Any]:
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase )
def _snake_case ( self ) -> str:
torch.manual_seed(0 )
lowerCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowercase , )
lowerCAmelCase = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , )
torch.manual_seed(0 )
lowerCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , )
lowerCAmelCase = CLIPTextModel(lowercase )
lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
lowerCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _snake_case ( self , lowercase , lowercase=0 ) -> Optional[Any]:
if str(lowercase ).startswith("""mps""" ):
lowerCAmelCase = torch.manual_seed(lowercase )
else:
lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase )
lowerCAmelCase = lowerCAmelCase = {
"""prompt""": """a cat and a frog""",
"""token_indices""": [2, 5],
"""generator""": generator,
"""num_inference_steps""": 1,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
"""max_iter_to_alter""": 2,
"""thresholds""": {0: 0.7},
}
return inputs
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase = """cpu"""
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**lowercase )
pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
lowerCAmelCase = self.get_dummy_inputs(lowercase )
lowerCAmelCase = pipe(**lowercase ).images
lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 64, 64, 3) )
lowerCAmelCase = np.array(
[0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] )
lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowercase , 1e-3 )
def _snake_case ( self ) -> Union[str, Any]:
super().test_cpu_offload_forward_pass(expected_max_diff=5e-4 )
def _snake_case ( self ) -> int:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _snake_case ( self ) -> Optional[int]:
self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4 )
def _snake_case ( self ) -> Optional[int]:
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 )
def _snake_case ( self ) -> Optional[int]:
super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4 )
def _snake_case ( self ) -> int:
super().test_save_load_local(expected_max_difference=5e-4 )
def _snake_case ( self ) -> int:
super().test_save_load_optional_components(expected_max_difference=4e-4 )
@require_torch_gpu
@slow
class lowercase ( unittest.TestCase ):
@classmethod
def _snake_case ( cls ) -> Dict:
super().setUpClass()
torch.use_deterministic_algorithms(lowercase )
@classmethod
def _snake_case ( cls ) -> Tuple:
super().tearDownClass()
torch.use_deterministic_algorithms(lowercase )
def _snake_case ( self ) -> List[str]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ) -> List[Any]:
lowerCAmelCase = torch.manual_seed(51 )
lowerCAmelCase = StableDiffusionAttendAndExcitePipeline.from_pretrained(
"""CompVis/stable-diffusion-v1-4""" , safety_checker=lowercase , torch_dtype=torch.floataa )
pipe.to("""cuda""" )
lowerCAmelCase = """a painting of an elephant with glasses"""
lowerCAmelCase = [5, 7]
lowerCAmelCase = pipe(
prompt=lowercase , token_indices=lowercase , guidance_scale=7.5 , generator=lowercase , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0]
lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""" )
assert np.abs((expected_image - image).max() ) < 5e-1
| 46 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 0 |
'''simple docstring'''
def _lowerCAmelCase ( _UpperCamelCase : List[str] ) -> int: # noqa: E741
"""simple docstring"""
_SCREAMING_SNAKE_CASE =len(_UpperCamelCase )
_SCREAMING_SNAKE_CASE =0
_SCREAMING_SNAKE_CASE =[0] * n
_SCREAMING_SNAKE_CASE =[False] * n
_SCREAMING_SNAKE_CASE =[False] * n
def dfs(_UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any , _UpperCamelCase : List[str] ):
if parent == root:
out_edge_count += 1
_SCREAMING_SNAKE_CASE =True
_SCREAMING_SNAKE_CASE =at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
_SCREAMING_SNAKE_CASE =dfs(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
_SCREAMING_SNAKE_CASE =min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
_SCREAMING_SNAKE_CASE =True
# AP found via cycle
if at == low[to]:
_SCREAMING_SNAKE_CASE =True
else:
_SCREAMING_SNAKE_CASE =min(low[at] , _UpperCamelCase )
return out_edge_count
for i in range(_UpperCamelCase ):
if not visited[i]:
_SCREAMING_SNAKE_CASE =0
_SCREAMING_SNAKE_CASE =dfs(_UpperCamelCase , _UpperCamelCase , -1 , _UpperCamelCase )
_SCREAMING_SNAKE_CASE =out_edge_count > 1
for x in range(len(_UpperCamelCase ) ):
if is_art[x] is True:
print(_UpperCamelCase )
# Adjacency list of graph
lowerCamelCase : int = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 47 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 0 |
import numpy as np
import datasets
SCREAMING_SNAKE_CASE__ : List[str] = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n'
SCREAMING_SNAKE_CASE__ : Union[str, Any] = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n'
SCREAMING_SNAKE_CASE__ : int = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase__ (datasets.Metric ):
'''simple docstring'''
def _lowercase ( self ) -> List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ),
} ) , )
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ ) -> List[Any]:
# convert to numpy arrays
lowerCamelCase : Tuple = np.array(UpperCamelCase__ )
lowerCamelCase : Tuple = np.array(UpperCamelCase__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("Expected `X` to be a 2D vector" )
if len(reference_distribution.shape ) != 2:
raise ValueError("Expected `reference_distribution` to be a 2D vector" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" )
# Get mahalanobis distance for each prediction
lowerCamelCase : List[Any] = X - np.mean(UpperCamelCase__ )
lowerCamelCase : Dict = np.cov(reference_distribution.T )
try:
lowerCamelCase : str = np.linalg.inv(UpperCamelCase__ )
except np.linalg.LinAlgError:
lowerCamelCase : Any = np.linalg.pinv(UpperCamelCase__ )
lowerCamelCase : Optional[int] = np.dot(UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : int = np.dot(UpperCamelCase__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 48 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__snake_case :Optional[Any] = {
'''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case :Optional[int] = [
'''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TimesformerModel''',
'''TimesformerForVideoClassification''',
'''TimesformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
__snake_case :Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 49 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 0 |
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str:
if "cls_token" in name:
lowerCamelCase__ : List[str] = name.replace('cls_token' , 'vit.embeddings.cls_token' )
if "mask_token" in name:
lowerCamelCase__ : Optional[int] = name.replace('mask_token' , 'decoder.mask_token' )
if "decoder_pos_embed" in name:
lowerCamelCase__ : Optional[Any] = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' )
if "pos_embed" in name and "decoder" not in name:
lowerCamelCase__ : Dict = name.replace('pos_embed' , 'vit.embeddings.position_embeddings' )
if "patch_embed.proj" in name:
lowerCamelCase__ : Union[str, Any] = name.replace('patch_embed.proj' , 'vit.embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
lowerCamelCase__ : int = name.replace('patch_embed.norm' , 'vit.embeddings.norm' )
if "decoder_blocks" in name:
lowerCamelCase__ : Optional[int] = name.replace('decoder_blocks' , 'decoder.decoder_layers' )
if "blocks" in name:
lowerCamelCase__ : str = name.replace('blocks' , 'vit.encoder.layer' )
if "attn.proj" in name:
lowerCamelCase__ : Dict = name.replace('attn.proj' , 'attention.output.dense' )
if "attn" in name:
lowerCamelCase__ : int = name.replace('attn' , 'attention.self' )
if "norm1" in name:
lowerCamelCase__ : Any = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
lowerCamelCase__ : int = name.replace('norm2' , 'layernorm_after' )
if "mlp.fc1" in name:
lowerCamelCase__ : str = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
lowerCamelCase__ : int = name.replace('mlp.fc2' , 'output.dense' )
if "decoder_embed" in name:
lowerCamelCase__ : Dict = name.replace('decoder_embed' , 'decoder.decoder_embed' )
if "decoder_norm" in name:
lowerCamelCase__ : Any = name.replace('decoder_norm' , 'decoder.decoder_norm' )
if "decoder_pred" in name:
lowerCamelCase__ : List[Any] = name.replace('decoder_pred' , 'decoder.decoder_pred' )
if "norm.weight" in name and "decoder" not in name:
lowerCamelCase__ : str = name.replace('norm.weight' , 'vit.layernorm.weight' )
if "norm.bias" in name and "decoder" not in name:
lowerCamelCase__ : List[Any] = name.replace('norm.bias' , 'vit.layernorm.bias' )
return name
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]:
for key in orig_state_dict.copy().keys():
lowerCamelCase__ : Tuple = orig_state_dict.pop(_UpperCAmelCase )
if "qkv" in key:
lowerCamelCase__ : List[str] = key.split('.' )
lowerCamelCase__ : List[str] = int(key_split[1] )
if "decoder_blocks" in key:
lowerCamelCase__ : Any = config.decoder_hidden_size
lowerCamelCase__ : List[Any] = 'decoder.decoder_layers.'
if "weight" in key:
lowerCamelCase__ : int = val[:dim, :]
lowerCamelCase__ : Union[str, Any] = val[dim : dim * 2, :]
lowerCamelCase__ : Union[str, Any] = val[-dim:, :]
elif "bias" in key:
lowerCamelCase__ : List[str] = val[:dim]
lowerCamelCase__ : Optional[int] = val[dim : dim * 2]
lowerCamelCase__ : str = val[-dim:]
else:
lowerCamelCase__ : Any = config.hidden_size
lowerCamelCase__ : Dict = 'vit.encoder.layer.'
if "weight" in key:
lowerCamelCase__ : Optional[Any] = val[:dim, :]
lowerCamelCase__ : List[str] = val[dim : dim * 2, :]
lowerCamelCase__ : List[str] = val[-dim:, :]
elif "bias" in key:
lowerCamelCase__ : Dict = val[:dim]
lowerCamelCase__ : Union[str, Any] = val[dim : dim * 2]
lowerCamelCase__ : Optional[Any] = val[-dim:]
else:
lowerCamelCase__ : Dict = val
return orig_state_dict
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int:
lowerCamelCase__ : Union[str, Any] = ViTMAEConfig()
if "large" in checkpoint_url:
lowerCamelCase__ : List[Any] = 1024
lowerCamelCase__ : str = 4096
lowerCamelCase__ : Optional[Any] = 24
lowerCamelCase__ : List[str] = 16
elif "huge" in checkpoint_url:
lowerCamelCase__ : Any = 14
lowerCamelCase__ : str = 1280
lowerCamelCase__ : Dict = 5120
lowerCamelCase__ : Tuple = 32
lowerCamelCase__ : List[Any] = 16
lowerCamelCase__ : List[Any] = ViTMAEForPreTraining(_UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = torch.hub.load_state_dict_from_url(_UpperCAmelCase , map_location='cpu' )['model']
lowerCamelCase__ : List[str] = ViTMAEImageProcessor(size=config.image_size )
lowerCamelCase__ : int = convert_state_dict(_UpperCAmelCase , _UpperCAmelCase )
model.load_state_dict(_UpperCAmelCase )
model.eval()
lowerCamelCase__ : Dict = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg'
lowerCamelCase__ : Union[str, Any] = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw )
lowerCamelCase__ : int = ViTMAEImageProcessor(size=config.image_size )
lowerCamelCase__ : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' )
# forward pass
torch.manual_seed(2 )
lowerCamelCase__ : str = model(**_UpperCAmelCase )
lowerCamelCase__ : Any = outputs.logits
if "large" in checkpoint_url:
lowerCamelCase__ : List[str] = torch.tensor(
[[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] )
elif "huge" in checkpoint_url:
lowerCamelCase__ : Optional[Any] = torch.tensor(
[[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] )
else:
lowerCamelCase__ : Tuple = torch.tensor(
[[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4 )
print(F"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(_UpperCAmelCase )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_UpperCAmelCase )
if __name__ == "__main__":
_UpperCAmelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--checkpoint_url""",
default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""",
type=str,
help="""URL of the checkpoint you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
_UpperCAmelCase : Union[str, Any] = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 50 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 0 |
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def A (__A : Optional[int] , __A : Any , __A : str=1024 , __A : Tuple=1024 , __A : int=False , **__A : Any ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = AutoTokenizer.from_pretrained(__A )
UpperCAmelCase_ = SeqaSeqDataset(__A , __A , __A , __A , type_path='''train''' , **__A )
UpperCAmelCase_ = tok.pad_token_id
def get_lens(__A : Optional[int] ):
UpperCAmelCase_ = tqdm(
DataLoader(__A , batch_size=512 , num_workers=8 , shuffle=__A , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , )
UpperCAmelCase_ = []
for batch in dl:
UpperCAmelCase_ = batch['''input_ids'''].ne(__A ).sum(1 ).tolist()
UpperCAmelCase_ = batch['''labels'''].ne(__A ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(__A , __A ):
max_lens.append(max(__A , __A ) )
else:
max_lens.extend(__A )
return max_lens
UpperCAmelCase_ = get_lens(__A )
UpperCAmelCase_ = SeqaSeqDataset(__A , __A , __A , __A , type_path='''val''' , **__A )
UpperCAmelCase_ = get_lens(__A )
pickle_save(__A , train_ds.len_file )
pickle_save(__A , val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file)
| 51 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCamelCase : Union[str, Any] = {
"""configuration_clipseg""": [
"""CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""CLIPSegConfig""",
"""CLIPSegTextConfig""",
"""CLIPSegVisionConfig""",
],
"""processing_clipseg""": ["""CLIPSegProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase : Optional[Any] = [
"""CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CLIPSegModel""",
"""CLIPSegPreTrainedModel""",
"""CLIPSegTextModel""",
"""CLIPSegVisionModel""",
"""CLIPSegForImageSegmentation""",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
__lowerCamelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 52 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 0 |
'''simple docstring'''
import os
import string
import sys
a__ : Dict =1 << 8
a__ : Union[str, Any] ={
'''tab''': ord('''\t'''),
'''newline''': ord('''\r'''),
'''esc''': 27,
'''up''': 65 + ARROW_KEY_FLAG,
'''down''': 66 + ARROW_KEY_FLAG,
'''right''': 67 + ARROW_KEY_FLAG,
'''left''': 68 + ARROW_KEY_FLAG,
'''mod_int''': 91,
'''undefined''': sys.maxsize,
'''interrupt''': 3,
'''insert''': 50,
'''delete''': 51,
'''pg_up''': 53,
'''pg_down''': 54,
}
a__ : Tuple =KEYMAP['''up''']
a__ : Any =KEYMAP['''left''']
if sys.platform == "win32":
a__ : Union[str, Any] =[]
a__ : Union[str, Any] ={
B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG,
B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG,
B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG,
B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG,
B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG,
B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG,
B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG,
B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG,
}
for i in range(10):
a__ : Union[str, Any] =ord(str(i))
def lowercase__ ( ) -> List[Any]:
"""simple docstring"""
if os.name == "nt":
import msvcrt
__UpperCamelCase = 'mbcs'
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(__lowercase ) == 0:
# Read the keystroke
__UpperCamelCase = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
__UpperCamelCase = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
__UpperCamelCase = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) )
WIN_CH_BUFFER.append(__lowercase )
if ord(__lowercase ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(126 ) )
__UpperCamelCase = chr(KEYMAP['esc'] )
except KeyError:
__UpperCamelCase = cha[1]
else:
__UpperCamelCase = ch.decode(__lowercase )
else:
__UpperCamelCase = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
__UpperCamelCase = sys.stdin.fileno()
__UpperCamelCase = termios.tcgetattr(__lowercase )
try:
tty.setraw(__lowercase )
__UpperCamelCase = sys.stdin.read(1 )
finally:
termios.tcsetattr(__lowercase , termios.TCSADRAIN , __lowercase )
return ch
def lowercase__ ( ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = get_raw_chars()
if ord(__lowercase ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(__lowercase ) == KEYMAP["esc"]:
__UpperCamelCase = get_raw_chars()
if ord(__lowercase ) == KEYMAP["mod_int"]:
__UpperCamelCase = get_raw_chars()
if ord(__lowercase ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(__lowercase ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(__lowercase ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 53 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 0 |
"""simple docstring"""
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import fa_score, matthews_corrcoef
import datasets
a__ : Any = '''\
@inproceedings{wang2019glue,
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
note={In the Proceedings of ICLR.},
year={2019}
}
'''
a__ : str = '''\
GLUE, the General Language Understanding Evaluation benchmark
(https://gluebenchmark.com/) is a collection of resources for training,
evaluating, and analyzing natural language understanding systems.
