code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from collections.abc import Sequence def _A ( lowercase , lowercase = False ): """simple docstring""" if not arr: return 0 a =0 if allow_empty_subarrays else float('''-inf''' ) a =0.0 for num in arr: a =max(0 if allow_empty_subarrays else num , curr_sum + num ) a =max(lowercase , lowercase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase_ : List[str] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F'{max_subarray_sum(nums) = }')
81
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
def _UpperCAmelCase ( snake_case ): """simple docstring""" if not isinstance(snake_case , snake_case ): _lowerCAmelCase = F'Input value of [number={number}] must be an integer' raise TypeError(snake_case ) if number < 0: return False _lowerCAmelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
82
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def A__ ( UpperCAmelCase_=None , UpperCAmelCase_=None ): return field(default_factory=lambda: default , metadata=UpperCAmelCase_ ) @dataclass class lowercase__ : lowercase__ = field( metadata={"""help""": """The csv file to plot."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) lowercase__ = field( default=lowercase , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) lowercase__ = field( default=lowercase , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) lowercase__ = list_field( default=lowercase , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def A__ ( UpperCAmelCase_ ): try: int(UpperCAmelCase_ ) return True except ValueError: return False def A__ ( UpperCAmelCase_ ): try: float(UpperCAmelCase_ ) return True except ValueError: return False class lowercase__ : def __init__( self : List[Any] ,lowerCamelCase__ : List[str] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = args _UpperCamelCase : Optional[Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file ,newline='' ) as csv_file: _UpperCamelCase : List[Any] = csv.DictReader(lowerCamelCase__ ) for row in reader: _UpperCamelCase : Any = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _UpperCamelCase : Optional[int] = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _UpperCamelCase : Dict = float(row['result'] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Optional[int] = plt.subplots() _UpperCamelCase : List[str] = 'Time usage' if self.args.is_time else 'Memory usage' _UpperCamelCase : List[Any] = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _UpperCamelCase : Dict = sorted(set(self.result_dict[model_name]['bsz'] ) ) _UpperCamelCase : Optional[int] = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _UpperCamelCase : List[str] = self.result_dict[model_name]['result'] ((_UpperCamelCase) , (_UpperCamelCase)) : Tuple = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _UpperCamelCase : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _UpperCamelCase : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] ,dtype=lowerCamelCase__ ,) else: _UpperCamelCase : str = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] ,dtype=np.floataa ,) ((_UpperCamelCase) , (_UpperCamelCase)) : Tuple = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _UpperCamelCase : Dict = np.asarray(lowerCamelCase__ ,lowerCamelCase__ )[: len(lowerCamelCase__ )] plt.scatter( lowerCamelCase__ ,lowerCamelCase__ ,label=F'{label_model_name} - {inner_loop_label}: {inner_loop_value}' ) plt.plot(lowerCamelCase__ ,lowerCamelCase__ ,'--' ) title_str += F' {label_model_name} vs.' _UpperCamelCase : Optional[Any] = title_str[:-4] _UpperCamelCase : str = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(lowerCamelCase__ ) plt.xlabel(lowerCamelCase__ ) plt.ylabel(lowerCamelCase__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def A__ ( ): _UpperCamelCase : str = HfArgumentParser(UpperCAmelCase_ ) _UpperCamelCase : Dict = parser.parse_args_into_dataclasses()[0] _UpperCamelCase : List[str] = Plot(args=UpperCAmelCase_ ) plot.plot() if __name__ == "__main__": main()
83
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
"""simple docstring""" from __future__ import annotations class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ :List[Any] = text, pattern lowerCAmelCase_ , lowerCAmelCase_ :List[str] = len(__A ), len(__A ) def __lowerCAmelCase ( self , __A ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __lowerCAmelCase ( self , __A ) -> int: for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __lowerCAmelCase ( self ) -> list[int]: # searches pattern in text and returns index positions lowerCAmelCase_ :List[str] = [] for i in range(self.textLen - self.patLen + 1 ): lowerCAmelCase_ :Any = self.mismatch_in_text(__A ) if mismatch_index == -1: positions.append(__A ) else: lowerCAmelCase_ :int = self.match_in_pattern(self.text[mismatch_index] ) lowerCAmelCase_ :Any = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions __UpperCAmelCase = 'ABAABA' __UpperCAmelCase = 'AB' __UpperCAmelCase = BoyerMooreSearch(text, pattern) __UpperCAmelCase = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
84
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_( snake_case : list[float] ): '''simple docstring''' snake_case_ = 0.00 snake_case_ = 0 for resistor in resistors: if resistor <= 0: snake_case_ = f'Resistor at index {index} has a negative or zero value!' raise ValueError(snake_case ) first_sum += 1 / float(snake_case ) index += 1 return 1 / first_sum def UpperCamelCase_( snake_case : list[float] ): '''simple docstring''' snake_case_ = 0.00 snake_case_ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: snake_case_ = f'Resistor at index {index} has a negative value!' raise ValueError(snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
85
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = """ResNetConfig""" # Base docstring lowerCamelCase__ = """microsoft/resnet-50""" lowerCamelCase__ = [1, 2_048, 7, 7] # Image classification docstring lowerCamelCase__ = """microsoft/resnet-50""" lowerCamelCase__ = """tiger cat""" lowerCamelCase__ = [ """microsoft/resnet-50""", # See all resnet models at https://huggingface.co/models?filter=resnet ] class A__ ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 3 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = "relu" ): super().__init__() __lowerCAmelCase : Optional[int] = nn.Convad( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 , bias=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = ACTaFN[activation] if activation is not None else nn.Identity() def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Dict = self.convolution(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = self.normalization(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE ): super().__init__() __lowerCAmelCase : Dict = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) __lowerCAmelCase : Dict = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) __lowerCAmelCase : int = config.num_channels def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowerCAmelCase : List[str] = self.embedder(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = self.pooler(_SCREAMING_SNAKE_CASE ) return embedding class A__ ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 2 ): super().__init__() __lowerCAmelCase : Optional[Any] = nn.Convad(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , stride=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = self.convolution(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = self.normalization(_SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = "relu" ): super().__init__() __lowerCAmelCase : Any = in_channels != out_channels or stride != 1 __lowerCAmelCase : Any = ( ResNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase : List[str] = nn.Sequential( ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , activation=_SCREAMING_SNAKE_CASE ) , ) __lowerCAmelCase : Optional[int] = ACTaFN[activation] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = hidden_state __lowerCAmelCase : List[str] = self.layer(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual __lowerCAmelCase : Union[str, Any] = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = "relu" , _SCREAMING_SNAKE_CASE = 4 ): super().