'''
a__ : int = '''
Compute GLUE evaluation metric associated to each GLUE dataset.
Args:
predictions: list of predictions to score.
Each translation should be tokenized into a list of tokens.
references: list of lists of references for each translation.
Each reference should be tokenized into a list of tokens.
Returns: depending on the GLUE subset, one or several of:
"accuracy": Accuracy
"f1": F1 score
"pearson": Pearson Correlation
"spearmanr": Spearman Correlation
"matthews_correlation": Matthew Correlation
Examples:
>>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')
>>> references = [0., 1., 2., 3., 4., 5.]
>>> predictions = [0., 1., 2., 3., 4., 5.]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})
{\'pearson\': 1.0, \'spearmanr\': 1.0}
>>> glue_metric = datasets.load_metric(\'glue\', \'cola\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'matthews_correlation\': 1.0}
'''
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
return float((preds == labels).mean() )
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = simple_accuracy(lowerCAmelCase_ , lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = float(fa_score(y_true=lowerCAmelCase_ , y_pred=lowerCAmelCase_ ) )
return {
"accuracy": acc,
"f1": fa,
}
def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = float(pearsonr(lowerCAmelCase_ , lowerCAmelCase_ )[0] )
__SCREAMING_SNAKE_CASE = float(spearmanr(lowerCAmelCase_ , lowerCAmelCase_ )[0] )
return {
"pearson": pearson_corr,
"spearmanr": spearman_corr,
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class UpperCamelCase_ ( datasets.Metric):
"""simple docstring"""
def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]:
if self.config_name not in [
"sst2",
"mnli",
"mnli_mismatched",
"mnli_matched",
"cola",
"stsb",
"mrpc",
"qqp",
"qnli",
"rte",
"wnli",
"hans",
]:
raise KeyError(
"You should supply a configuration name selected in "
"[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", "
"\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("int64" if self.config_name != "stsb" else "float32" ),
"references": datasets.Value("int64" if self.config_name != "stsb" else "float32" ),
} ) , codebase_urls=[] , reference_urls=[] , format="numpy" , )
def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Dict ) -> Optional[Any]:
if self.config_name == "cola":
return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase__ , UpperCAmelCase__ )}
elif self.config_name == "stsb":
return pearson_and_spearman(UpperCAmelCase__ , UpperCAmelCase__ )
elif self.config_name in ["mrpc", "qqp"]:
return acc_and_fa(UpperCAmelCase__ , UpperCAmelCase__ )
elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]:
return {"accuracy": simple_accuracy(UpperCAmelCase__ , UpperCAmelCase__ )}
else:
raise KeyError(
"You should supply a configuration name selected in "
"[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", "
"\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]" )
| 54 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 0 |
'''simple docstring'''
from .integrations import (
is_optuna_available,
is_ray_available,
is_sigopt_available,
is_wandb_available,
run_hp_search_optuna,
run_hp_search_ray,
run_hp_search_sigopt,
run_hp_search_wandb,
)
from .trainer_utils import (
HPSearchBackend,
default_hp_space_optuna,
default_hp_space_ray,
default_hp_space_sigopt,
default_hp_space_wandb,
)
from .utils import logging
a_ : Optional[Any] = logging.get_logger(__name__)
class snake_case :
"""simple docstring"""
_lowerCamelCase = 42
_lowerCamelCase = None
@staticmethod
def snake_case ( ):
"""simple docstring"""
raise NotImplementedError
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
raise NotImplementedError
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
raise NotImplementedError
def snake_case ( self ):
"""simple docstring"""
if not self.is_available():
raise RuntimeError(
f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' )
@classmethod
def snake_case ( cls ):
"""simple docstring"""
return f'''`pip install {cls.pip_package or cls.name}`'''
class snake_case ( lowercase ):
"""simple docstring"""
_lowerCamelCase = "optuna"
@staticmethod
def snake_case ( ):
"""simple docstring"""
return is_optuna_available()
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
return run_hp_search_optuna(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
return default_hp_space_optuna(UpperCamelCase )
class snake_case ( lowercase ):
"""simple docstring"""
_lowerCamelCase = "ray"
_lowerCamelCase = "'ray[tune]'"
@staticmethod
def snake_case ( ):
"""simple docstring"""
return is_ray_available()
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
return run_hp_search_ray(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
return default_hp_space_ray(UpperCamelCase )
class snake_case ( lowercase ):
"""simple docstring"""
_lowerCamelCase = "sigopt"
@staticmethod
def snake_case ( ):
"""simple docstring"""
return is_sigopt_available()
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
return run_hp_search_sigopt(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
return default_hp_space_sigopt(UpperCamelCase )
class snake_case ( lowercase ):
"""simple docstring"""
_lowerCamelCase = "wandb"
@staticmethod
def snake_case ( ):
"""simple docstring"""
return is_wandb_available()
def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
return run_hp_search_wandb(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
return default_hp_space_wandb(UpperCamelCase )
a_ : Dict = {
HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend]
}
def __snake_case ( ):
lowerCamelCase_ = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()]
if len(UpperCAmelCase_ ) > 0:
lowerCamelCase_ = available_backends[0].name
if len(UpperCAmelCase_ ) > 1:
logger.info(
F'''{len(UpperCAmelCase_ )} hyperparameter search backends available. Using {name} as the default.''' )
return name
raise RuntimeError(
"No hyperparameter search backend available.\n"
+ "\n".join(
F''' - To install {backend.name} run {backend.pip_install()}'''
for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
| 55 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 0 |
'''simple docstring'''
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class a :
def __init__( self : Tuple , lowercase_ : Optional[int] , lowercase_ : str=3 , lowercase_ : Optional[int]=32 , lowercase_ : str=3 , lowercase_ : int=10 , lowercase_ : int=[10, 20, 30, 40] , lowercase_ : Optional[Any]=[1, 1, 2, 1] , lowercase_ : List[str]=True , lowercase_ : Optional[int]=True , lowercase_ : int="relu" , lowercase_ : Dict=3 , lowercase_ : Dict=None , ):
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = image_size
snake_case_ = num_channels
snake_case_ = embeddings_size
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = is_training
snake_case_ = use_labels
snake_case_ = hidden_act
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = len(lowercase_ )
def A_ ( self : Any ):
snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.num_labels )
snake_case_ = self.get_config()
return config, pixel_values, labels
def A_ ( self : Optional[Any] ):
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def A_ ( self : int , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] ):
snake_case_ = RegNetModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case_ = model(lowercase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def A_ ( self : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ):
snake_case_ = self.num_labels
snake_case_ = RegNetForImageClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case_ = model(lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self : str ):
snake_case_ = self.prepare_config_and_inputs()
snake_case_ ,snake_case_ ,snake_case_ = config_and_inputs
snake_case_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ):
snake_case_ = (RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
snake_case_ = (
{"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification}
if is_torch_available()
else {}
)
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = False
def A_ ( self : Tuple ):
snake_case_ = RegNetModelTester(self )
snake_case_ = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ )
def A_ ( self : Optional[int] ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def A_ ( self : List[Any] ):
return
@unittest.skip(reason='''RegNet does not use inputs_embeds''' )
def A_ ( self : Any ):
pass
@unittest.skip(reason='''RegNet does not support input and output embeddings''' )
def A_ ( self : Optional[Any] ):
pass
def A_ ( self : Dict ):
snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(lowercase_ )
snake_case_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ = [*signature.parameters.keys()]
snake_case_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , lowercase_ )
def A_ ( self : Union[str, Any] ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase_ )
def A_ ( self : Optional[Any] ):
snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ = model_class(config=lowercase_ )
for name, module in model.named_modules():
if isinstance(lowercase_ , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
def A_ ( self : List[str] ):
def check_hidden_states_output(lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] ):
snake_case_ = model_class(lowercase_ )
model.to(lowercase_ )
model.eval()
with torch.no_grad():
snake_case_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) )
snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
snake_case_ = self.model_tester.num_stages
self.assertEqual(len(lowercase_ ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
snake_case_ ,snake_case_ = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ = ['''basic''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
snake_case_ = layer_type
snake_case_ = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ = True
check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ )
def A_ ( self : List[Any] ):
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase_ )
@slow
def A_ ( self : List[Any] ):
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = RegNetModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
def __magic_name__ ( ) -> Any:
'''simple docstring'''
snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class a ( unittest.TestCase ):
@cached_property
def A_ ( self : Any ):
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A_ ( self : Tuple ):
snake_case_ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowercase_ )
snake_case_ = self.default_image_processor
snake_case_ = prepare_img()
snake_case_ = image_processor(images=lowercase_ , return_tensors='''pt''' ).to(lowercase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(**lowercase_ )
# verify the logits
snake_case_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowercase_ )
snake_case_ = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(lowercase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) )
| 56 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Optional[int] = logging.get_logger(__name__)
A : Optional[Any] = {
"caidas/swin2sr-classicalsr-x2-64": (
"https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"
),
}
class _UpperCamelCase ( lowerCAmelCase__ ):
'''simple docstring'''
__UpperCAmelCase : str ="""swin2sr"""
__UpperCAmelCase : Union[str, Any] ={
"""hidden_size""": """embed_dim""",
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self , __a=64 , __a=1 , __a=3 , __a=1_80 , __a=[6, 6, 6, 6, 6, 6] , __a=[6, 6, 6, 6, 6, 6] , __a=8 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=0.0_2 , __a=1e-5 , __a=2 , __a=1.0 , __a="1conv" , __a="pixelshuffle" , **__a , ):
super().__init__(**__a )
__lowerCAmelCase = image_size
__lowerCAmelCase = patch_size
__lowerCAmelCase = num_channels
__lowerCAmelCase = embed_dim
__lowerCAmelCase = depths
__lowerCAmelCase = len(__a )
__lowerCAmelCase = num_heads
__lowerCAmelCase = window_size
__lowerCAmelCase = mlp_ratio
__lowerCAmelCase = qkv_bias
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = drop_path_rate
__lowerCAmelCase = hidden_act
__lowerCAmelCase = use_absolute_embeddings
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = initializer_range
__lowerCAmelCase = upscale
__lowerCAmelCase = img_range
__lowerCAmelCase = resi_connection
__lowerCAmelCase = upsampler
| 57 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class a_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , A , A=7 , A=3 , A=10 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , A=None , ) -> List[Any]:
_SCREAMING_SNAKE_CASE = size if size is not None else {"""shortest_edge""": 18}
_SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_SCREAMING_SNAKE_CASE = parent
_SCREAMING_SNAKE_CASE = batch_size
_SCREAMING_SNAKE_CASE = num_channels
_SCREAMING_SNAKE_CASE = num_frames
_SCREAMING_SNAKE_CASE = image_size
_SCREAMING_SNAKE_CASE = min_resolution
_SCREAMING_SNAKE_CASE = max_resolution
_SCREAMING_SNAKE_CASE = do_resize
_SCREAMING_SNAKE_CASE = size
_SCREAMING_SNAKE_CASE = do_normalize
_SCREAMING_SNAKE_CASE = image_mean
_SCREAMING_SNAKE_CASE = image_std
_SCREAMING_SNAKE_CASE = crop_size
def snake_case_( self ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class a_ ( snake_case_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = VivitImageProcessor if is_vision_available() else None
def snake_case_( self ) -> List[str]:
_SCREAMING_SNAKE_CASE = VivitImageProcessingTester(self )
@property
def snake_case_( self ) -> Any:
return self.image_processor_tester.prepare_image_processor_dict()
def snake_case_( self ) -> int:
_SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A , """image_mean""" ) )
self.assertTrue(hasattr(A , """image_std""" ) )
self.assertTrue(hasattr(A , """do_normalize""" ) )
self.assertTrue(hasattr(A , """do_resize""" ) )
self.assertTrue(hasattr(A , """do_center_crop""" ) )
self.assertTrue(hasattr(A , """size""" ) )
def snake_case_( self ) -> int:
_SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
_SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def snake_case_( self ) -> Optional[int]:
# Initialize image_processing
_SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
_SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
_SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_SCREAMING_SNAKE_CASE = image_processing(A , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def snake_case_( self ) -> List[str]:
# Initialize image_processing
_SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , numpify=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
_SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_SCREAMING_SNAKE_CASE = image_processing(A , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def snake_case_( self ) -> str:
# Initialize image_processing
_SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_SCREAMING_SNAKE_CASE = prepare_video_inputs(self.image_processor_tester , equal_resolution=A , torchify=A )
for video in video_inputs:
self.assertIsInstance(A , A )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
_SCREAMING_SNAKE_CASE = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_SCREAMING_SNAKE_CASE = image_processing(A , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 58 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
__lowerCamelCase = {"""tokenization_herbert""": ["""HerbertTokenizer"""]}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ["""HerbertTokenizerFast"""]
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 59 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = module
__lowercase = nn.Sequential(
nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , )
__lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
# We keep the constants inside the init function and model loading inside setUp function
# We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected)
# Therefore here we use only bloom-1b3 to test our module
lowerCAmelCase__ : int = "bigscience/bloom-1b7"
# Constant values
lowerCAmelCase__ : Any = 2.109659552692574
lowerCAmelCase__ : str = "Hello my name is"
lowerCAmelCase__ : Any = set()
EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" )
EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" )
EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" )
lowerCAmelCase__ : List[Any] = 10
def a__ ( self : Optional[int] ) -> List[Any]:
"""simple docstring"""
__lowercase = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
# Models and tokenizer
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : Any ) -> Optional[Any]:
"""simple docstring"""
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = self.model_abit.config
self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) )