__init__() __lowerCAmelCase : Tuple = in_channels != out_channels or stride != 1 __lowerCAmelCase : Dict = out_channels // reduction __lowerCAmelCase : Any = ( ResNetShortCut(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) if should_apply_shortcut else nn.Identity() ) __lowerCAmelCase : Any = nn.Sequential( ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE ) , ResNetConvLayer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 , activation=_SCREAMING_SNAKE_CASE ) , ) __lowerCAmelCase : str = ACTaFN[activation] def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[int] = hidden_state __lowerCAmelCase : Optional[Any] = self.layer(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = self.shortcut(_SCREAMING_SNAKE_CASE ) hidden_state += residual __lowerCAmelCase : str = self.activation(_SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 2 , _SCREAMING_SNAKE_CASE = 2 , ): super().__init__() __lowerCAmelCase : str = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer __lowerCAmelCase : List[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , activation=config.hidden_act ) , *[layer(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : str = input for layer in self.layers: __lowerCAmelCase : Optional[int] = layer(_SCREAMING_SNAKE_CASE ) return hidden_state class A__ ( nn.Module): def __init__( self , _SCREAMING_SNAKE_CASE ): super().__init__() __lowerCAmelCase : int = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _SCREAMING_SNAKE_CASE , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowerCAmelCase : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_SCREAMING_SNAKE_CASE , config.depths[1:] ): self.stages.append(ResNetStage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , depth=_SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True ): __lowerCAmelCase : List[str] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCAmelCase : Union[str, Any] = hidden_states + (hidden_state,) __lowerCAmelCase : List[str] = stage_module(_SCREAMING_SNAKE_CASE ) if output_hidden_states: __lowerCAmelCase : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , hidden_states=_SCREAMING_SNAKE_CASE , ) class A__ ( _lowerCamelCase): A_ : Tuple = ResNetConfig A_ : List[Any] = 'resnet' A_ : Optional[int] = 'pixel_values' A_ : int = True def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = value lowerCamelCase__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCamelCase__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , _lowerCamelCase , ) class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE ): super().__init__(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = config __lowerCAmelCase : str = ResNetEmbeddings(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = ResNetEncoder(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Any = self.embedder(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = self.encoder( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = encoder_outputs[0] __lowerCAmelCase : Any = self.pooler(_SCREAMING_SNAKE_CASE ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_SCREAMING_SNAKE_CASE , pooler_output=_SCREAMING_SNAKE_CASE , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , _lowerCamelCase , ) class A__ ( _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE ): super().__init__(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = config.num_labels __lowerCAmelCase : Any = ResNetModel(_SCREAMING_SNAKE_CASE ) # classification head __lowerCAmelCase : Any = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ): __lowerCAmelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : Any = self.resnet(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = outputs.pooler_output if return_dict else outputs[1] __lowerCAmelCase : Union[str, Any] = self.classifier(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCAmelCase : Optional[Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCAmelCase : List[Any] = 'single_label_classification' else: __lowerCAmelCase : Optional[int] = 'multi_label_classification' if self.config.problem_type == "regression": __lowerCAmelCase : int = MSELoss() if self.num_labels == 1: __lowerCAmelCase : Tuple = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCAmelCase : List[str] = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.config.problem_type == "single_label_classification": __lowerCAmelCase : List[Any] = CrossEntropyLoss() __lowerCAmelCase : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCAmelCase : Tuple = BCEWithLogitsLoss() __lowerCAmelCase : str = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not return_dict: __lowerCAmelCase : str = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , _lowerCamelCase , ) class A__ ( _lowerCamelCase , _lowerCamelCase): def __init__( self , _SCREAMING_SNAKE_CASE ): super().__init__(_SCREAMING_SNAKE_CASE ) super()._init_backbone(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : int = [config.embedding_size] + config.hidden_sizes __lowerCAmelCase : Optional[int] = ResNetEmbeddings(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = ResNetEncoder(_SCREAMING_SNAKE_CASE ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_SCREAMING_SNAKE_CASE ) @replace_return_docstrings(output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None ): __lowerCAmelCase : int = return_dict if return_dict is not None else self.config.use_return_dict __lowerCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCAmelCase : Optional[int] = self.embedder(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = self.encoder(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = outputs.hidden_states __lowerCAmelCase : Any = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: __lowerCAmelCase : Any = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_SCREAMING_SNAKE_CASE , )
86
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
325
0
from __future__ import annotations class snake_case_ : def __init__( self : str , lowercase_ : str=None ) -> List[str]: lowercase__ : str = data lowercase__ : Union[str, Any] = None def __repr__( self : int ) -> int: lowercase__ : Union[str, Any] = [] lowercase__ : List[str] = self while temp: string_rep.append(F'''{temp.data}''' ) lowercase__ : Optional[int] = temp.next return "->".join(lowercase_ ) def lowercase_ ( _lowerCamelCase : list): if not elements_list: raise Exception("The Elements List is empty") lowercase__ : int = Node(elements_list[0]) for i in range(1 , len(_lowerCamelCase)): lowercase__ : Optional[Any] = Node(elements_list[i]) lowercase__ : Tuple = current.next return head def lowercase_ ( _lowerCamelCase : Node): if head_node is not None and isinstance(_lowerCamelCase , _lowerCamelCase): print_reverse(head_node.next) print(head_node.data) def lowercase_ ( ): from doctest import testmod testmod() lowercase__ : List[str] = make_linked_list([14, 52, 14, 12, 43]) print("Linked List:") print(_lowerCamelCase) print("Elements in Reverse:") print_reverse(_lowerCamelCase) if __name__ == "__main__": main()
87
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
from __future__ import annotations def a__ ( A_ ): '''simple docstring''' __magic_name__ = len(A_ ) # We need to create solution object to save path. __magic_name__ = [[0 for _ in range(A_ )] for _ in range(A_ )] __magic_name__ = run_maze(A_, 0, 0, A_ ) if solved: print("""\n""".join(str(A_ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = len(A_ ) # Final check point. if i == j == (size - 1): __magic_name__ = 1 return True __magic_name__ = (not i < 0) and (not j < 0) # Check lower bounds __magic_name__ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. __magic_name__ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited __magic_name__ = 1 # check for directions if ( run_maze(A_, i + 1, A_, A_ ) or run_maze(A_, A_, j + 1, A_ ) or run_maze(A_, i - 1, A_, A_ ) or run_maze(A_, A_, j - 1, A_ ) ): return True __magic_name__ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
88
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split('/' ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __lowercase = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
325
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __magic_name__ : def __init__( self : Union[str, Any] ,_UpperCAmelCase : Dict ,_UpperCAmelCase : Tuple=2 ,_UpperCAmelCase : Optional[int]=32 ,_UpperCAmelCase : Any=16 ,_UpperCAmelCase : Tuple=3 ,_UpperCAmelCase : Any=True ,_UpperCAmelCase : List[Any]=True ,_UpperCAmelCase : Union[str, Any]=32 ,_UpperCAmelCase : Optional[int]=4 ,_UpperCAmelCase : str=[0, 1, 2, 3] ,_UpperCAmelCase : Optional[Any]=4 ,_UpperCAmelCase : int=37 ,_UpperCAmelCase : int="gelu" ,_UpperCAmelCase : Tuple=0.1 ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : List[Any]=0.02 ,_UpperCAmelCase : str=3 ,_UpperCAmelCase : Dict=[1, 384, 24, 24] ,_UpperCAmelCase : str=True ,_UpperCAmelCase : Any=None ,): _a : Optional[Any] = parent _a : Any = batch_size _a : str = image_size _a : Any = patch_size _a : Dict = num_channels _a : int = is_training _a : str = use_labels _a : List[Any] = hidden_size _a : Dict = num_hidden_layers _a : int = backbone_out_indices _a : Any = num_attention_heads _a : Dict = intermediate_size _a : Dict = hidden_act _a : Optional[int] = hidden_dropout_prob _a : Dict = attention_probs_dropout_prob _a : Union[str, Any] = initializer_range _a : Tuple = num_labels _a : Any = backbone_featmap_shape _a : Any = scope _a : Dict = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _a : List[str] = (image_size // patch_size) ** 2 _a : Tuple = num_patches + 1 def __lowercase ( self : Optional[Any] ): _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Dict = None if self.use_labels: _a : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels ) _a : Any = self.get_config() return config, pixel_values, labels def __lowercase ( self : Optional[int] ): _a : Union[str, Any] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [96, 192, 384, 768], 'num_groups': 2, } return DPTConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,backbone_out_indices=self.backbone_out_indices ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=_UpperCAmelCase ,initializer_range=self.initializer_range ,is_hybrid=self.is_hybrid ,backbone_config=_UpperCAmelCase ,backbone_featmap_shape=self.backbone_featmap_shape ,) def __lowercase ( self : Any ,_UpperCAmelCase : str ,_UpperCAmelCase : Union[str, Any] ,_UpperCAmelCase : Optional[int] ): _a : Tuple = DPTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : str ,_UpperCAmelCase : Dict ,_UpperCAmelCase : List[str] ,_UpperCAmelCase : Union[str, Any] ): _a : Dict = self.num_labels _a : List[Any] = DPTForDepthEstimation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape ,(self.batch_size, self.image_size, self.image_size) ) def __lowercase ( self : str ,_UpperCAmelCase : str ,_UpperCAmelCase : str ,_UpperCAmelCase : str ): _a : Union[str, Any] = self.num_labels _a : Union[str, Any] = DPTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _a : Tuple = model(_UpperCAmelCase ,labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape ,(self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __lowercase ( self : Dict ): _a : Dict = self.prepare_config_and_inputs() _a , _a , _a : Any = config_and_inputs _a : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : List[Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCAmelCase : Tuple = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase : Dict = False lowerCAmelCase : Any = False lowerCAmelCase : Optional[Any] = False def __lowercase ( self : Optional[int] ): _a : Union[str, Any] = DPTModelTester(self ) _a : List[Any] = ConfigTester(self ,config_class=_UpperCAmelCase ,has_text_modality=_UpperCAmelCase ,hidden_size=37 ) def __lowercase ( self : Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def __lowercase ( self : List[Any] ): pass def __lowercase ( self : str ): _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) _a : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase ,nn.Linear ) ) def __lowercase ( self : Dict ): _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : str = model_class(_UpperCAmelCase ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : str = [*signature.parameters.keys()] _a : Optional[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_UpperCAmelCase ) def __lowercase ( self : Any ): _a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __lowercase ( self : List[str] ): _a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_UpperCAmelCase ) def __lowercase ( self : Optional[int] ): _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) def __lowercase ( self : str ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[Any] = True if model_class in get_values(_UpperCAmelCase ): continue _a : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.train() _a : int = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : str = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[Any] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[int] = False _a : Optional[int] = True if model_class in get_values(_UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue _a : Any = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() _a : Optional[Any] = self._prepare_for_class(_UpperCAmelCase ,_UpperCAmelCase ,return_labels=_UpperCAmelCase ) _a : str = model(**_UpperCAmelCase ).loss loss.backward() def __lowercase ( self : Optional[Any] ): _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : List[str] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _a : Optional[Any] = model_class(config=_UpperCAmelCase ) # Skip the check for the backbone _a : Optional[Any] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _a : int = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() ,[0.0, 1.0] ,msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" ,) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : Tuple ): pass @slow def __lowercase ( self : Tuple ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _a : int = DPTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowercase ( self : str ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : int = 'add' with self.assertRaises(_UpperCAmelCase ): _a : Dict = DPTForDepthEstimation(_UpperCAmelCase ) def __lowerCamelCase ( ) -> Tuple: _a : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class __magic_name__ ( unittest.TestCase ): def __lowercase ( self : str ): _a : Optional[int] = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) _a : List[Any] = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(_UpperCAmelCase ) _a : Optional[int] = prepare_img() _a : str = image_processor(images=_UpperCAmelCase ,return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _a : int = model(**_UpperCAmelCase ) _a : Union[str, Any] = outputs.predicted_depth # verify the predicted depth _a : List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape ,_UpperCAmelCase ) _a : Optional[Any] = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 ,_UpperCAmelCase ,atol=1E-4 ) )
89