__lowercase = config.to_dict()
__lowercase = config.to_diff_dict()
__lowercase = config.to_json_string()
def a__ ( self : Dict ) -> Tuple:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
__lowercase = self.model_fpaa.get_memory_footprint()
__lowercase = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
__lowercase = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(_UpperCAmelCase , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def a__ ( self : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
__lowercase = True
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
def a__ ( self : str ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
__lowercase = BitsAndBytesConfig()
with self.assertRaises(_UpperCAmelCase ):
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , )
def a__ ( self : Optional[Any] ) -> Tuple:
"""simple docstring"""
with self.assertRaises(_UpperCAmelCase ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(_UpperCAmelCase ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
__lowercase = self.model_fpaa.to(torch.floataa )
__lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
__lowercase = self.model_fpaa.to('cpu' )
# Check this does not throw an error
__lowercase = self.model_fpaa.half()
# Check this does not throw an error
__lowercase = self.model_fpaa.float()
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
@classmethod
def a__ ( cls : int ) -> Tuple:
"""simple docstring"""
__lowercase = 't5-small'
__lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
__lowercase = AutoTokenizer.from_pretrained(cls.model_name )
__lowercase = 'Translate in German: Hello, my dog is cute'
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : int ) -> int:
"""simple docstring"""
from transformers import TaForConditionalGeneration
__lowercase = TaForConditionalGeneration._keep_in_fpaa_modules
__lowercase = None
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
__lowercase = modules
def a__ ( self : str ) -> Optional[Any]:
"""simple docstring"""
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
# test with `flan-t5-small`
__lowercase = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
__lowercase = model.generate(**_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Any:
"""simple docstring"""
super().setUp()
# model_name
__lowercase = 'bigscience/bloom-560m'
__lowercase = 't5-small'
# Different types of model
__lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Sequence classification model
__lowercase = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# CausalLM model
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
# Seq2seq model
__lowercase = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' )
def a__ ( self : int ) -> List[str]:
"""simple docstring"""
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : str ) -> str:
"""simple docstring"""
super().setUp()
def a__ ( self : Dict ) -> Any:
"""simple docstring"""
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
__lowercase = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
__lowercase = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( lowerCAmelCase__ ):
def a__ ( self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
super().setUp()
def a__ ( self : List[Any] ) -> int:
"""simple docstring"""
__lowercase = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
__lowercase = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
__lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS )
class A__ ( lowerCAmelCase__ ):
def a__ ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'facebook/opt-350m'
super().setUp()
def a__ ( self : Dict ) -> List[str]:
"""simple docstring"""
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
__lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
__lowercase = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
__lowercase = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(_UpperCAmelCase ) ):
__lowercase = LoRALayer(module.q_proj , rank=16 )
__lowercase = LoRALayer(module.k_proj , rank=16 )
__lowercase = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
__lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
__lowercase = model.forward(**_UpperCAmelCase )
out.logits.norm().backward()
for module in model.modules():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(_UpperCAmelCase , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Any = "gpt2-xl"
lowerCAmelCase__ : str = 3.3191854854152187
| 325 | 0 |
"""simple docstring"""
import math
def _snake_case ( _snake_case : int ):
lowerCAmelCase : Dict = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(_snake_case )
def _snake_case ( _snake_case : float = 1 / 12345 ):
lowerCAmelCase : Tuple = 0
lowerCAmelCase : List[Any] = 0
lowerCAmelCase : int = 3
while True:
lowerCAmelCase : List[Any] = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(_snake_case ):
lowerCAmelCase : Any = int(_snake_case )
total_partitions += 1
if check_partition_perfect(_snake_case ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(_snake_case )
integer += 1
if __name__ == "__main__":
print(f"""{solution() = }""")
| 60 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class A__ :
def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = 13
__lowercase = 7
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = True
__lowercase = 99
__lowercase = 3_84
__lowercase = 2
__lowercase = 4
__lowercase = 37
__lowercase = 'gelu'
__lowercase = 0.1
__lowercase = 0.1
__lowercase = 5_12
__lowercase = 16
__lowercase = 2
__lowercase = 0.02
__lowercase = 3
__lowercase = 4
__lowercase = 1_28
__lowercase = 2
__lowercase = 9
__lowercase = 1
__lowercase = None
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModel(config=_UpperCAmelCase )
__lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__lowercase = [input_ids, input_mask]
__lowercase = model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str:
"""simple docstring"""
__lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_choices
__lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__lowercase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase )
__lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
__lowercase = model(_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a__ ( self : int ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) , (
__lowercase
) ,
) = config_and_inputs
__lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : List[str] = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ : List[str] = (
{
"feature-extraction": TFConvBertModel,
"fill-mask": TFConvBertForMaskedLM,
"question-answering": TFConvBertForQuestionAnswering,
"text-classification": TFConvBertForSequenceClassification,
"token-classification": TFConvBertForTokenClassification,
"zero-shot": TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : int = False
lowerCAmelCase__ : List[str] = False
def a__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
__lowercase = TFConvBertModelTester(self )
__lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def a__ ( self : Any ) -> Dict:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def a__ ( self : int ) -> str:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def a__ ( self : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def a__ ( self : List[str] ) -> List[str]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = True
if hasattr(_UpperCAmelCase , 'use_cache' ):
__lowercase = True
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
for model_class in self.all_model_classes:
__lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = model_class(_UpperCAmelCase )
__lowercase = len(model(_UpperCAmelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase )
__lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' )
__lowercase = tf.keras.models.load_model(_UpperCAmelCase )
__lowercase = model(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = outputs['encoder_hidden_states']
__lowercase = outputs['encoder_attentions']
else:
__lowercase = outputs['hidden_states']
__lowercase = outputs['attentions']
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
__lowercase = getattr(
self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def a__ ( self : List[str] ) -> Dict:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
self.assertIsNotNone(_UpperCAmelCase )
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
__lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = True
__lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
__lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase )
def check_decoder_attentions_output(_UpperCAmelCase : int ):
__lowercase = len(_UpperCAmelCase )
self.assertEqual(out_len % 2 , 0 )
__lowercase = outputs.decoder_attentions
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ):
__lowercase = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
__lowercase = True
__lowercase = False
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
__lowercase = len(_UpperCAmelCase )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
if self.is_encoder_decoder:
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_decoder_attentions_output(_UpperCAmelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
# Check attention is always last and order is fine
__lowercase = True
__lowercase = True
__lowercase = model_class(_UpperCAmelCase )
__lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) )
self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase )
check_encoder_attentions_output(_UpperCAmelCase )
@require_tf
class A__ ( unittest.TestCase ):
@slow
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' )
__lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] )
__lowercase = model(_UpperCAmelCase )[0]
__lowercase = [1, 6, 7_68]
self.assertEqual(output.shape , _UpperCAmelCase )
__lowercase = tf.constant(
[
[
[-0.03_475_493, -0.4_686_034, -0.30_638_832],
[0.22_637_248, -0.26_988_646, -0.7_423_424],
[0.10_324_868, -0.45_013_508, -0.58_280_784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
| 325 | 0 |
"""simple docstring"""
import numpy as np
import torch
from torch.utils.data import Dataset, IterableDataset
from ..utils.generic import ModelOutput
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Any = dataset
UpperCAmelCase_ : Dict = process
UpperCAmelCase_ : List[Any] = params
def __len__( self ):
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = self.dataset[i]
UpperCAmelCase_ : Tuple = self.process(lowercase_ , **self.params )
return processed
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = loader
UpperCAmelCase_ : Optional[int] = infer
UpperCAmelCase_ : List[str] = params
if loader_batch_size == 1:
# Let's spare some time by deactivating altogether
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : str = loader_batch_size
# Internal bookkeeping
UpperCAmelCase_ : List[Any] = None
UpperCAmelCase_ : Union[str, Any] = None
def __len__( self ):
"""simple docstring"""
return len(self.loader )
def __iter__( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = iter(self.loader )
return self
def UpperCamelCase__ ( self ):
"""simple docstring"""
if isinstance(self._loader_batch_data , torch.Tensor ):
# Batch data is simple tensor, just fetch the slice
UpperCAmelCase_ : str = self._loader_batch_data[self._loader_batch_index]
else:
# Batch data is assumed to be BaseModelOutput (or dict)
UpperCAmelCase_ : List[Any] = {}
for k, element in self._loader_batch_data.items():
if isinstance(lowercase_ , lowercase_ ):
# Convert ModelOutput to tuple first
UpperCAmelCase_ : List[str] = element.to_tuple()
if isinstance(element[0] , torch.Tensor ):
UpperCAmelCase_ : int = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
UpperCAmelCase_ : Union[str, Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(lowercase_ , lowercase_ ):
# Those are stored as lists of tensors so need specific unbatching.
if isinstance(element[0] , torch.Tensor ):
UpperCAmelCase_ : Tuple = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element )
elif isinstance(element[0] , np.ndarray ):
UpperCAmelCase_ : Union[str, Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element )
continue
if element is None:
# This can happen for optional data that get passed around
UpperCAmelCase_ : int = None
elif isinstance(element[self._loader_batch_index] , torch.Tensor ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCAmelCase_ : Optional[int] = element[self._loader_batch_index].unsqueeze(0 )
elif isinstance(element[self._loader_batch_index] , np.ndarray ):
# Take correct batch data, but make it looked like batch_size=1
# For compatibility with other methods within transformers
UpperCAmelCase_ : str = np.expand_dims(element[self._loader_batch_index] , 0 )
else:
# This is typically a list, so no need to `unsqueeze`.
UpperCAmelCase_ : str = element[self._loader_batch_index]
# Recreate the element by reusing the original class to make it look
# batch_size=1
UpperCAmelCase_ : Union[str, Any] = self._loader_batch_data.__class__(lowercase_ )
self._loader_batch_index += 1
return result
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
# We are currently unrolling a batch so we just need to return
# the current item within a batch
return self.loader_batch_item()
# We're out of items within a batch
UpperCAmelCase_ : Dict = next(self.iterator )
UpperCAmelCase_ : Union[str, Any] = self.infer(lowercase_ , **self.params )
# We now have a batch of "inferred things".
if self.loader_batch_size is not None:
# Try to infer the size of the batch
if isinstance(lowercase_ , torch.Tensor ):
UpperCAmelCase_ : Union[str, Any] = processed
else:
UpperCAmelCase_ : str = list(processed.keys() )[0]
UpperCAmelCase_ : Optional[Any] = processed[key]
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : str = len(lowercase_ )
else:
UpperCAmelCase_ : Union[str, Any] = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCAmelCase_ : str = observed_batch_size
# Setting internal index to unwrap the batch
UpperCAmelCase_ : Dict = processed
UpperCAmelCase_ : Union[str, Any] = 0
return self.loader_batch_item()
else:
# We're not unrolling batches
return processed
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , lowercase_=None ):
"""simple docstring"""
super().__init__(lowercase_ , lowercase_ , lowercase_ )
def __iter__( self ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = iter(self.loader )
UpperCAmelCase_ : Dict = None
return self
def UpperCamelCase__ ( self ):
"""simple docstring"""
if self.subiterator is None:
UpperCAmelCase_ : Optional[Any] = self.infer(next(self.iterator ) , **self.params )
try:
# Try to return next item
UpperCAmelCase_ : Any = next(self.subiterator )
except StopIteration:
# When a preprocess iterator ends, we can start lookig at the next item
# ChunkIterator will keep feeding until ALL elements of iterator
# all have created their subiterator and have been iterating against.
#
# Another way to look at it, is we're basically flattening lists of lists
# into a single list, but with generators
UpperCAmelCase_ : Tuple = self.infer(next(self.iterator ) , **self.params )
UpperCAmelCase_ : Dict = next(self.subiterator )
return processed
class A_ (lowercase__ ):
'''simple docstring'''
def __iter__( self ):
"""simple docstring"""
UpperCAmelCase_ : List[Any] = iter(self.loader )
return self
def UpperCamelCase__ ( self ):
"""simple docstring"""
# Extremely similar to PipelineIterator in its unpacking mechanism
# BUT, we have an extra required item which is the presence of `is_last`
# That is because everything is flattened by `PipelineChunkIterator` we
# need to keep track of how to regroup here in the original `process`
# boundaries so that `process` and `postprocess` see the same data.
# This iterator accumulates items (possibly while unbatching) until it
# its a `is_last` and then just passes it on to the caller.
UpperCAmelCase_ : List[Any] = False
UpperCAmelCase_ : Optional[Any] = []
if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size:
while self._loader_batch_index < self.loader_batch_size:
UpperCAmelCase_ : Union[str, Any] = self.loader_batch_item()
UpperCAmelCase_ : Dict = item.pop("is_last" )
accumulator.append(lowercase_ )
if is_last:
return accumulator
while not is_last:
UpperCAmelCase_ : Optional[int] = self.infer(next(self.iterator ) , **self.params )
if self.loader_batch_size is not None:
if isinstance(lowercase_ , torch.Tensor ):
UpperCAmelCase_ : Optional[int] = processed
else:
UpperCAmelCase_ : Any = list(processed.keys() )[0]
UpperCAmelCase_ : str = processed[key]
if isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : List[Any] = len(lowercase_ )
else:
UpperCAmelCase_ : Union[str, Any] = first_tensor.shape[0]
if 0 < observed_batch_size < self.loader_batch_size:
# could be last batch so we can't unroll as many
# elements.
UpperCAmelCase_ : Tuple = observed_batch_size
UpperCAmelCase_ : List[Any] = processed
UpperCAmelCase_ : List[Any] = 0
while self._loader_batch_index < self.loader_batch_size:
UpperCAmelCase_ : Dict = self.loader_batch_item()
UpperCAmelCase_ : Dict = item.pop("is_last" )
accumulator.append(lowercase_ )
if is_last:
return accumulator
else:
UpperCAmelCase_ : List[Any] = processed
UpperCAmelCase_ : Optional[Any] = item.pop("is_last" )
accumulator.append(lowercase_ )
return accumulator
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = dataset
UpperCAmelCase_ : Dict = key
def __len__( self ):
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , lowercase_ ):
"""simple docstring"""
return self.dataset[i][self.key]
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : int = dataset
UpperCAmelCase_ : Any = keya
UpperCAmelCase_ : str = keya
def __len__( self ):
"""simple docstring"""
return len(self.dataset )
def __getitem__( self , lowercase_ ):
"""simple docstring"""
return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
| 61 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""")
class A__ :
def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = scheduler
__lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers]
__lowercase = split_batches
__lowercase = step_with_optimizer
__lowercase = GradientState()
def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]:
"""simple docstring"""
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
__lowercase = AcceleratorState().num_processes
for _ in range(_UpperCAmelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , 'total_steps' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
else:
self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase )
def a__ ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.scheduler.get_last_lr()
def a__ ( self : List[str] ) -> Tuple:
"""simple docstring"""
return self.scheduler.state_dict()
def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.scheduler.load_state_dict(_UpperCAmelCase )
def a__ ( self : Dict ) -> int:
"""simple docstring"""
return self.scheduler.get_lr()
def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
| 325 | 0 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def _a ( self ) -> List[Any]:
__UpperCamelCase =tempfile.mkdtemp()
__UpperCamelCase =SamImageProcessor()
__UpperCamelCase =SamProcessor(A_ )
processor.save_pretrained(self.tmpdirname )
def _a ( self , **A_ ) -> Union[str, Any]:
return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor
def _a ( self ) -> Any:
shutil.rmtree(self.tmpdirname )
def _a ( self ) -> Tuple:
__UpperCamelCase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__UpperCamelCase =[Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _a ( self ) -> List[str]:
__UpperCamelCase =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__UpperCamelCase =self.get_image_processor(do_normalize=A_ , padding_value=1.0 )
__UpperCamelCase =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=A_ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A_ )
def _a ( self ) -> str:
__UpperCamelCase =self.get_image_processor()
__UpperCamelCase =SamProcessor(image_processor=A_ )
__UpperCamelCase =self.prepare_image_inputs()
__UpperCamelCase =image_processor(A_ , return_tensors='np' )
__UpperCamelCase =processor(images=A_ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def _a ( self ) -> Optional[int]:
__UpperCamelCase =self.get_image_processor()
__UpperCamelCase =SamProcessor(image_processor=A_ )
__UpperCamelCase =[torch.ones((1, 3, 5, 5) )]
__UpperCamelCase =[[1764, 2646]]
__UpperCamelCase =[[683, 1024]]
__UpperCamelCase =processor.post_process_masks(A_ , A_ , A_ )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
__UpperCamelCase =processor.post_process_masks(
A_ , torch.tensor(A_ ) , torch.tensor(A_ ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
__UpperCamelCase =[np.ones((1, 3, 5, 5) )]
__UpperCamelCase =processor.post_process_masks(A_ , np.array(A_ ) , np.array(A_ ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
__UpperCamelCase =[[1, 0], [0, 1]]
with self.assertRaises(A_ ):
__UpperCamelCase =processor.post_process_masks(A_ , np.array(A_ ) , np.array(A_ ) )
@require_vision
@require_tf
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def _a ( self ) -> Any:
__UpperCamelCase =tempfile.mkdtemp()
__UpperCamelCase =SamImageProcessor()
__UpperCamelCase =SamProcessor(A_ )
processor.save_pretrained(self.tmpdirname )
def _a ( self , **A_ ) -> Any:
return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor
def _a ( self ) -> Tuple:
shutil.rmtree(self.tmpdirname )
def _a ( self ) -> Any:
__UpperCamelCase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__UpperCamelCase =[Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _a ( self ) -> Optional[int]:
__UpperCamelCase =SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__UpperCamelCase =self.get_image_processor(do_normalize=A_ , padding_value=1.0 )
__UpperCamelCase =SamProcessor.from_pretrained(self.tmpdirname , do_normalize=A_ , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , A_ )
def _a ( self ) -> Optional[Any]:
__UpperCamelCase =self.get_image_processor()
__UpperCamelCase =SamProcessor(image_processor=A_ )
__UpperCamelCase =self.prepare_image_inputs()
__UpperCamelCase =image_processor(A_ , return_tensors='np' )
__UpperCamelCase =processor(images=A_ , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def _a ( self ) -> str:
__UpperCamelCase =self.get_image_processor()
__UpperCamelCase =SamProcessor(image_processor=A_ )
__UpperCamelCase =[tf.ones((1, 3, 5, 5) )]
__UpperCamelCase =[[1764, 2646]]
__UpperCamelCase =[[683, 1024]]
__UpperCamelCase =processor.post_process_masks(A_ , A_ , A_ , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
__UpperCamelCase =processor.post_process_masks(
A_ , tf.convert_to_tensor(A_ ) , tf.convert_to_tensor(A_ ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
__UpperCamelCase =[np.ones((1, 3, 5, 5) )]
__UpperCamelCase =processor.post_process_masks(
A_ , np.array(A_ ) , np.array(A_ ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
__UpperCamelCase =[[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__UpperCamelCase =processor.post_process_masks(
A_ , np.array(A_ ) , np.array(A_ ) , return_tensors='tf' )
@require_vision
@require_torchvision
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def _a ( self ) -> Any:
__UpperCamelCase =tempfile.mkdtemp()
__UpperCamelCase =SamImageProcessor()
__UpperCamelCase =SamProcessor(A_ )
processor.save_pretrained(self.tmpdirname )
def _a ( self , **A_ ) -> Optional[int]:
return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor
def _a ( self ) -> Optional[Any]:
shutil.rmtree(self.tmpdirname )
def _a ( self ) -> Dict:
__UpperCamelCase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
__UpperCamelCase =[Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def _a ( self ) -> Dict:
__UpperCamelCase =self.get_image_processor()
__UpperCamelCase =SamProcessor(image_processor=A_ )
__UpperCamelCase =np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__UpperCamelCase =[tf.convert_to_tensor(A_ )]
__UpperCamelCase =[torch.tensor(A_ )]
__UpperCamelCase =[[1764, 2646]]
__UpperCamelCase =[[683, 1024]]
__UpperCamelCase =processor.post_process_masks(
A_ , A_ , A_ , return_tensors='tf' )
__UpperCamelCase =processor.post_process_masks(
A_ , A_ , A_ , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def _a ( self ) -> Union[str, Any]:
__UpperCamelCase =self.get_image_processor()
__UpperCamelCase =SamProcessor(image_processor=A_ )
__UpperCamelCase =self.prepare_image_inputs()
__UpperCamelCase =image_processor(A_ , return_tensors='pt' )['pixel_values'].numpy()
__UpperCamelCase =processor(images=A_ , return_tensors='pt' )['pixel_values'].numpy()
__UpperCamelCase =image_processor(A_ , return_tensors='tf' )['pixel_values'].numpy()
__UpperCamelCase =processor(images=A_ , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(A_ , A_ ) )
self.assertTrue(np.allclose(A_ , A_ ) )
self.assertTrue(np.allclose(A_ , A_ ) )
| 62 |
import collections
import importlib.util
import os
import re
from pathlib import Path
SCREAMING_SNAKE_CASE__ = """src/transformers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""")
# Catches a one-line _import_struct = {xxx}
SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""")
# Catches a line if not is_foo_available
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""")
# Catches a line _import_struct["bla"].append("foo")
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""")
# Catches a line with an object between quotes and a comma: "MyModel",
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""")
# Catches a line with objects between brackets only: ["foo", "bar"],
SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""")
# Catches a line with from foo import bar, bla, boo
SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
# Catches a line with try:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""")
# Catches a line with else:
SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""")
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None:
return None
__lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f:
__lowercase = f.readlines()
__lowercase = 0
while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
__lowercase = []
while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None:
__lowercase = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ):
__lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0]
__lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(', ' )] )
line_index += 1
continue
__lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
__lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('if TYPE_CHECKING' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ):
__lowercase = lines[line_index]
if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None:
__lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' )
__lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0]
objects.extend(SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(' ' * 8 + '"' ):
objects.append(line[9:-3] )
elif line.startswith(' ' * 12 + '"' ):
objects.append(line[13:-3] )
line_index += 1
__lowercase = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowercase = []
while (
line_index < len(SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('else' )
):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowercase = {'none': objects}
# Let's continue with backend-specific objects
while line_index < len(SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowercase = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowercase = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowercase = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ):
__lowercase = lines[line_index]
__lowercase = _re_import.search(SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(', ' ) )
elif line.startswith(' ' * 12 ):
objects.append(line[12:-2] )
line_index += 1
__lowercase = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int:
def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ):
return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowercase = []
for key in import_dict_objects.keys():
__lowercase = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowercase = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowercase = 'base imports' if key == 'none' else F"""{key} backend"""
errors.append(F"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def __SCREAMING_SNAKE_CASE ( ) -> Tuple:
__lowercase = []
for root, _, files in os.walk(SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' )
__lowercase = parse_init(SCREAMING_SNAKE_CASE )
if objects is not None:
__lowercase = analyze_results(*SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('\n'.join(SCREAMING_SNAKE_CASE ) )
if len(SCREAMING_SNAKE_CASE ) > 0:
raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( ) -> Dict:
__lowercase = []
for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith('_' ):
directories.remove(SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0:
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace(os.path.sep , '.' )
submodules.append(SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
__lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) )
__lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' )
if len(submodule.split('.' ) ) == 1:
submodules.append(SCREAMING_SNAKE_CASE )
return submodules
SCREAMING_SNAKE_CASE__ = [
"""convert_pytorch_checkpoint_to_tf2""",
"""modeling_flax_pytorch_utils""",
]
def __SCREAMING_SNAKE_CASE ( ) -> List[str]:
# This is to make sure the transformers module imported is the one in the repo.
__lowercase = importlib.util.spec_from_file_location(
'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , )
__lowercase = spec.loader.load_module()
__lowercase = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys()
]
if len(SCREAMING_SNAKE_CASE ) > 0:
__lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered )
raise ValueError(
'The following submodules are not properly registered in the main init of Transformers:\n'
F"""{list_of_modules}\n"""
'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 325 | 0 |
'''simple docstring'''
from __future__ import annotations
def _lowerCamelCase ( lowercase : dict , lowercase : str ) -> set[str]:
_a , _a = set(lowercase ), [start]
while stack:
_a = stack.pop()
explored.add(lowercase )
# Differences from BFS:
# 1) pop last element instead of first one
# 2) add adjacent elements to stack without exploring them
for adj in reversed(graph[v] ):
if adj not in explored:
stack.append(lowercase )
return explored
lowerCAmelCase_ : Dict = {
'A': ['B', 'C', 'D'],
'B': ['A', 'D', 'E'],
'C': ['A', 'F'],
'D': ['B', 'D'],
'E': ['B', 'F'],
'F': ['C', 'E', 'G'],
'G': ['F'],
}
if __name__ == "__main__":
import doctest
doctest.testmod()
print(depth_first_search(G, 'A'))
| 63 |
import logging
import os
from .state import PartialState
class A__ ( logging.LoggerAdapter ):
@staticmethod
def a__ ( _UpperCAmelCase : str ) -> Optional[Any]:
"""simple docstring"""
__lowercase = PartialState()
return not main_process_only or (main_process_only and state.is_main_process)
def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
if PartialState._shared_state == {}:
raise RuntimeError(
'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' )
__lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase )
__lowercase = kwargs.pop('in_order' , _UpperCAmelCase )
if self.isEnabledFor(_UpperCAmelCase ):
if self._should_log(_UpperCAmelCase ):
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
elif in_order:
__lowercase = PartialState()
for i in range(state.num_processes ):
if i == state.process_index:
__lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase )
self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase )
state.wait_for_everyone()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]:
if log_level is None:
__lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE )
__lowercase = logging.getLogger(SCREAMING_SNAKE_CASE )
if log_level is not None:
logger.setLevel(log_level.upper() )
logger.root.setLevel(log_level.upper() )
return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
| 325 | 0 |
"""simple docstring"""
def UpperCAmelCase__ (snake_case__ : list ):
"""simple docstring"""
def merge(snake_case__ : list , snake_case__ : list ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(snake_case__ ) <= 1:
return collection
_snake_case : str = len(snake_case__ ) // 2
return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
A_ = input('''Enter numbers separated by a comma:\n''').strip()
A_ = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 64 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]:
__lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2]
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
__lowercase = True if 'large' in model_name or 'huge' in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
__lowercase = [3, 3, 3, 3]
__lowercase = [5, 5, 5, 5]
elif "fl4" in model_name:
__lowercase = [4, 4, 4, 4]
__lowercase = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
__lowercase = [3, 3, 3, 3]
if "lrf" in model_name:
__lowercase = [3, 3, 3, 3]
else:
__lowercase = [2, 2, 2, 2]
if "tiny" in model_name:
__lowercase = 96
elif "small" in model_name:
__lowercase = 96
elif "base" in model_name:
__lowercase = 128
elif "large" in model_name:
__lowercase = 192
elif "xlarge" in model_name:
__lowercase = 256
elif "huge" in model_name:
__lowercase = 352
# set label information
__lowercase = 'huggingface/label-files'
if "large" in model_name or "huge" in model_name:
__lowercase = 'imagenet-22k-id2label.json'
else:
__lowercase = 'imagenet-1k-id2label.json'
__lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) )
__lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()}
__lowercase = {v: k for k, v in idalabel.items()}
__lowercase = FocalNetConfig(
embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , )
return config
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict:
if "patch_embed.proj" in name:
__lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
__lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' )
if "layers" in name:
__lowercase = 'encoder.' + name
if "encoder.layers" in name:
__lowercase = name.replace('encoder.layers' , 'encoder.stages' )
if "downsample.proj" in name:
__lowercase = name.replace('downsample.proj' , 'downsample.projection' )
if "blocks" in name:
__lowercase = name.replace('blocks' , 'layers' )
if "modulation.f.weight" in name or "modulation.f.bias" in name:
__lowercase = name.replace('modulation.f' , 'modulation.projection_in' )
if "modulation.h.weight" in name or "modulation.h.bias" in name:
__lowercase = name.replace('modulation.h' , 'modulation.projection_context' )
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
__lowercase = name.replace('modulation.proj' , 'modulation.projection_out' )
if name == "norm.weight":
__lowercase = 'layernorm.weight'
if name == "norm.bias":
__lowercase = 'layernorm.bias'
if "head" in name:
__lowercase = name.replace('head' , 'classifier' )
else:
__lowercase = 'focalnet.' + name
return name
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]:
# fmt: off
__lowercase = {
'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth',
'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth',
'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth',
'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth',
'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth',
'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth',
'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth',
'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth',
'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth',
'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth',
}
# fmt: on
__lowercase = model_name_to_url[model_name]
print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE )
__lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model']
# rename keys
for key in state_dict.copy().keys():
__lowercase = state_dict.pop(SCREAMING_SNAKE_CASE )
__lowercase = val
__lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE )
__lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE )
model.eval()
# load state dict
model.load_state_dict(SCREAMING_SNAKE_CASE )
# verify conversion
__lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowercase = BitImageProcessor(
do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , )
__lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw )
__lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' )
__lowercase = transforms.Compose(
[
transforms.Resize(256 ),
transforms.CenterCrop(224 ),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
__lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 )
# verify pixel_values
assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 )
__lowercase = model(**SCREAMING_SNAKE_CASE )
__lowercase = outputs.logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
print('First values of logits:' , outputs.logits[0, :3] )
if model_name == "focalnet-tiny":
__lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] )
elif model_name == "focalnet-tiny-lrf":
__lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] )
elif model_name == "focalnet-small":
__lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] )
elif model_name == "focalnet-small-lrf":
__lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] )
elif model_name == "focalnet-base":
__lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] )
elif model_name == "focalnet-base-lrf":
__lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] )
assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(SCREAMING_SNAKE_CASE )
processor.save_pretrained(SCREAMING_SNAKE_CASE )
if push_to_hub:
print(F"""Pushing model and processor of {model_name} to the hub...""" )
model.push_to_hub(F"""{model_name}""" )
processor.push_to_hub(F"""{model_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""focalnet-tiny""",
type=str,
help="""Name of the FocalNet model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 325 | 0 |
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class A ( unittest.TestCase ):
def lowercase_ (self : Optional[int] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = "hf-internal-testing/tiny-random-t5"
UpperCAmelCase__ = AutoTokenizer.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = tokenizer("This is me" , return_tensors="pt" )
UpperCAmelCase__ = model.to_bettertransformer()
self.assertTrue(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
UpperCAmelCase__ = model.generate(**__UpperCAmelCase )
UpperCAmelCase__ = model.reverse_bettertransformer()
self.assertFalse(any("BetterTransformer" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
self.assertFalse(
any("BetterTransformer" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
UpperCAmelCase__ = model_reloaded.generate(**__UpperCAmelCase )
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) )
def lowercase_ (self : Dict ) -> Tuple:
"""simple docstring"""
UpperCAmelCase__ = "hf-internal-testing/tiny-random-t5"
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(__UpperCAmelCase ):
model.save_pretrained(__UpperCAmelCase )
UpperCAmelCase__ = model.reverse_bettertransformer()
model.save_pretrained(__UpperCAmelCase )
| 65 |
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
SCREAMING_SNAKE_CASE__ = {
"""facebook/mask2former-swin-small-coco-instance""": (
"""https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json"""
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Tuple = "mask2former"
lowerCAmelCase__ : List[Any] = ["swin"]
lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"}
def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int:
"""simple docstring"""
if backbone_config is None:
logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' )
__lowercase = CONFIG_MAPPING['swin'](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = backbone_config.pop('model_type' )
__lowercase = CONFIG_MAPPING[backbone_model_type]
__lowercase = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
__lowercase = backbone_config
__lowercase = feature_size
__lowercase = mask_feature_size
__lowercase = hidden_dim
__lowercase = encoder_feedforward_dim
__lowercase = activation_function
__lowercase = encoder_layers
__lowercase = decoder_layers
__lowercase = num_attention_heads
__lowercase = dropout
__lowercase = dim_feedforward
__lowercase = pre_norm
__lowercase = enforce_input_projection
__lowercase = common_stride
__lowercase = ignore_value
__lowercase = num_queries
__lowercase = no_object_weight
__lowercase = class_weight
__lowercase = mask_weight
__lowercase = dice_weight
__lowercase = train_num_points
__lowercase = oversample_ratio
__lowercase = importance_sample_ratio
__lowercase = init_std
__lowercase = init_xavier_std
__lowercase = use_auxiliary_loss
__lowercase = feature_strides
__lowercase = output_auxiliary_logits
__lowercase = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict:
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def a__ ( self : str ) -> Dict[str, any]:
"""simple docstring"""
__lowercase = copy.deepcopy(self.__dict__ )
__lowercase = self.backbone_config.to_dict()
__lowercase = self.__class__.model_type
return output
| 325 | 0 |
"""simple docstring"""
from __future__ import annotations
def A_ ( _lowercase ):
'''simple docstring'''
if len(_lowercase ) == 0:
return []
snake_case_, snake_case_ :Tuple = min(_lowercase ), max(_lowercase )
snake_case_ :Tuple = int(max_value - min_value ) + 1
snake_case_ :list[list] = [[] for _ in range(_lowercase )]
for i in my_list:
buckets[int(i - min_value )].append(_lowercase )
return [v for bucket in buckets for v in sorted(_lowercase )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 66 |
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]:
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
__lowercase = TOKENIZER_CLASSES
else:
__lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
__lowercase = TOKENIZER_CLASSES[tokenizer_name]
__lowercase = True
if checkpoint_name is None:
__lowercase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
__lowercase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
__lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
__lowercase , __lowercase = checkpoint.split('/' )
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif add_prefix:
__lowercase = checkpoint
__lowercase = dump_path
else:
__lowercase = None
__lowercase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
__lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
__lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0]
if next_char == "/":
__lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
__lowercase = tokenizer.save_pretrained(
SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith('tokenizer.json' ):
os.remove(SCREAMING_SNAKE_CASE )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files."""