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) __A = logging.getLogger() def lowerCamelCase_ ( ) -> str: """simple docstring""" __lowerCamelCase = argparse.ArgumentParser() parser.add_argument('-f' ) __lowerCamelCase = parser.parse_args() return args.f class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def lowercase_ ( self ) -> None: '''simple docstring''' __lowerCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> Dict: '''simple docstring''' __lowerCamelCase = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(lowerCamelCase__ , 'argv' , lowerCamelCase__ ): __lowerCamelCase = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCamelCase__ , 0.6_66 ) @slow @require_torch_non_multi_gpu def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(lowerCamelCase__ ) __lowerCamelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ ) __lowerCamelCase = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(lowerCamelCase__ )
90
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 10 @require_sentencepiece @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[Any] = True def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase ) __lowercase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = '<pad>' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCAmelCase ) , 10_01 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , ) __lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A__ ( unittest.TestCase ): lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase__ : Dict = "C'est trop cool" lowerCAmelCase__ : List[Any] = "Esto es genial" @classmethod def a__ ( cls : Any ) -> Optional[int]: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a__ ( self : Tuple ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def a__ ( self : str ) -> int: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) __lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2] __lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = 'fr' __lowercase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowercase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
325
0
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 0.0 __UpperCamelCase = 1 __UpperCamelCase = 1 __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = [] SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(self.num_layers): SCREAMING_SNAKE_CASE_ : int = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_ : Tuple = FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_) SCREAMING_SNAKE_CASE_ : int = resnets SCREAMING_SNAKE_CASE_ : int = attentions if self.add_downsample: SCREAMING_SNAKE_CASE_ : List[str] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : List[Any] , lowercase_ : str , lowercase_ : List[str] , lowercase_ : List[Any] , lowercase_ : Tuple=True): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = () for resnet, attn in zip(self.resnets , self.attentions): SCREAMING_SNAKE_CASE_ : List[Any] = resnet(lowercase_ , lowercase_ , deterministic=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = attn(lowercase_ , lowercase_ , deterministic=lowercase_) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE_ : Any = self.downsamplers_a(lowercase_) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 0.0 __UpperCamelCase = 1 __UpperCamelCase = True __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = [] for i in range(self.num_layers): SCREAMING_SNAKE_CASE_ : Any = self.in_channels if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_ : int = FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_) SCREAMING_SNAKE_CASE_ : int = resnets if self.add_downsample: SCREAMING_SNAKE_CASE_ : List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : List[Any] , lowercase_ : List[str]=True): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = () for resnet in self.resnets: SCREAMING_SNAKE_CASE_ : List[Any] = resnet(lowercase_ , lowercase_ , deterministic=lowercase_) output_states += (hidden_states,) if self.add_downsample: SCREAMING_SNAKE_CASE_ : Optional[int] = self.downsamplers_a(lowercase_) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 0.0 __UpperCamelCase = 1 __UpperCamelCase = 1 __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i in range(self.num_layers): SCREAMING_SNAKE_CASE_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_) SCREAMING_SNAKE_CASE_ : Any = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = resnets SCREAMING_SNAKE_CASE_ : Tuple = attentions if self.add_upsample: SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Dict , lowercase_ : str , lowercase_ : Union[str, Any] , lowercase_ : Tuple=True): '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions): # pop res hidden states SCREAMING_SNAKE_CASE_ : List[Any] = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE_ : Optional[Any] = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE_ : str = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1) SCREAMING_SNAKE_CASE_ : int = resnet(lowercase_ , lowercase_ , deterministic=lowercase_) SCREAMING_SNAKE_CASE_ : Any = attn(lowercase_ , lowercase_ , deterministic=lowercase_) if self.add_upsample: SCREAMING_SNAKE_CASE_ : int = self.upsamplers_a(lowercase_) return hidden_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 0.0 __UpperCamelCase = 1 __UpperCamelCase = True __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [] for i in range(self.num_layers): SCREAMING_SNAKE_CASE_ : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels SCREAMING_SNAKE_CASE_ : List[Any] = self.prev_output_channel if i == 0 else self.out_channels SCREAMING_SNAKE_CASE_ : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = resnets if self.add_upsample: SCREAMING_SNAKE_CASE_ : List[str] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype) def __call__( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Tuple=True): '''simple docstring''' for resnet in self.resnets: # pop res hidden states SCREAMING_SNAKE_CASE_ : Optional[Any] = res_hidden_states_tuple[-1] SCREAMING_SNAKE_CASE_ : Dict = res_hidden_states_tuple[:-1] SCREAMING_SNAKE_CASE_ : Dict = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1) SCREAMING_SNAKE_CASE_ : Optional[int] = resnet(lowercase_ , lowercase_ , deterministic=lowercase_) if self.add_upsample: SCREAMING_SNAKE_CASE_ : Any = self.upsamplers_a(lowercase_) return hidden_states class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' __UpperCamelCase = 42 __UpperCamelCase = 0.0 __UpperCamelCase = 1 __UpperCamelCase = 1 __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = jnp.floataa def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] SCREAMING_SNAKE_CASE_ : str = [] for _ in range(self.num_layers): SCREAMING_SNAKE_CASE_ : Any = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_) SCREAMING_SNAKE_CASE_ : str = resnets SCREAMING_SNAKE_CASE_ : Tuple = attentions def __call__( self : Any , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Optional[Any]=True): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.resnets[0](lowercase_ , lowercase_) for attn, resnet in zip(self.attentions , self.resnets[1:]): SCREAMING_SNAKE_CASE_ : Optional[Any] = attn(lowercase_ , lowercase_ , deterministic=lowercase_) SCREAMING_SNAKE_CASE_ : Any = resnet(lowercase_ , lowercase_ , deterministic=lowercase_) return hidden_states
91
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = version.parse("1.12" ) @property def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : int ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : str ) -> int: """simple docstring""" return 12 def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
325
0
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _a ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : complex , SCREAMING_SNAKE_CASE_ : str = "x" , SCREAMING_SNAKE_CASE_ : float = 10**-10 , SCREAMING_SNAKE_CASE_ : int = 1 , ): __lowerCAmelCase = symbols(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = lambdify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = lambdify(SCREAMING_SNAKE_CASE_ , diff(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = starting_point while True: if diff_function(SCREAMING_SNAKE_CASE_ ) != 0: __lowerCAmelCase = prev_guess - multiplicity * func(SCREAMING_SNAKE_CASE_ ) / diff_function( SCREAMING_SNAKE_CASE_ ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __lowerCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}''') # Find value of e print( """The root of log(y) - 1 = 0 is """, f'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", f'''{newton_raphson("exp(x) - 1", 10, precision=0.005)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