)
parser.add_argument(
"""--tokenizer_name""",
default=None,
type=str,
help=(
F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will '''
"""download and convert all the checkpoints from AWS."""
),
)
parser.add_argument(
"""--checkpoint_name""",
default=None,
type=str,
help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""",
)
parser.add_argument(
"""--force_download""",
action="""store_true""",
help="""Re-download checkpoints.""",
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
| 325 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__UpperCAmelCase =logging.get_logger(__name__)
class a__ ( UpperCAmelCase__ ):
lowerCamelCase : Dict ="timm_backbone"
def __init__( self : Optional[int] , a : int=None , a : Dict=3 , a : Any=True , a : List[str]=True , a : Optional[Any]=None , **a : Optional[int] , ):
"""simple docstring"""
super().__init__(**a )
__lowerCamelCase = backbone
__lowerCamelCase = num_channels
__lowerCamelCase = features_only
__lowerCamelCase = use_pretrained_backbone
__lowerCamelCase = True
__lowerCamelCase = out_indices if out_indices is not None else (-1,)
| 67 |
from math import isqrt, loga
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]:
__lowercase = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__lowercase = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int:
__lowercase = degree * loga(SCREAMING_SNAKE_CASE )
__lowercase = int(SCREAMING_SNAKE_CASE )
__lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE )
__lowercase = 0
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 325 | 0 |
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowerCAmelCase__ = """python tqdm regex requests packaging filelock numpy tokenizers""".split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append("""dataclasses""")
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append("""importlib_metadata""")
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Optional[Any]=None ) -> Tuple:
'''simple docstring'''
require_version(deps[pkg] , SCREAMING_SNAKE_CASE_ )
| 68 |
import unittest
from pathlib import Path
from shutil import copyfile
from transformers import SPIECE_UNDERLINE, is_sentencepiece_available
from transformers.models.speech_to_text import SpeechaTextTokenizer
from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_sentencepiece_available():
import sentencepiece as sp
SCREAMING_SNAKE_CASE__ = 5
SCREAMING_SNAKE_CASE__ = 10
@require_sentencepiece
@require_tokenizers
class A__ ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer
lowerCAmelCase__ : Any = False
lowerCAmelCase__ : List[Any] = True
def a__ ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
__lowercase = sp.SentencePieceProcessor()
spm_model.Load(_UpperCAmelCase )
__lowercase = ['<s>', '<pad>', '</s>', '<unk>']
vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )]
__lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
__lowercase = Path(self.tmpdirname )
save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] )
if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists():
copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] )
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname )
def a__ ( self : str ) -> int:
"""simple docstring"""
__lowercase = '<pad>'
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(_UpperCAmelCase ) , 10_01 )
def a__ ( self : int ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 10_01 )
def a__ ( self : Optional[Any] ) -> str:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname )
__lowercase = tokenizer.tokenize('This is a test' )
self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , )
__lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
__lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] )
__lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase )
self.assertListEqual(
_UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , )
@require_sentencepiece
class A__ ( unittest.TestCase ):
lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium"
lowerCAmelCase__ : Dict = "C'est trop cool"
lowerCAmelCase__ : List[Any] = "Esto es genial"
@classmethod
def a__ ( cls : Any ) -> Optional[int]:
"""simple docstring"""
__lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name )
return cls
def a__ ( self : Tuple ) -> Tuple:
"""simple docstring"""
self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 )
self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 )
self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 )
self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 )
def a__ ( self : Tuple ) -> List[str]:
"""simple docstring"""
self.assertEqual(self.tokenizer.vocab_size , 1_00_00 )
def a__ ( self : str ) -> int:
"""simple docstring"""
self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids )
__lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2]
__lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
__lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase )
def a__ ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = 'fr'
__lowercase = self.tokenizer(self.french_text ).input_ids
self.assertEqual(encoded[0] , _UpperCAmelCase )
self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id )
def a__ ( self : List[Any] ) -> Any:
"""simple docstring"""
__lowercase = 'fr'
self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] )
__lowercase = 'es'
self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
| 325 | 0 |
"""simple docstring"""
import sys
from collections import defaultdict
class UpperCamelCase :
def __init__( self) -> Optional[int]:
snake_case_ = []
def a_ ( self, lowerCAmelCase__) -> Any:
return self.node_position[vertex]
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict:
snake_case_ = pos
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> str:
if start > size // 2 - 1:
return
else:
if 2 * start + 2 >= size:
snake_case_ = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
snake_case_ = 2 * start + 1
else:
snake_case_ = 2 * start + 2
if heap[smallest_child] < heap[start]:
snake_case_ , snake_case_ = heap[smallest_child], positions[smallest_child]
snake_case_ , snake_case_ = (
heap[start],
positions[start],
)
snake_case_ , snake_case_ = temp, tempa
snake_case_ = self.get_position(positions[smallest_child])
self.set_position(
positions[smallest_child], self.get_position(positions[start]))
self.set_position(positions[start], lowerCAmelCase__)
self.top_to_bottom(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__)
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[str]:
snake_case_ = position[index]
while index != 0:
snake_case_ = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2)
if val < heap[parent]:
snake_case_ = heap[parent]
snake_case_ = position[parent]
self.set_position(position[parent], lowerCAmelCase__)
else:
snake_case_ = val
snake_case_ = temp
self.set_position(lowerCAmelCase__, lowerCAmelCase__)
break
snake_case_ = parent
else:
snake_case_ = val
snake_case_ = temp
self.set_position(lowerCAmelCase__, 0)
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Dict:
snake_case_ = len(lowerCAmelCase__) // 2 - 1
for i in range(lowerCAmelCase__, -1, -1):
self.top_to_bottom(lowerCAmelCase__, lowerCAmelCase__, len(lowerCAmelCase__), lowerCAmelCase__)
def a_ ( self, lowerCAmelCase__, lowerCAmelCase__) -> Union[str, Any]:
snake_case_ = positions[0]
snake_case_ = sys.maxsize
self.top_to_bottom(lowerCAmelCase__, 0, len(lowerCAmelCase__), lowerCAmelCase__)
return temp
def UpperCAmelCase ( UpperCAmelCase ) -> Tuple:
snake_case_ = Heap()
snake_case_ = [0] * len(UpperCAmelCase )
snake_case_ = [-1] * len(UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex
# Minimum Distance of explored vertex with neighboring vertex of partial tree
# formed in graph
snake_case_ = [] # Heap of Distance of vertices from their neighboring vertex
snake_case_ = []
for vertex in range(len(UpperCAmelCase ) ):
distance_tv.append(sys.maxsize )
positions.append(UpperCAmelCase )
heap.node_position.append(UpperCAmelCase )
snake_case_ = []
snake_case_ = 1
snake_case_ = sys.maxsize
for neighbor, distance in adjacency_list[0]:
snake_case_ = 0
snake_case_ = distance
heap.heapify(UpperCAmelCase , UpperCAmelCase )
for _ in range(1 , len(UpperCAmelCase ) ):
snake_case_ = heap.delete_minimum(UpperCAmelCase , UpperCAmelCase )
if visited[vertex] == 0:
tree_edges.append((nbr_tv[vertex], vertex) )
snake_case_ = 1
for neighbor, distance in adjacency_list[vertex]:
if (
visited[neighbor] == 0
and distance < distance_tv[heap.get_position(UpperCAmelCase )]
):
snake_case_ = distance
heap.bottom_to_top(
UpperCAmelCase , heap.get_position(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase )
snake_case_ = vertex
return tree_edges
if __name__ == "__main__": # pragma: no cover
# < --------- Prims Algorithm --------- >
__UpperCamelCase = int(input('''Enter number of edges: ''').strip())
__UpperCamelCase = defaultdict(list)
for _ in range(edges_number):
__UpperCamelCase = [int(x) for x in input().strip().split()]
adjacency_list[edge[0]].append([edge[1], edge[2]])
adjacency_list[edge[1]].append([edge[0], edge[2]])
print(prisms_algorithm(adjacency_list))
| 69 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : List[Any] = "layoutlmv3"
def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict:
"""simple docstring"""
super().__init__(
vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
__lowercase = max_ad_position_embeddings
__lowercase = coordinate_size
__lowercase = shape_size
__lowercase = has_relative_attention_bias
__lowercase = rel_pos_bins
__lowercase = max_rel_pos
__lowercase = has_spatial_attention_bias
__lowercase = rel_ad_pos_bins
__lowercase = max_rel_ad_pos
__lowercase = text_embed
__lowercase = visual_embed
__lowercase = input_size
__lowercase = num_channels
__lowercase = patch_size
__lowercase = classifier_dropout
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : int = version.parse("1.12" )
@property
def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task in ["question-answering", "sequence-classification"]:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
else:
return OrderedDict(
[
('input_ids', {0: 'batch', 1: 'sequence'}),
('bbox', {0: 'batch', 1: 'sequence'}),
('attention_mask', {0: 'batch', 1: 'sequence'}),
('pixel_values', {0: 'batch', 1: 'num_channels'}),
] )
@property
def a__ ( self : int ) -> float:
"""simple docstring"""
return 1e-5
@property
def a__ ( self : str ) -> int:
"""simple docstring"""
return 12
def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]:
"""simple docstring"""
setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase )
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase )
__lowercase = compute_effective_axis_dimension(
_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size
# Generate dummy bounding boxes
__lowercase = [[[48, 84, 73, 1_28]]] * batch_size
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
# batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch)
__lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__lowercase = dict(
processor(
_UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) )
return inputs
| 325 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
if is_sentencepiece_available():
from ..ta.tokenization_ta import TaTokenizer
else:
from ...utils.dummy_sentencepiece_objects import TaTokenizer
A__ : Any =TaTokenizer
if is_tokenizers_available():
from ..ta.tokenization_ta_fast import TaTokenizerFast
else:
from ...utils.dummy_tokenizers_objects import TaTokenizerFast
A__ : Union[str, Any] =TaTokenizerFast
A__ : Optional[Any] ={'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Any =[
'''MT5EncoderModel''',
'''MT5ForConditionalGeneration''',
'''MT5ForQuestionAnswering''',
'''MT5Model''',
'''MT5PreTrainedModel''',
'''MT5Stack''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Optional[Any] =['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str =['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model''']
if TYPE_CHECKING:
from .configuration_mta import MTaConfig, MTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mta import (
MTaEncoderModel,
MTaForConditionalGeneration,
MTaForQuestionAnswering,
MTaModel,
MTaPreTrainedModel,
MTaStack,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel
else:
import sys
A__ : Any =_LazyModule(
__name__,
globals()['''__file__'''],
_import_structure,
extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast},
module_spec=__spec__,
)
| 70 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
# General docstring
SCREAMING_SNAKE_CASE__ = """RegNetConfig"""
# Base docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7]
# Image classification docstring
SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040"""
SCREAMING_SNAKE_CASE__ = """tabby, tabby cat"""
SCREAMING_SNAKE_CASE__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class A__ ( nn.Module ):
def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(
_UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
__lowercase = ACTaFN[activation] if activation is not None else nn.Identity()
def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any:
"""simple docstring"""
super().__init__()
__lowercase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
__lowercase = config.num_channels
def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
__lowercase = self.embedder(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]:
"""simple docstring"""
super().__init__()
__lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase )
__lowercase = nn.BatchNormad(_UpperCAmelCase )
def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor:
"""simple docstring"""
__lowercase = self.convolution(_UpperCAmelCase )
__lowercase = self.normalization(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str:
"""simple docstring"""
super().__init__()
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
__lowercase = nn.Sequential(
nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , )
def a__ ( self : str , _UpperCAmelCase : Dict ) -> str:
"""simple docstring"""
__lowercase = self.pooler(_UpperCAmelCase )
__lowercase = self.attention(_UpperCAmelCase )
__lowercase = hidden_state * attention
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
__lowercase = in_channels != out_channels or stride != 1
__lowercase = max(1 , out_channels // config.groups_width )
__lowercase = (
RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity()
)
__lowercase = nn.Sequential(
RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , )
__lowercase = ACTaFN[config.hidden_act]
def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
__lowercase = hidden_state
__lowercase = self.layer(_UpperCAmelCase )
__lowercase = self.shortcut(_UpperCAmelCase )
hidden_state += residual
__lowercase = self.activation(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict:
"""simple docstring"""
super().__init__()
__lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
__lowercase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , )
def a__ ( self : Any , _UpperCAmelCase : str ) -> int:
"""simple docstring"""
__lowercase = self.layers(_UpperCAmelCase )
return hidden_state
class A__ ( nn.Module ):
def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int:
"""simple docstring"""
super().__init__()
__lowercase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
__lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ):
self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) )
def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
__lowercase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
__lowercase = stage_module(_UpperCAmelCase )
if output_hidden_states:
__lowercase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase )
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Optional[Any] = RegNetConfig
lowerCAmelCase__ : Optional[int] = "regnet"
lowerCAmelCase__ : Dict = "pixel_values"
lowerCAmelCase__ : List[str] = True
def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' )
elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict:
"""simple docstring"""
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
__lowercase = value
SCREAMING_SNAKE_CASE__ = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SCREAMING_SNAKE_CASE__ = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class A__ ( lowerCAmelCase__ ):
def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config
__lowercase = RegNetEmbeddings(_UpperCAmelCase )
__lowercase = RegNetEncoder(_UpperCAmelCase )
__lowercase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
__lowercase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.embedder(_UpperCAmelCase )
__lowercase = self.encoder(
_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = encoder_outputs[0]
__lowercase = self.pooler(_UpperCAmelCase )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class A__ ( lowerCAmelCase__ ):
def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase = config.num_labels
__lowercase = RegNetModel(_UpperCAmelCase )
# classification head
__lowercase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_UpperCAmelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
__lowercase = return_dict if return_dict is not None else self.config.use_return_dict
__lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase )
__lowercase = outputs.pooler_output if return_dict else outputs[1]
__lowercase = self.classifier(_UpperCAmelCase )
__lowercase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__lowercase = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__lowercase = 'single_label_classification'
else:
__lowercase = 'multi_label_classification'
if self.config.problem_type == "regression":
__lowercase = MSELoss()
if self.num_labels == 1:
__lowercase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
elif self.config.problem_type == "single_label_classification":
__lowercase = CrossEntropyLoss()
__lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__lowercase = BCEWithLogitsLoss()
__lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase )
if not return_dict:
__lowercase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
| 325 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __A ( a , unittest.TestCase ):
"""simple docstring"""
UpperCamelCase__ : Tuple =KandinskyVaaControlnetPipeline
UpperCamelCase__ : Dict =["""image_embeds""", """negative_image_embeds""", """hint"""]
UpperCamelCase__ : int =["""image_embeds""", """negative_image_embeds""", """hint"""]
UpperCamelCase__ : List[str] =[
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
UpperCamelCase__ : Tuple =False
@property
def __lowercase ( self ):
"""simple docstring"""
return 32
@property
def __lowercase ( self ):
"""simple docstring"""
return 32
@property
def __lowercase ( self ):
"""simple docstring"""
return self.time_input_dim
@property
def __lowercase ( self ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def __lowercase ( self ):
"""simple docstring"""
return 100
@property
def __lowercase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__UpperCamelCase : Tuple ={
'in_channels': 8,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image_hint',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
__UpperCamelCase : Optional[Any] =UNetaDConditionModel(**lowerCamelCase__ )
return model
@property
def __lowercase ( self ):
"""simple docstring"""
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def __lowercase ( self ):
"""simple docstring"""
torch.manual_seed(0 )
__UpperCamelCase : List[Any] =VQModel(**self.dummy_movq_kwargs )
return model
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : Optional[Any] =self.dummy_unet
__UpperCamelCase : List[Any] =self.dummy_movq
__UpperCamelCase : int =DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCamelCase__ , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , prediction_type='epsilon' , thresholding=lowerCamelCase__ , )
__UpperCamelCase : Optional[int] ={
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ):
"""simple docstring"""
__UpperCamelCase : Any =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ )
__UpperCamelCase : List[str] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
lowerCamelCase__ )
# create hint
__UpperCamelCase : List[str] =floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ )
if str(lowerCamelCase__ ).startswith('mps' ):
__UpperCamelCase : Optional[int] =torch.manual_seed(lowerCamelCase__ )
else:
__UpperCamelCase : List[Any] =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ )
__UpperCamelCase : Tuple ={
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'hint': hint,
'generator': generator,
'height': 64,
'width': 64,
'guidance_scale': 4.0,
'num_inference_steps': 2,
'output_type': 'np',
}
return inputs
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : str ='cpu'
__UpperCamelCase : Tuple =self.get_dummy_components()
__UpperCamelCase : Any =self.pipeline_class(**lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =pipe.to(lowerCamelCase__ )
pipe.set_progress_bar_config(disable=lowerCamelCase__ )
__UpperCamelCase : Optional[Any] =pipe(**self.get_dummy_inputs(lowerCamelCase__ ) )
__UpperCamelCase : Union[str, Any] =output.images
__UpperCamelCase : Optional[Any] =pipe(
**self.get_dummy_inputs(lowerCamelCase__ ) , return_dict=lowerCamelCase__ , )[0]
__UpperCamelCase : Tuple =image[0, -3:, -3:, -1]
__UpperCamelCase : List[str] =image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase : List[Any] =np.array(
[0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class __A ( unittest.TestCase ):
"""simple docstring"""
def __lowercase ( self ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __lowercase ( self ):
"""simple docstring"""
__UpperCamelCase : str =load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy' )
__UpperCamelCase : Union[str, Any] =load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/hint_image_cat.png' )
__UpperCamelCase : Any =torch.from_numpy(np.array(lowerCamelCase__ ) ).float() / 255.0
__UpperCamelCase : int =hint.permute(2 , 0 , 1 ).unsqueeze(0 )
__UpperCamelCase : Dict =KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(lowerCamelCase__ )
__UpperCamelCase : Dict =KandinskyVaaControlnetPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa )
__UpperCamelCase : List[Any] =pipeline.to(lowerCamelCase__ )
pipeline.set_progress_bar_config(disable=lowerCamelCase__ )
__UpperCamelCase : Tuple ='A robot, 4k photo'
__UpperCamelCase : Optional[int] =torch.Generator(device='cuda' ).manual_seed(0 )
__UpperCamelCase , __UpperCamelCase : List[str] =pipe_prior(
lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
__UpperCamelCase : Any =torch.Generator(device='cuda' ).manual_seed(0 )
__UpperCamelCase : str =pipeline(
image_embeds=lowerCamelCase__ , negative_image_embeds=lowerCamelCase__ , hint=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=100 , output_type='np' , )
__UpperCamelCase : Optional[int] =output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
| 71 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int:
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(SCREAMING_SNAKE_CASE ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 325 | 0 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __snake_case ( _lowercase , unittest.TestCase):
snake_case__ : Any = KandinskyVaaImgaImgPipeline
snake_case__ : int = ["image_embeds", "negative_image_embeds", "image"]
snake_case__ : Optional[int] = [
"image_embeds",
"negative_image_embeds",
"image",
]
snake_case__ : Tuple = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
snake_case__ : Any = False
@property
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return 3_2
@property
def SCREAMING_SNAKE_CASE ( self : str ):
"""simple docstring"""
return 3_2
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.time_input_dim
@property
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
return self.time_input_dim * 4
@property
def SCREAMING_SNAKE_CASE ( self : int ):
"""simple docstring"""
return 1_0_0
@property
def SCREAMING_SNAKE_CASE ( self : List[str] ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCamelCase : List[str] = {
'''in_channels''': 4,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
_lowerCamelCase : List[Any] = UNetaDConditionModel(**__lowerCAmelCase )
return model
@property
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
return {
"block_out_channels": [3_2, 6_4],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 1_2,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
"""simple docstring"""
torch.manual_seed(0 )
_lowerCamelCase : Optional[int] = VQModel(**self.dummy_movq_kwargs )
return model
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
_lowerCamelCase : List[Any] = self.dummy_unet
_lowerCamelCase : Union[str, Any] = self.dummy_movq
_lowerCamelCase : Any = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_schedule''': '''linear''',
'''beta_start''': 0.0_00_85,
'''beta_end''': 0.0_12,
'''clip_sample''': False,
'''set_alpha_to_one''': False,
'''steps_offset''': 0,
'''prediction_type''': '''epsilon''',
'''thresholding''': False,
}
_lowerCamelCase : Optional[Any] = DDIMScheduler(**__lowerCAmelCase )
_lowerCamelCase : Optional[int] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple=0 ):
"""simple docstring"""
_lowerCamelCase : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowerCamelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCAmelCase )
# create init_image
_lowerCamelCase : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(__lowerCAmelCase ) ).to(__lowerCAmelCase )
_lowerCamelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCamelCase : int = Image.fromarray(np.uinta(__lowerCAmelCase ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) )
if str(__lowerCAmelCase ).startswith('''mps''' ):
_lowerCamelCase : Any = torch.manual_seed(__lowerCAmelCase )
else:
_lowerCamelCase : Union[str, Any] = torch.Generator(device=__lowerCAmelCase ).manual_seed(__lowerCAmelCase )
_lowerCamelCase : int = {
'''image''': init_image,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 6_4,
'''width''': 6_4,
'''num_inference_steps''': 1_0,
'''guidance_scale''': 7.0,
'''strength''': 0.2,
'''output_type''': '''np''',
}
return inputs
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
_lowerCamelCase : Optional[Any] = '''cpu'''
_lowerCamelCase : Dict = self.get_dummy_components()
_lowerCamelCase : Dict = self.pipeline_class(**__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = pipe.to(__lowerCAmelCase )
pipe.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : int = pipe(**self.get_dummy_inputs(__lowerCAmelCase ) )
_lowerCamelCase : Optional[int] = output.images
_lowerCamelCase : str = pipe(
**self.get_dummy_inputs(__lowerCAmelCase ) , return_dict=__lowerCAmelCase , )[0]
_lowerCamelCase : Tuple = image[0, -3:, -3:, -1]
_lowerCamelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 6_4, 6_4, 3)
_lowerCamelCase : Optional[int] = np.array(
[0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase):
def SCREAMING_SNAKE_CASE ( self : Any ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE ( self : Dict ):
"""simple docstring"""
_lowerCamelCase : int = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_img2img_frog.npy''' )
_lowerCamelCase : str = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
_lowerCamelCase : int = '''A red cartoon frog, 4k'''
_lowerCamelCase : List[str] = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCAmelCase )
_lowerCamelCase : Optional[Any] = KandinskyVaaImgaImgPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa )
_lowerCamelCase : Tuple = pipeline.to(__lowerCAmelCase )
pipeline.set_progress_bar_config(disable=__lowerCAmelCase )
_lowerCamelCase : str = torch.Generator(device='''cpu''' ).manual_seed(0 )
_lowerCamelCase , _lowerCamelCase : Any = pipe_prior(
__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
_lowerCamelCase : Union[str, Any] = pipeline(
image=__lowerCAmelCase , image_embeds=__lowerCAmelCase , negative_image_embeds=__lowerCAmelCase , generator=__lowerCAmelCase , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type='''np''' , )
_lowerCamelCase : int = output.images[0]
assert image.shape == (7_6_8, 7_6_8, 3)
assert_mean_pixel_difference(__lowerCAmelCase , __lowerCAmelCase )
| 72 |
import enum
import os
from hashlib import shaaaa
from typing import Optional
from .. import config
from .logging import get_logger
SCREAMING_SNAKE_CASE__ = get_logger(__name__)
class A__ ( enum.Enum ):
lowerCAmelCase__ : Dict = "all_checks"
lowerCAmelCase__ : List[Any] = "basic_checks"
lowerCAmelCase__ : Dict = "no_checks"
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]:
if expected_checksums is None:
logger.info('Unable to verify checksums.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]]
__lowercase = ' for ' + verification_name if verification_name is not None else ''
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingChecksumError(
F"""Checksums didn't match{for_verification_name}:\n"""
F"""{bad_urls}\n"""
'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' )
logger.info('All the checksums matched successfully' + for_verification_name )
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
class A__ ( lowerCAmelCase__ ):
pass
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]:
if expected_splits is None:
logger.info('Unable to verify splits sizes.' )
return
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0:
raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) )
__lowercase = [
{'expected': expected_splits[name], 'recorded': recorded_splits[name]}
for name in expected_splits
if expected_splits[name].num_examples != recorded_splits[name].num_examples
]
if len(SCREAMING_SNAKE_CASE ) > 0:
raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) )
logger.info('All the splits matched successfully.' )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict:
if record_checksum:
__lowercase = shaaaa()
with open(SCREAMING_SNAKE_CASE , 'rb' ) as f:
for chunk in iter(lambda: f.read(1 << 20 ) , b'' ):
m.update(SCREAMING_SNAKE_CASE )
__lowercase = m.hexdigest()
else:
__lowercase = None
return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum}
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict:
if dataset_size and config.IN_MEMORY_MAX_SIZE:
return dataset_size < config.IN_MEMORY_MAX_SIZE
else:
return False
| 325 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a ={"""configuration_mra""": ["""MRA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MraConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a =[
"""MRA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MraForMaskedLM""",
"""MraForMultipleChoice""",
"""MraForQuestionAnswering""",
"""MraForSequenceClassification""",
"""MraForTokenClassification""",
"""MraLayer""",
"""MraModel""",
"""MraPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mra import (
MRA_PRETRAINED_MODEL_ARCHIVE_LIST,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraLayer,
MraModel,
MraPreTrainedModel,
)
else:
import sys
a =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 73 |
import math
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict:
__lowercase = factor * value
__lowercase = value
while not is_prime(SCREAMING_SNAKE_CASE ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **SCREAMING_SNAKE_CASE )
return value
| 325 | 0 |
"""simple docstring"""
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
_lowercase = NewType('''DataClass''', Any)
_lowercase = NewType('''DataClassType''', Any)
def _snake_case ( snake_case__ : Tuple ):
if isinstance(snake_case__ , snake_case__ ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
F'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).' )
def _snake_case ( snake_case__ : list ):
A = {str(snake_case__ ): choice for choice in choices}
return lambda snake_case__ : str_to_choice.get(snake_case__ , snake_case__ )
def _snake_case ( *,
snake_case__ : Union[str, List[str]] = None , snake_case__ : str = None , snake_case__ : Any = dataclasses.MISSING , snake_case__ : Callable[[], Any] = dataclasses.MISSING , snake_case__ : dict = None , **snake_case__ : Any , ):
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
A = {}
if aliases is not None:
A = aliases
if help is not None:
A = help
return dataclasses.field(metadata=snake_case__ , default=snake_case__ , default_factory=snake_case__ , **snake_case__ )
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
_lowerCamelCase: Iterable[DataClassType]
def __init__( self : List[str] ,A_ : Union[DataClassType, Iterable[DataClassType]] ,**A_ : Any ) -> Optional[int]:
# To make the default appear when using --help
if "formatter_class" not in kwargs:
A = ArgumentDefaultsHelpFormatter
super().__init__(**A_ )
if dataclasses.is_dataclass(A_ ):
A = [dataclass_types]
A = list(A_ )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(A_ )
@staticmethod
def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ,A_ : dataclasses.Field ) -> Optional[Any]:
A = F'--{field.name}'
A = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type ,A_ ):
raise RuntimeError(
'Unresolved type detected, which should have been done with the help of '
'`typing.get_type_hints` method by default' )
A = kwargs.pop('aliases' ,[] )
if isinstance(A_ ,A_ ):
A = [aliases]
A = getattr(field.type ,'__origin__' ,field.type )
if origin_type is Union or (hasattr(A_ ,'UnionType' ) and isinstance(A_ ,types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(A_ ) not in field.type.__args__
):
raise ValueError(
'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because'
' the argument parser only supports one type per argument.'
F' Problem encountered in field \'{field.name}\'.' )
if type(A_ ) not in field.type.__args__:
# filter `str` in Union
A = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
A = getattr(field.type ,'__origin__' ,field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
A = (
field.type.__args__[0] if isinstance(A_ ,field.type.__args__[1] ) else field.type.__args__[1]
)
A = getattr(field.type ,'__origin__' ,field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
A = {}
if origin_type is Literal or (isinstance(field.type ,A_ ) and issubclass(field.type ,A_ )):
if origin_type is Literal:
A = field.type.__args__
else:
A = [x.value for x in field.type]
A = make_choice_type_function(kwargs['choices'] )
if field.default is not dataclasses.MISSING:
A = field.default
else:
A = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
A = copy(A_ )
# Hack because type=bool in argparse does not behave as we want.
A = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
A = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
A = default
# This tells argparse we accept 0 or 1 value after --field_name
A = '?'