92
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any: """simple docstring""" super().__init__() __lowercase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowercase = config.num_channels def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowercase = self.embedder(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_state * attention return hidden_state class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() __lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def a__ ( self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = self.layers(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int: """simple docstring""" super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_UpperCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = RegNetConfig lowerCAmelCase__ : Optional[int] = "regnet" lowerCAmelCase__ : Dict = "pixel_values" lowerCAmelCase__ : List[str] = True def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = value SCREAMING_SNAKE_CASE__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_UpperCAmelCase ) __lowercase = RegNetEncoder(_UpperCAmelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_UpperCAmelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = 'single_label_classification' else: __lowercase = 'multi_label_classification' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
325
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowerCAmelCase__ : lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None _lowercase : Optional[int] = namedtuple("CoinsDistribResult", "moves excess") def snake_case_ ( __SCREAMING_SNAKE_CASE : TreeNode | None ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__SCREAMING_SNAKE_CASE ) != count_coins(__SCREAMING_SNAKE_CASE ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__SCREAMING_SNAKE_CASE : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) lowercase_ , lowercase_ : Tuple = get_distrib(node.left ) lowercase_ , lowercase_ : Dict = get_distrib(node.right ) lowercase_ : Dict = 1 - left_distrib_excess lowercase_ : Optional[int] = 1 - right_distrib_excess lowercase_ : Tuple = ( left_distrib_moves + right_distrib_moves + abs(__SCREAMING_SNAKE_CASE ) + abs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : int = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return get_distrib(__SCREAMING_SNAKE_CASE )[0] if __name__ == "__main__": import doctest doctest.testmod()
93
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
0
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __lowerCamelCase ( UpperCAmelCase_ : ndarray ): """simple docstring""" return np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) class _snake_case : def __init__( self , *, _lowerCamelCase = np.inf , _lowerCamelCase = "linear" , _lowerCamelCase = 0.0 , ): a :List[str] = regularization a :Optional[Any] = gamma if kernel == "linear": a :Optional[Any] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) a :List[Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: a :Dict = F'''Unknown kernel: {kernel}''' raise ValueError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return np.dot(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): a :str = observations a :Any = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((a) , ) :Tuple = np.shape(_lowerCamelCase ) def to_minimize(_lowerCamelCase ) -> float: a :Union[str, Any] = 0 ((a) , ) :Tuple = np.shape(_lowerCamelCase ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowerCamelCase ) a :str = LinearConstraint(_lowerCamelCase , 0 , 0 ) a :Tuple = Bounds(0 , self.regularization ) a :List[str] = minimize( _lowerCamelCase , np.ones(_lowerCamelCase ) , bounds=_lowerCamelCase , constraints=[ly_contraint] ).x a :str = l_star # calculating mean offset of separation plane to points a :Tuple = 0 for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) a :Optional[Any] = s / n def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ): a :List[str] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowerCamelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
94
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
0
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=9_9 , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=True , lowerCAmelCase__=5_1_2 , lowerCAmelCase__=1_6 , lowerCAmelCase__=2 , lowerCAmelCase__=0.02 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> Any: '''simple docstring''' a__ : str =parent a__ : Dict =batch_size a__ : List[str] =seq_length a__ : Any =is_training a__ : Tuple =use_input_mask a__ : List[str] =use_token_type_ids a__ : Union[str, Any] =use_labels a__ : Optional[int] =vocab_size a__ : int =hidden_size a__ : int =num_hidden_layers a__ : List[Any] =num_attention_heads a__ : str =intermediate_multiple_size a__ : List[str] =hidden_act a__ : Optional[int] =hidden_dropout a__ : List[str] =attention_dropout a__ : int =weight_tying a__ : Optional[Any] =max_position_embeddings a__ : Any =type_vocab_size a__ : Optional[int] =type_sequence_label_size a__ : Optional[Any] =initializer_range a__ : Dict =num_labels a__ : List[str] =num_choices a__ : Union[str, Any] =scope def _lowercase ( self ) -> Dict: '''simple docstring''' a__ : int =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Optional[int] =None if self.use_input_mask: a__ : List[str] =random_attention_mask([self.batch_size, self.seq_length] ) a__ : Dict =None if self.use_labels: a__ : str =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ : Any =self.get_config() return config, input_ids, input_mask, token_labels def _lowercase ( self ) -> Dict: '''simple docstring''' return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ , a__ , a__ , a__ : Tuple =self.prepare_config_and_inputs() a__ : List[str] =True return config, input_ids, input_mask, token_labels def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : Any =GPTNeoXJapaneseModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : List[Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) a__ : Union[str, Any] =model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: '''simple docstring''' a__ : Optional[int] =True a__ : Dict =GPTNeoXJapaneseModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Optional[int] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : Optional[int] =GPTNeoXJapaneseForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Optional[Any] =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' a__ : int =True a__ : str =GPTNeoXJapaneseForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass a__ : Any =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) a__ : List[str] =outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a__ : Tuple =ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ : List[Any] =ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a__ : List[str] =torch.cat([input_ids, next_tokens] , dim=-1 ) a__ : List[str] =torch.cat([input_mask, next_mask] , dim=-1 ) a__ : int =model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) a__ : Dict =output_from_no_past["hidden_states"][0] a__ : Any =model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )["hidden_states"][0] # select random slice a__ : List[str] =ids_tensor((1,) , output_from_past.shape[-1] ).item() a__ : List[Any] =output_from_no_past[:, -3:, random_slice_idx].detach() a__ : Any =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ : List[Any] =self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : int =config_and_inputs a__ : Optional[Any] ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[int] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () _lowercase : List[str] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () _lowercase : Optional[int] = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) _lowercase : int = False _lowercase : Optional[Any] = False _lowercase : Tuple = False _lowercase : int = False def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : Optional[Any] =GPTNeoXJapaneseModelTester(self ) a__ : Union[str, Any] =ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ , a__ , a__ , a__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Any: '''simple docstring''' a__ , a__ , a__ , a__ : List[str] =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> List[str]: '''simple docstring''' a__ , a__ , a__ , a__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_decoder() a__ : str =None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ , a__ , a__ , a__ : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> int: '''simple docstring''' a__ : Tuple ="abeja/gpt-neox-japanese-2.7b" a__ : Any =["データサイエンティストとは、", "100年後に必要とされる会社は、", "フルリモートの環境で働くために必要なことは、", "国境の長いトンネルを抜けると", "美味しい日本食といえば、"] a__ : Dict =[ "データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。", "100年後に必要とされる会社は、「人」が中心の会社です。", "フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。", "国境の長いトンネルを抜けると、そこは雪国だった。", "美味しい日本食といえば、やっぱりお寿司ですよね。", ] a__ : int =GPTNeoXJapaneseTokenizer.from_pretrained(lowerCAmelCase__ ) a__ : Dict =GPTNeoXJapaneseForCausalLM.from_pretrained(lowerCAmelCase__ ) a__ : List[str] =[] for prompt in prompts: a__ : List[str] =tokenizer(lowerCAmelCase__ , return_tensors="pt" ).input_ids a__ : int =model.generate(lowerCAmelCase__ , max_length=5_0 ) a__ : Dict =tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
95
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase__ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def A_ ( self , lowercase , lowercase , lowercase ): _lowerCamelCase : Optional[int] = TextaTextGenerationPipeline(model=lowercase , tokenizer=lowercase ) return generator, ["Something to write", "Something else"] def A_ ( self , lowercase , lowercase ): _lowerCamelCase : int = generator('Something there' ) self.assertEqual(lowercase , [{'generated_text': ANY(lowercase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['generated_text'].startswith('Something there' ) ) _lowerCamelCase : Optional[Any] = generator(['This is great !', 'Something else'] , num_return_sequences=2 , do_sample=lowercase ) self.assertEqual( lowercase , [ [{'generated_text': ANY(lowercase )}, {'generated_text': ANY(lowercase )}], [{'generated_text': ANY(lowercase )}, {'generated_text': ANY(lowercase )}], ] , ) _lowerCamelCase : Union[str, Any] = generator( ['This is great !', 'Something else'] , num_return_sequences=2 , batch_size=2 , do_sample=lowercase ) self.assertEqual( lowercase , [ [{'generated_text': ANY(lowercase )}, {'generated_text': ANY(lowercase )}], [{'generated_text': ANY(lowercase )}, {'generated_text': ANY(lowercase )}], ] , ) with self.assertRaises(lowercase ): generator(4 ) @require_torch def A_ ( self ): _lowerCamelCase : int = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='pt' ) # do_sample=False necessary for reproducibility _lowerCamelCase : Dict = generator('Something there' , do_sample=lowercase ) self.assertEqual(lowercase , [{'generated_text': ''}] ) _lowerCamelCase : str = 3 _lowerCamelCase : str = generator( 'Something there' , num_return_sequences=lowercase , num_beams=lowercase , ) _lowerCamelCase : int = [ {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': 'Beide Beide Beide Beide Beide Beide Beide Beide'}, {'generated_text': ''}, ] self.assertEqual(lowercase , lowercase ) _lowerCamelCase : int = generator('This is a test' , do_sample=lowercase , num_return_sequences=2 , return_tensors=lowercase ) self.assertEqual( lowercase , [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ] , ) _lowerCamelCase : Optional[int] = generator.model.config.eos_token_id _lowerCamelCase : Union[str, Any] = '<pad>' _lowerCamelCase : List[str] = generator( ['This is a test', 'This is a second test'] , do_sample=lowercase , num_return_sequences=2 , batch_size=2 , return_tensors=lowercase , ) self.assertEqual( lowercase , [ [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], [ {'generated_token_ids': ANY(torch.Tensor )}, {'generated_token_ids': ANY(torch.Tensor )}, ], ] , ) @require_tf def A_ ( self ): _lowerCamelCase : List[str] = pipeline('text2text-generation' , model='patrickvonplaten/t5-tiny-random' , framework='tf' ) # do_sample=False necessary for reproducibility _lowerCamelCase : List[str] = generator('Something there' , do_sample=lowercase ) self.assertEqual(lowercase , [{'generated_text': ''}] )
96
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [torch.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class A__ ( unittest.TestCase ): def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [tf.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowercase = [tf.convert_to_tensor(_UpperCAmelCase )] __lowercase = [torch.tensor(_UpperCAmelCase )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
325
0
'''simple docstring''' import os from collections import deque import torch from torch.utils.data import Dataset class lowercase ( A__ ): """simple docstring""" def __init__( self , UpperCamelCase_="" , UpperCamelCase_="train" ): '''simple docstring''' assert os.path.isdir(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = [] UpperCamelCase__ :Dict = os.listdir(UpperCamelCase_ ) for story_filename in story_filenames_list: if "summary" in story_filename: continue UpperCamelCase__ :Optional[Any] = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if not os.path.isfile(UpperCamelCase_ ): continue self.documents.append(UpperCamelCase_ ) def __len__( self ): '''simple docstring''' return len(self.documents ) def __getitem__( self , UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ :str = self.documents[idx] UpperCamelCase__ :str = document_path.split('''/''' )[-1] with open(UpperCamelCase_ , encoding='''utf-8''' ) as source: UpperCamelCase__ :int = source.read() UpperCamelCase__ , UpperCamelCase__ :int = process_story(UpperCamelCase_ ) return document_name, story_lines, summary_lines def a ( __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :str = list(filter(lambda __a : len(__a ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) ) # for some unknown reason some lines miss a period, add it UpperCamelCase__ :Optional[Any] = [_add_missing_period(__a ) for line in nonempty_lines] # gather article lines UpperCamelCase__ :Dict = [] UpperCamelCase__ :Optional[Any] = deque(__a ) while True: try: UpperCamelCase__ :List[Any] = lines.popleft() if element.startswith('''@highlight''' ): break story_lines.append(__a ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines UpperCamelCase__ :Tuple = list(filter(lambda __a : not t.startswith('''@highlight''' ) , __a ) ) return story_lines, summary_lines def a ( __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :int = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')'''] if line.startswith('''@highlight''' ): return line if line[-1] in END_TOKENS: return line return line + "." def a ( __a , __a , __a ) -> Optional[int]: '''simple docstring''' if len(__a ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(__a )) ) return sequence def a ( __a , __a ) -> str: '''simple docstring''' UpperCamelCase__ :List[str] = torch.ones_like(__a ) UpperCamelCase__ :Tuple = sequence == pad_token_id UpperCamelCase__ :List[Any] = 0 return mask def a ( __a , __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Any = [tokenizer.encode(__a ) for line in story_lines] UpperCamelCase__ :List[Any] = [token for sentence in story_lines_token_ids for token in sentence] UpperCamelCase__ :int = [tokenizer.encode(__a ) for line in summary_lines] UpperCamelCase__ :Tuple = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def a ( __a , __a ) -> Dict: '''simple docstring''' UpperCamelCase__ :List[Any] = [] for sequence in batch: UpperCamelCase__ :Dict = -1 UpperCamelCase__ :List[str] = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(__a ) return torch.tensor(__a )