# This is the value that will get picked if we do --field_name (without value)
A = True
elif isclass(A_ ) and issubclass(A_ ,A_ ):
A = field.type.__args__[0]
A = '+'
if field.default_factory is not dataclasses.MISSING:
A = field.default_factory()
elif field.default is dataclasses.MISSING:
A = True
else:
A = field.type
if field.default is not dataclasses.MISSING:
A = field.default
elif field.default_factory is not dataclasses.MISSING:
A = field.default_factory()
else:
A = True
parser.add_argument(A_ ,*A_ ,**A_ )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
A = False
parser.add_argument(F'--no_{field.name}' ,action='store_false' ,dest=field.name ,**A_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : DataClassType ) -> List[Any]:
if hasattr(A_ ,'_argument_group_name' ):
A = self.add_argument_group(dtype._argument_group_name )
else:
A = self
try:
A = get_type_hints(A_ )
except NameError:
raise RuntimeError(
F'Type resolution failed for {dtype}. Try declaring the class in global scope or '
'removing line of `from __future__ import annotations` which opts in Postponed '
'Evaluation of Annotations (PEP 563)' )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(A_ ):
A = '.'.join(map(A_ ,sys.version_info[:3] ) )
raise RuntimeError(
F'Type resolution failed for {dtype} on Python {python_version}. Try removing '
'line of `from __future__ import annotations` which opts in union types as '
'`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To '
'support Python versions that lower than 3.10, you need to use '
'`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of '
'`X | None`.' ) from ex
raise
for field in dataclasses.fields(A_ ):
if not field.init:
continue
A = type_hints[field.name]
self._parse_dataclass_field(A_ ,A_ )
def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Any=None ,A_ : int=False ,A_ : Any=True ,A_ : List[str]=None ,A_ : Union[str, Any]=None ,) -> Tuple[DataClass, ...]:
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
A = []
if args_filename:
args_files.append(Path(A_ ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix('.args' ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
A = ArgumentParser()
args_file_parser.add_argument(A_ ,type=A_ ,action='append' )
# Use only remaining args for further parsing (remove the args_file_flag)
A , A = args_file_parser.parse_known_args(args=A_ )
A = vars(A_ ).get(args_file_flag.lstrip('-' ) ,A_ )
if cmd_args_file_paths:
args_files.extend([Path(A_ ) for p in cmd_args_file_paths] )
A = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
A = file_args + args if args is not None else file_args + sys.argv[1:]
A , A = self.parse_known_args(args=A_ )
A = []
for dtype in self.dataclass_types:
A = {f.name for f in dataclasses.fields(A_ ) if f.init}
A = {k: v for k, v in vars(A_ ).items() if k in keys}
for k in keys:
delattr(A_ ,A_ )
A = dtype(**A_ )
outputs.append(A_ )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(A_ )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}' )
return (*outputs,)
def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : Dict[str, Any] ,A_ : bool = False ) -> Tuple[DataClass, ...]:
A = set(args.keys() )
A = []
for dtype in self.dataclass_types:
A = {f.name for f in dataclasses.fields(A_ ) if f.init}
A = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
A = dtype(**A_ )
outputs.append(A_ )
if not allow_extra_keys and unused_keys:
raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(A_ )}' )
return tuple(A_ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : bool = False ) -> Tuple[DataClass, ...]:
with open(Path(A_ ) ,encoding='utf-8' ) as open_json_file:
A = json.loads(open_json_file.read() )
A = self.parse_dict(A_ ,allow_extra_keys=A_ )
return tuple(A_ )
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : str ,A_ : bool = False ) -> Tuple[DataClass, ...]:
A = self.parse_dict(yaml.safe_load(Path(A_ ).read_text() ) ,allow_extra_keys=A_ )
return tuple(A_ ) | 74 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325 | 0 |
'''simple docstring'''
import re
import tempfile
from pathlib import Path
import pytest
import yaml
from datasets.utils.readme import ReadMe
# @pytest.fixture
# def example_yaml_structure():
a_ : List[str] = yaml.safe_load(
"""\
name: \"\"
allow_empty: false
allow_empty_text: true
subsections:
- name: \"Dataset Card for X\" # First-level markdown heading
allow_empty: false
allow_empty_text: true
subsections:
- name: \"Table of Contents\"
allow_empty: false
allow_empty_text: false
subsections: null
- name: \"Dataset Description\"
allow_empty: false
allow_empty_text: false
subsections:
- name: \"Dataset Summary\"
allow_empty: false
allow_empty_text: false
subsections: null
- name: \"Supported Tasks and Leaderboards\"
allow_empty: true
allow_empty_text: true
subsections: null
- name: Languages
allow_empty: false
allow_empty_text: true
subsections: null
"""
)
a_ : int = {
"""name""": """root""",
"""text""": """""",
"""is_empty_text""": True,
"""subsections""": [
{
"""name""": """Dataset Card for My Dataset""",
"""text""": """""",
"""is_empty_text""": True,
"""subsections""": [
{"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []},
{
"""name""": """Dataset Description""",
"""text""": """Some text here.""",
"""is_empty_text""": False,
"""subsections""": [
{
"""name""": """Dataset Summary""",
"""text""": """Some text here.""",
"""is_empty_text""": False,
"""subsections""": [],
},
{
"""name""": """Supported Tasks and Leaderboards""",
"""text""": """""",
"""is_empty_text""": True,
"""subsections""": [],
},
{"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []},
],
},
],
}
],
}
a_ : List[str] = """\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : str = """\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
#### Extra Ignored Subsection
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : List[str] = {
"""name""": """root""",
"""text""": """""",
"""is_empty_text""": True,
"""subsections""": [
{
"""name""": """Dataset Card for My Dataset""",
"""text""": """""",
"""is_empty_text""": True,
"""subsections""": [
{"""name""": """Table of Contents""", """text""": """Some text here.""", """is_empty_text""": False, """subsections""": []},
{
"""name""": """Dataset Description""",
"""text""": """Some text here.""",
"""is_empty_text""": False,
"""subsections""": [
{
"""name""": """Dataset Summary""",
"""text""": """Some text here.""",
"""is_empty_text""": False,
"""subsections""": [
{
"""name""": """Extra Ignored Subsection""",
"""text""": """""",
"""is_empty_text""": True,
"""subsections""": [],
}
],
},
{
"""name""": """Supported Tasks and Leaderboards""",
"""text""": """""",
"""is_empty_text""": True,
"""subsections""": [],
},
{"""name""": """Languages""", """text""": """Language Text""", """is_empty_text""": False, """subsections""": []},
],
},
],
}
],
}
a_ : str = """\
---
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : Tuple = (
"""The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README."""
)
a_ : List[Any] = """\
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : Dict = (
"""The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README."""
)
a_ : List[str] = """\
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : str = """The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README."""
a_ : Optional[Any] = """\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : int = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored)."""
a_ : Optional[Any] = """\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
"""
a_ : List[Any] = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found 'None'."""
a_ : Any = """\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Languages
Language Text
"""
a_ : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`."""
a_ : int = """\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
"""
a_ : str = """The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty."""
a_ : int = """\
---
language:
- zh
- en
---
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : List[Any] = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README."""
a_ : int = """\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
# Dataset Card My Dataset
"""
a_ : Optional[Any] = """The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README."""
a_ : Dict = """\
---
language:
- zh
- en
---
# Dataset Card My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : List[Any] = """The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README."""
a_ : Optional[Any] = """"""
a_ : Tuple = """The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README."""
a_ : Optional[Any] = """\
---
language:
- zh
- en
---
# Dataset Card for My Dataset
# Dataset Card for My Dataset
## Table of Contents
Some text here.
## Dataset Description
Some text here.
### Dataset Summary
Some text here.
### Supported Tasks and Leaderboards
### Languages
Language Text
"""
a_ : Dict = """The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections."""
@pytest.mark.parametrize(
'''readme_md, expected_dict''' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def a_ ( __snake_case : Tuple , __snake_case : str ) -> str:
"""simple docstring"""
assert ReadMe.from_string(__snake_case , __snake_case ).to_dict() == expected_dict
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def a_ ( __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
with pytest.raises(__snake_case , match=re.escape(expected_error.format(path='''root''' ) ) ):
lowerCamelCase_ =ReadMe.from_string(__snake_case , __snake_case )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def a_ ( __snake_case : Union[str, Any] , __snake_case : Dict ) -> List[str]:
"""simple docstring"""
with pytest.raises(__snake_case , match=re.escape(expected_error.format(path='''root''' ) ) ):
ReadMe.from_string(__snake_case , __snake_case )
@pytest.mark.parametrize(
'''readme_md,''' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def a_ ( __snake_case : Tuple ) -> int:
"""simple docstring"""
ReadMe.from_string(__snake_case , __snake_case , suppress_parsing_errors=__snake_case )
@pytest.mark.parametrize(
'''readme_md, expected_dict''' , [
(README_CORRECT, CORRECT_DICT),
(README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL),
] , )
def a_ ( __snake_case : Tuple , __snake_case : Tuple ) -> Union[str, Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ =Path(__snake_case ) / '''README.md'''
with open(__snake_case , '''w+''' ) as readme_file:
readme_file.write(__snake_case )
lowerCamelCase_ =ReadMe.from_readme(__snake_case , __snake_case ).to_dict()
assert out["name"] == path
assert out["text"] == ""
assert out["is_empty_text"]
assert out["subsections"] == expected_dict["subsections"]
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_NO_YAML, EXPECTED_ERROR_README_NO_YAML),
(README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML),
(README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML),
(README_EMPTY, EXPECTED_ERROR_README_EMPTY),
(README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION),
(README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL),
(README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION),
(README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT),
(README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL),
(README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL),
(README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT),
] , )
def a_ ( __snake_case : Union[str, Any] , __snake_case : int ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ =Path(__snake_case ) / '''README.md'''
with open(__snake_case , '''w+''' ) as readme_file:
readme_file.write(__snake_case )
lowerCamelCase_ =expected_error.format(path=__snake_case )
with pytest.raises(__snake_case , match=re.escape(__snake_case ) ):
lowerCamelCase_ =ReadMe.from_readme(__snake_case , __snake_case )
readme.validate()
@pytest.mark.parametrize(
'''readme_md, expected_error''' , [
(README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1),
] , )
def a_ ( __snake_case : List[Any] , __snake_case : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ =Path(__snake_case ) / '''README.md'''
with open(__snake_case , '''w+''' ) as readme_file:
readme_file.write(__snake_case )
lowerCamelCase_ =expected_error.format(path=__snake_case )
with pytest.raises(__snake_case , match=re.escape(__snake_case ) ):
ReadMe.from_readme(__snake_case , __snake_case )
@pytest.mark.parametrize(
'''readme_md,''' , [
(README_MULTIPLE_SAME_HEADING_1),
] , )
def a_ ( __snake_case : List[Any] ) -> List[str]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase_ =Path(__snake_case ) / '''README.md'''
with open(__snake_case , '''w+''' ) as readme_file:
readme_file.write(__snake_case )
ReadMe.from_readme(__snake_case , __snake_case , suppress_parsing_errors=__snake_case )
| 75 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
SCREAMING_SNAKE_CASE__ = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bartpho import BartphoTokenizer
else:
import sys
SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 325 | 0 |
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
a_ = logging.get_logger(__name__)
class _UpperCamelCase ( __A ):
'''simple docstring'''
lowerCamelCase__ ='AutoTokenizer'
lowerCamelCase__ =['tokenizer']
lowerCamelCase__ ={
'semantic_prompt': 1,
'coarse_prompt': 2,
'fine_prompt': 2,
}
def __init__( self : Any , a : int , a : Any=None ) -> List[Any]:
"""simple docstring"""
super().__init__(a )
SCREAMING_SNAKE_CASE : Tuple = speaker_embeddings
@classmethod
def __UpperCamelCase ( cls : Optional[int] , a : Optional[Any] , a : Any="speaker_embeddings_path.json" , **a : List[str] ) -> List[str]:
"""simple docstring"""
if speaker_embeddings_dict_path is not None:
SCREAMING_SNAKE_CASE : List[Any] = get_file_from_repo(
a , a , subfolder=kwargs.pop("subfolder" , a ) , cache_dir=kwargs.pop("cache_dir" , a ) , force_download=kwargs.pop("force_download" , a ) , proxies=kwargs.pop("proxies" , a ) , resume_download=kwargs.pop("resume_download" , a ) , local_files_only=kwargs.pop("local_files_only" , a ) , use_auth_token=kwargs.pop("use_auth_token" , a ) , revision=kwargs.pop("revision" , a ) , )
if speaker_embeddings_path is None:
logger.warning(
F"`{os.path.join(a , a )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." )
SCREAMING_SNAKE_CASE : Union[str, Any] = None
else:
with open(a ) as speaker_embeddings_json:
SCREAMING_SNAKE_CASE : str = json.load(a )
else:
SCREAMING_SNAKE_CASE : List[str] = None
SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(a , **a )
return cls(tokenizer=a , speaker_embeddings=a )
def __UpperCamelCase ( self : Optional[Any] , a : Tuple , a : Tuple="speaker_embeddings_path.json" , a : Union[str, Any]="speaker_embeddings" , a : bool = False , **a : List[str] , ) -> List[Any]:
"""simple docstring"""
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(a , a , "v2" ) , exist_ok=a )
SCREAMING_SNAKE_CASE : Any = {}
SCREAMING_SNAKE_CASE : int = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
SCREAMING_SNAKE_CASE : Tuple = self._load_voice_preset(a )
SCREAMING_SNAKE_CASE : Union[str, Any] = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["repo_or_path"] , a , F"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=a , )
SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(a , F"{prompt_key}_{key}.npy" )
SCREAMING_SNAKE_CASE : int = tmp_dict
with open(os.path.join(a , a ) , "w" ) as fp:
json.dump(a , a )
super().save_pretrained(a , a , **a )
def __UpperCamelCase ( self : List[str] , a : str = None , **a : str ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = self.speaker_embeddings[voice_preset]
SCREAMING_SNAKE_CASE : Any = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
F"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." )
SCREAMING_SNAKE_CASE : Optional[Any] = get_file_from_repo(
self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] , subfolder=kwargs.pop("subfolder" , a ) , cache_dir=kwargs.pop("cache_dir" , a ) , force_download=kwargs.pop("force_download" , a ) , proxies=kwargs.pop("proxies" , a ) , resume_download=kwargs.pop("resume_download" , a ) , local_files_only=kwargs.pop("local_files_only" , a ) , use_auth_token=kwargs.pop("use_auth_token" , a ) , revision=kwargs.pop("revision" , a ) , )
if path is None:
raise ValueError(
F"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." )
SCREAMING_SNAKE_CASE : Optional[int] = np.load(a )
return voice_preset_dict
def __UpperCamelCase ( self : Dict , a : Optional[dict] = None ) -> List[Any]:
"""simple docstring"""
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(F"Voice preset unrecognized, missing {key} as a key." )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(F"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
def __call__( self : Union[str, Any] , a : Dict=None , a : Dict=None , a : Tuple="pt" , a : List[Any]=256 , a : Optional[Any]=False , a : Tuple=True , a : str=False , **a : List[str] , ) -> Tuple:
"""simple docstring"""
if voice_preset is not None and not isinstance(a , a ):
if (
isinstance(a , a )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
SCREAMING_SNAKE_CASE : str = self._load_voice_preset(a )
else:
if isinstance(a , a ) and not voice_preset.endswith(".npz" ):
SCREAMING_SNAKE_CASE : List[str] = voice_preset + ".npz"
SCREAMING_SNAKE_CASE : Dict = np.load(a )
if voice_preset is not None:
self._validate_voice_preset_dict(a , **a )
SCREAMING_SNAKE_CASE : Dict = BatchFeature(data=a , tensor_type=a )
SCREAMING_SNAKE_CASE : str = self.tokenizer(
a , return_tensors=a , padding="max_length" , max_length=a , return_attention_mask=a , return_token_type_ids=a , add_special_tokens=a , **a , )
if voice_preset is not None:
SCREAMING_SNAKE_CASE : Optional[int] = voice_preset
return encoded_text | 76 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = "transfo-xl"
lowerCAmelCase__ : int = ["mems"]
lowerCAmelCase__ : Dict = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple:
"""simple docstring"""
__lowercase = vocab_size
__lowercase = []
self.cutoffs.extend(_UpperCAmelCase )
if proj_share_all_but_first:
__lowercase = [False] + [True] * len(self.cutoffs )
else:
__lowercase = [False] + [False] * len(self.cutoffs )
__lowercase = d_model
__lowercase = d_embed
__lowercase = d_head
__lowercase = d_inner
__lowercase = div_val
__lowercase = pre_lnorm
__lowercase = n_layer
__lowercase = n_head
__lowercase = mem_len
__lowercase = same_length
__lowercase = attn_type
__lowercase = clamp_len
__lowercase = sample_softmax
__lowercase = adaptive
__lowercase = dropout
__lowercase = dropatt
__lowercase = untie_r
__lowercase = init
__lowercase = init_range
__lowercase = proj_init_std
__lowercase = init_std
__lowercase = layer_norm_epsilon
super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def a__ ( self : Tuple ) -> Any:
"""simple docstring"""
logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
return -1
@max_position_embeddings.setter
def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
| 325 | 0 |
"""simple docstring"""
_UpperCamelCase : Any = range(2, 20 + 1)
_UpperCamelCase : List[str] = [10**k for k in range(ks[-1] + 1)]
_UpperCamelCase : dict[int, dict[int, list[list[int]]]] = {}
def a_ ( _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ):
'''simple docstring'''
lowercase__ : Dict = sum(a_i[j] for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ) )
lowercase__ : int = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ) , _lowerCAmelCase ) ) )
lowercase__ , lowercase__ : List[Any] = 0, 0
lowercase__ : Optional[Any] = n - i
lowercase__ : Optional[Any] = memo.get(_lowerCAmelCase )
if sub_memo is not None:
lowercase__ : str = sub_memo.get(_lowerCAmelCase )
if jumps is not None and len(_lowerCAmelCase ) > 0:
# find and make the largest jump without going over
lowercase__ : Dict = -1
for _k in range(len(_lowerCAmelCase ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
lowercase__ : Union[str, Any] = _k
break
if max_jump >= 0:
lowercase__ , lowercase__ , lowercase__ : Optional[Any] = jumps[max_jump]
# since the difference between jumps is cached, add c
lowercase__ : Any = diff + c
for j in range(min(_lowerCAmelCase , len(_lowerCAmelCase ) ) ):
lowercase__ , lowercase__ : Any = divmod(_lowerCAmelCase , 10 )
if new_c > 0:
add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
else:
lowercase__ : Union[str, Any] = []
else:
lowercase__ : Optional[int] = {c: []}
lowercase__ : int = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
lowercase__ , lowercase__ : Optional[int] = next_term(_lowerCAmelCase , k - 1 , i + dn , _lowerCAmelCase )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
lowercase__ , lowercase__ : Optional[int] = compute(_lowerCAmelCase , _lowerCAmelCase , i + dn , _lowerCAmelCase )
diff += _diff
dn += terms_jumped
lowercase__ : List[str] = sub_memo[c]
# keep jumps sorted by # of terms skipped
lowercase__ : str = 0
while j < len(_lowerCAmelCase ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(_lowerCAmelCase , (diff, dn, k) )
return (diff, dn)
def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] ):
'''simple docstring'''
if i >= n:
return 0, i
if k > len(_lowerCAmelCase ):
a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
lowercase__ : Tuple = i
lowercase__ , lowercase__ , lowercase__ : Tuple = 0, 0, 0
for j in range(len(_lowerCAmelCase ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
lowercase__ : Optional[int] = ds_c + ds_b
diff += addend
lowercase__ : int = 0
for j in range(_lowerCAmelCase ):
lowercase__ : Tuple = a_i[j] + addend
lowercase__ , lowercase__ : List[str] = divmod(_lowerCAmelCase , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
return diff, i - start_i
def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ):
'''simple docstring'''
for j in range(_lowerCAmelCase , len(_lowerCAmelCase ) ):
lowercase__ : int = digits[j] + addend
if s >= 10:
lowercase__ , lowercase__ : Dict = divmod(_lowerCAmelCase , 10 )
lowercase__ : str = addend // 10 + quotient
else:
lowercase__ : int = s
lowercase__ : Optional[Any] = addend // 10
if addend == 0:
break
while addend > 0:
lowercase__ , lowercase__ : str = divmod(_lowerCAmelCase , 10 )
digits.append(_lowerCAmelCase )
def a_ ( _lowerCAmelCase : int = 10**15 ):
'''simple docstring'''
lowercase__ : int = [1]
lowercase__ : Tuple = 1
lowercase__ : int = 0
while True:
lowercase__ , lowercase__ : Dict = next_term(_lowerCAmelCase , 20 , i + dn , _lowerCAmelCase )
dn += terms_jumped
if dn == n - i:
break
lowercase__ : List[Any] = 0
for j in range(len(_lowerCAmelCase ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(f'''{solution() = }''')
| 77 |
import argparse
import json
import os
import fairseq
import torch
from torch import nn
from transformers import (
SpeechaTextaConfig,
SpeechaTextaForCausalLM,
SpeechaTextaTokenizer,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
}
SCREAMING_SNAKE_CASE__ = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
]
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]:
for attribute in key.split('.' ):
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if weight_type is not None:
__lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape
else:
__lowercase = hf_pointer.shape
assert hf_shape == value.shape, (
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}"""
)
if weight_type == "weight":
__lowercase = value
elif weight_type == "weight_g":
__lowercase = value
elif weight_type == "weight_v":
__lowercase = value
elif weight_type == "bias":
__lowercase = value
else:
__lowercase = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple:
__lowercase = []
__lowercase = fairseq_model.state_dict()
__lowercase = hf_model.feature_extractor
# if encoder has different dim to decoder -> use proj_weight
__lowercase = None
for name, value in fairseq_dict.items():
__lowercase = False
if "conv_layers" in name:
load_conv_layer(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , )
__lowercase = True
elif name.split('.' )[0] == "proj":
__lowercase = fairseq_model.proj
__lowercase = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]:
__lowercase = True
if "*" in mapped_key:
__lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2]
__lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE )
if "weight_g" in name:
__lowercase = 'weight_g'
elif "weight_v" in name:
__lowercase = 'weight_v'
elif "bias" in name:
__lowercase = 'bias'
elif "weight" in name:
__lowercase = 'weight'
else:
__lowercase = None
set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
if not is_used:
unused_weights.append(SCREAMING_SNAKE_CASE )
logger.warning(F"""Unused weights: {unused_weights}""" )
return proj_weight
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
__lowercase = full_name.split('conv_layers.' )[-1]
__lowercase = name.split('.' )
__lowercase = int(items[0] )
__lowercase = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"""
" found."
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."""
)
__lowercase = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]:
__lowercase , __lowercase = emb.weight.shape
__lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE )
__lowercase = emb.weight.data
return lin_layer
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]:
with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f:
__lowercase = f.readlines()
__lowercase = [line.split(' ' )[0] for line in lines]
__lowercase = len(SCREAMING_SNAKE_CASE )
__lowercase = {
'<s>': 0,
'<pad>': 1,
'</s>': 2,
'<unk>': 3,
}
vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) )
return vocab_dict
@torch.no_grad()
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]:
__lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaConfig.from_pretrained(
SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE )
__lowercase = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , )
__lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} )
__lowercase = model[0].eval()
# set weights for wav2vec2 encoder
__lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE )
__lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE )
__lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE )
# set output linear layer
unexpected_keys.remove('embed_out' )
__lowercase = nn.Parameter(model.decoder.embed_out.detach() )
# layer norm is init to identity matrix so leaving it is fine
logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" )
logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" )
__lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE )
__lowercase = False
# add projection layer
__lowercase = nn.Parameter(projection_layer.weight )
__lowercase = nn.Parameter(projection_layer.bias )
__lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE )
with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) )
tokenizer.save_pretrained(SCREAMING_SNAKE_CASE )
__lowercase = hf_wavavec.config.to_dict()
__lowercase = tokenizer.pad_token_id
__lowercase = tokenizer.bos_token_id
__lowercase = tokenizer.eos_token_id
__lowercase = 'speech_to_text_2'
__lowercase = 'wav2vec2'
__lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE )
hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE )
feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument(
"""--encoder_config_path""",
default="""facebook/wav2vec2-large-lv60""",
type=str,
help="""Path to hf encoder wav2vec2 checkpoint config""",
)
parser.add_argument(
"""--decoder_config_path""",
default="""facebook/s2t-small-mustc-en-fr-st""",
type=str,
help="""Path to hf decoder s2t checkpoint config""",
)
parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""")
parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""")
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
vocab_size=args.vocab_size,
num_decoder_layers=args.num_decoder_layers,
)
| 325 | 0 |
"""simple docstring"""
import torch
from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel
class A_ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__UpperCamelCase = """M-CLIP"""
def __init__( self :Union[str, Any] , lowercase_ :Dict=10_24 , lowercase_ :Tuple=7_68 , **lowercase_ :Any ) -> Dict:
UpperCAmelCase = transformerDimSize
UpperCAmelCase = imageDimSize
super().__init__(**lowercase_ )
class A_ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__UpperCamelCase = MCLIPConfig
def __init__( self :List[str] , lowercase_ :Optional[int] , *lowercase_ :Optional[int] , **lowercase_ :str ) -> str:
super().__init__(lowercase_ , *lowercase_ , **lowercase_ )
UpperCAmelCase = XLMRobertaModel(lowercase_ )
UpperCAmelCase = torch.nn.Linear(
in_features=config.transformerDimensions , out_features=config.numDims )
def UpperCAmelCase__ ( self :int , lowercase_ :Optional[Any] , lowercase_ :str ) -> List[Any]:
UpperCAmelCase = self.transformer(input_ids=lowercase_ , attention_mask=lowercase_ )[0]
UpperCAmelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None]
return self.LinearTransformation(lowercase_ ), embs
| 78 |
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
__lowercase = [0 for i in range(r + 1 )]
# nc0 = 1
__lowercase = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
__lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 325 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class _UpperCAmelCase ( snake_case_ ):
"""simple docstring"""
snake_case = '''markuplm'''
def __init__( self : List[str] , __UpperCAmelCase : Optional[Any]=30522 , __UpperCAmelCase : str=768 , __UpperCAmelCase : Optional[int]=12 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : Dict="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : str=1E-12 , __UpperCAmelCase : str=0 , __UpperCAmelCase : int=0 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : Optional[int]=256 , __UpperCAmelCase : Any=1024 , __UpperCAmelCase : Union[str, Any]=216 , __UpperCAmelCase : Any=1001 , __UpperCAmelCase : int=32 , __UpperCAmelCase : List[str]=50 , __UpperCAmelCase : str="absolute" , __UpperCAmelCase : str=True , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
# additional properties
_A = max_depth
_A = max_xpath_tag_unit_embeddings
_A = max_xpath_subs_unit_embeddings
_A = tag_pad_id
_A = subs_pad_id
_A = xpath_unit_hidden_size
| 79 |
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class A__ ( lowerCAmelCase__ ):
lowerCAmelCase__ : Union[str, Any] = ["vqvae"]
def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str:
"""simple docstring"""
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase )
def a__ ( self : Tuple ) -> int:
"""simple docstring"""
return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00
@torch.no_grad()
def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[
Union[AudioPipelineOutput, ImagePipelineOutput],
Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]],
]:
"""simple docstring"""
__lowercase = steps or self.get_default_steps()
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__lowercase = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__lowercase = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_UpperCAmelCase , device=self.device , )
__lowercase = noise
__lowercase = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase )
__lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase )
__lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape(
(input_image.height, input_image.width) )
__lowercase = (input_image / 2_55) * 2 - 1
__lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample(
generator=_UpperCAmelCase )[0]
__lowercase = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] )
__lowercase = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__lowercase = int(mask_start_secs * pixels_per_second )
__lowercase = int(mask_end_secs * pixels_per_second )
__lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _UpperCAmelCase ):
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample']
else:
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
if isinstance(self.scheduler , _UpperCAmelCase ):
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
else:
__lowercase = self.scheduler.step(
model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample']
if mask is not None:
if mask_start > 0:
__lowercase = mask[:, step, :, :mask_start]
if mask_end > 0:
__lowercase = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__lowercase = 1 / self.vqvae.config.scaling_factor * images
__lowercase = self.vqvae.decode(_UpperCAmelCase )['sample']
__lowercase = (images / 2 + 0.5).clamp(0 , 1 )
__lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__lowercase = (images * 2_55).round().astype('uint8' )
__lowercase = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) )
__lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) )
@torch.no_grad()
def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray:
"""simple docstring"""
assert isinstance(self.scheduler , _UpperCAmelCase )
self.scheduler.set_timesteps(_UpperCAmelCase )
__lowercase = np.array(
[np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] )
__lowercase = (sample / 2_55) * 2 - 1
__lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__lowercase = self.scheduler.alphas_cumprod[t]
__lowercase = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__lowercase = 1 - alpha_prod_t
__lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample']
__lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor:
"""simple docstring"""
__lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) )
return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
| 325 | 0 |
'''simple docstring'''
from __future__ import annotations
def _UpperCamelCase ( __A ) -> int:
'''simple docstring'''
if not nums:
return 0
UpperCamelCase__ = nums[0]
UpperCamelCase__ = 0
for num in nums[1:]:
UpperCamelCase__ , UpperCamelCase__ = (
max_excluding + num,
max(__A , __A ),
)
return max(__A , __A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 80 |
from __future__ import annotations
# This is the precision for this function which can be altered.
# It is recommended for users to keep this number greater than or equal to 10.
SCREAMING_SNAKE_CASE__ = 10
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if array[i] == target:
return i
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
__lowercase = 0
__lowercase = len(SCREAMING_SNAKE_CASE )
while left <= right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
__lowercase = one_third - 1
elif array[two_third] < target:
__lowercase = two_third + 1
else:
__lowercase = one_third + 1
__lowercase = two_third - 1
else:
return -1
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int:
if left < right:
if right - left < precision:
return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
__lowercase = (left + right) // 3 + 1
__lowercase = 2 * (left + right) // 3 + 1
if array[one_third] == target:
return one_third
elif array[two_third] == target:
return two_third
elif target < array[one_third]:
return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
elif array[two_third] < target:
return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip()
SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")]
assert collection == sorted(collection), F"List must be ordered.\n{collection}."
SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip())
SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target)
SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target)
if resulta != -1:
print(F'''Iterative search: {target} found at positions: {resulta}''')
print(F'''Recursive search: {target} found at positions: {resulta}''')
else:
print("""Not found""")
| 325 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.