97
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ : int = { 'configuration_ctrl': ['CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CTRLConfig'], 'tokenization_ctrl': ['CTRLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] = [ 'CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'CTRLForSequenceClassification', 'CTRLLMHeadModel', 'CTRLModel', 'CTRLPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : int = [ 'TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFCTRLForSequenceClassification', 'TFCTRLLMHeadModel', 'TFCTRLModel', 'TFCTRLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
0
from string import ascii_lowercase, ascii_uppercase def A_ ( A__ ) -> str: if not sentence: return "" a__ : Tuple = dict(zip(A__ , A__ ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
99
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: for attribute in key.split('.' ): __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowercase = None for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __lowercase = True elif name.split('.' )[0] == "proj": __lowercase = fairseq_model.proj __lowercase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __lowercase = 'weight_g' elif "weight_v" in name: __lowercase = 'weight_v' elif "bias" in name: __lowercase = 'bias' elif "weight" in name: __lowercase = 'weight' else: __lowercase = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: __lowercase = full_name.split('conv_layers.' )[-1] __lowercase = name.split('.' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __lowercase = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: __lowercase = f.readlines() __lowercase = [line.split(' ' )[0] for line in lines] __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]: __lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __lowercase = model[0].eval() # set weights for wav2vec2 encoder __lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE ) __lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) __lowercase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) __lowercase = False # add projection layer __lowercase = nn.Parameter(projection_layer.weight ) __lowercase = nn.Parameter(projection_layer.bias ) __lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = hf_wavavec.config.to_dict() __lowercase = tokenizer.pad_token_id __lowercase = tokenizer.bos_token_id __lowercase = tokenizer.eos_token_id __lowercase = 'speech_to_text_2' __lowercase = 'wav2vec2' __lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
325
0
"""simple docstring""" import requests __magic_name__ = "https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=" def _lowerCAmelCase ( UpperCamelCase_ ): # fetching a list of articles in json format __SCREAMING_SNAKE_CASE = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(f"{i}.) {article['title']}" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="<Your BBC News API key goes here>")
100
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowercase : def __init__( self ,A__ ,A__=1_3 ,A__=1_0 ,A__=3 ,A__=2 ,A__=2 ,A__=2 ,A__=True ,A__=True ,A__=3_2 ,A__=5 ,A__=4 ,A__=3_7 ,A__="gelu" ,A__=0.1 ,A__=0.1 ,A__=1_0 ,A__=0.02 ,A__=0.9 ,A__=None ,): lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = patch_size lowercase = tubelet_size lowercase = num_frames lowercase = is_training lowercase = use_labels lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = type_sequence_label_size lowercase = initializer_range lowercase = mask_ratio lowercase = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase = (image_size // patch_size) ** 2 lowercase = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase = int(mask_ratio * self.seq_length) def A__ ( self): lowercase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size) lowercase = self.get_config() return config, pixel_values, labels def A__ ( self): return VideoMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,num_frames=self.num_frames ,tubelet_size=self.tubelet_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=A__ ,initializer_range=self.initializer_range ,) def A__ ( self ,A__ ,A__ ,A__): lowercase = VideoMAEModel(config=A__) model.to(A__) model.eval() lowercase = model(A__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) def A__ ( self ,A__ ,A__ ,A__): lowercase = VideoMAEForPreTraining(A__) model.to(A__) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.num_masks,)) lowercase = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) lowercase = mask.expand(self.batch_size ,-1).bool() lowercase = model(A__ ,A__) # model only returns predictions for masked patches lowercase = mask.sum().item() lowercase = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_masked_patches, decoder_num_labels)) def A__ ( self): lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase = config_and_inputs lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowercase_ : str =( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowercase_ : Tuple =( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) lowercase_ : List[str] =False lowercase_ : str =False lowercase_ : int =False lowercase_ : Dict =False def A__ ( self): lowercase = VideoMAEModelTester(self) lowercase = ConfigTester(self ,config_class=A__ ,has_text_modality=A__ ,hidden_size=3_7) def A__ ( self ,A__ ,A__ ,A__=False): lowercase = copy.deepcopy(A__) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase = torch.ones((self.model_tester.num_masks,)) lowercase = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) lowercase = mask.expand(self.model_tester.batch_size ,-1).bool() lowercase = bool_masked_pos.to(A__) if return_labels: if model_class in [ *get_values(A__), ]: lowercase = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A__) return inputs_dict def A__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''') def A__ ( self): pass def A__ ( self): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(A__) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module)) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ ,nn.Linear)) def A__ ( self): lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(A__) lowercase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__) def A__ ( self): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A__) @slow def A__ ( self): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = VideoMAEModel.from_pretrained(A__) self.assertIsNotNone(A__) def A__ ( self): if not self.has_attentions: pass else: lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = True for model_class in self.all_model_classes: lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase = True lowercase = False lowercase = True lowercase = model_class(A__) model.to(A__) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ ,A__)) lowercase = outputs.attentions self.assertEqual(len(A__) ,self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase = True lowercase = model_class(A__) model.to(A__) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ ,A__)) lowercase = outputs.attentions self.assertEqual(len(A__) ,self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) lowercase = len(A__) # Check attention is always last and order is fine lowercase = True lowercase = True lowercase = model_class(A__) model.to(A__) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ ,A__)) self.assertEqual(out_len + 1 ,len(A__)) lowercase = outputs.attentions self.assertEqual(len(A__) ,self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) ,[self.model_tester.num_attention_heads, seq_len, seq_len] ,) def A__ ( self): def check_hidden_states_output(A__ ,A__ ,A__): lowercase = model_class(A__) model.to(A__) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(A__ ,A__)) lowercase = outputs.hidden_states lowercase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A__) ,A__) lowercase = self.model_tester.seq_length - self.model_tester.num_masks lowercase = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) ,[seq_length, self.model_tester.hidden_size] ,) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(A__ ,A__ ,A__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(A__ ,A__ ,A__) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''') def A__ ( self): pass def UpperCamelCase ( ): '''simple docstring''' lowercase = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) lowercase = np.load(lowerCAmelCase__ ) return list(lowerCAmelCase__ ) @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def A__ ( self): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] ,image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def A__ ( self): lowercase = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''').to( A__) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(A__ ,return_tensors='''pt''').to(A__) # forward pass with torch.no_grad(): lowercase = model(**A__) # verify the logits lowercase = torch.Size((1, 4_0_0)) self.assertEqual(outputs.logits.shape ,A__) lowercase = torch.tensor([0.3669, -0.0688, -0.2421]).to(A__) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,A__ ,atol=1E-4)) @slow def A__ ( self): lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''').to(A__) lowercase = self.default_image_processor lowercase = prepare_video() lowercase = image_processor(A__ ,return_tensors='''pt''').to(A__) # add boolean mask, indicating which patches to mask lowercase = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' ,filename='''bool_masked_pos.pt''') lowercase = torch.load(A__) # forward pass with torch.no_grad(): lowercase = model(**A__) # verify the logits lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6]) lowercase = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ,device=A__) self.assertEqual(outputs.logits.shape ,A__) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] ,A__ ,atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `True`) lowercase = torch.tensor([0.5142] ,device=A__) self.assertTrue(torch.allclose(outputs.loss ,A__ ,atol=1E-4)) # verify the loss (`config.norm_pix_loss` = `False`) lowercase = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ,norm_pix_loss=A__).to( A__) with torch.no_grad(): lowercase = model(**A__) lowercase = torch.tensor(torch.tensor([0.6469]) ,device=A__) self.assertTrue(torch.allclose(outputs.loss ,A__ ,atol=1E-4))
101
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["vqvae"] def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase ) def a__ ( self : Tuple ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00 @torch.no_grad() def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCAmelCase , device=self.device , ) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase ) __lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 2_55) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample( generator=_UpperCAmelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCAmelCase ): __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample'] else: __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] if isinstance(self.scheduler , _UpperCAmelCase ): __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] else: __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_UpperCAmelCase )['sample'] __lowercase = (images / 2 + 0.5).clamp(0 , 1 ) __lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowercase = (images * 2_55).round().astype('uint8' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) ) @torch.no_grad() def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , _UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 2_55) * 2 - 1 __lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor: """simple docstring""" __lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
325
0
"""simple docstring""" from collections.abc import Iterable from typing import Generic, TypeVar SCREAMING_SNAKE_CASE : List[str] = TypeVar("""_T""") class _UpperCAmelCase ( Generic[_T] ): '''simple docstring''' def __init__(self , a_ = None ): '''simple docstring''' __snake_case : list[_T] = list(iterable or [] ) __snake_case : list[_T] = [] def __len__(self ): '''simple docstring''' return len(self._stacka ) + len(self._stacka ) def __repr__(self ): '''simple docstring''' return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})""" def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' self._stacka.append(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self._stacka.pop __snake_case : Optional[int] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError('''Queue is empty''' ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
102
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : List[str] = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A__ : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
103
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
'''simple docstring''' import operator as op def _A ( A__ ): """simple docstring""" __lowercase = [] __lowercase = lambda A__ , A__ : int(x / y ) # noqa: E731 integer division operation __lowercase = { '''^''': op.pow, '''*''': op.mul, '''/''': div, '''+''': op.add, '''-''': op.sub, } # operators & their respective operation # print table header print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' ) print('''-''' * (30 + len(A__ )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(A__ ) # append x to stack # output in tabular format print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) else: __lowercase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) __lowercase = stack.pop() # pop stack # output in tabular format print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' ) stack.append( str(opr[x](int(A__ ) , int(A__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(A__ ) , sep=''' | ''' , ) return int(stack[0] ) if __name__ == "__main__": lowerCAmelCase__ = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
104
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
0
"""simple docstring""" # flake8: noqa # Lint as: python3 a : List[Any] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
105
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig __UpperCamelCase : str = logging.get_logger(__name__) __UpperCamelCase : Union[str, Any] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = "dpt" def __init__( self : Tuple ,lowercase_ : List[Any]=7_6_8 ,lowercase_ : List[Any]=1_2 ,lowercase_ : Optional[Any]=1_2 ,lowercase_ : List[Any]=3_0_7_2 ,lowercase_ : str="gelu" ,lowercase_ : Dict=0.0 ,lowercase_ : Optional[Any]=0.0 ,lowercase_ : List[str]=0.02 ,lowercase_ : List[str]=1E-12 ,lowercase_ : Union[str, Any]=3_8_4 ,lowercase_ : Any=1_6 ,lowercase_ : Tuple=3 ,lowercase_ : List[str]=False ,lowercase_ : Dict=True ,lowercase_ : List[str]=[2, 5, 8, 1_1] ,lowercase_ : Optional[Any]="project" ,lowercase_ : Union[str, Any]=[4, 2, 1, 0.5] ,lowercase_ : int=[9_6, 1_9_2, 3_8_4, 7_6_8] ,lowercase_ : List[str]=2_5_6 ,lowercase_ : int=-1 ,lowercase_ : List[Any]=False ,lowercase_ : List[Any]=True ,lowercase_ : str=0.4 ,lowercase_ : Optional[Any]=2_5_5 ,lowercase_ : Optional[Any]=0.1 ,lowercase_ : List[Any]=[1, 1_0_2_4, 2_4, 2_4] ,lowercase_ : int=[0, 1] ,lowercase_ : Optional[int]=None ,**lowercase_ : Optional[Any] ,): super().__init__(**lowercase_ ) lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : Any = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('''Initializing the config with a `BiT` backbone.''' ) lowerCAmelCase__ : Any = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, } lowerCAmelCase__ : Optional[Any] = BitConfig(**lowercase_ ) elif isinstance(lowercase_ ,lowercase_ ): logger.info('''Initializing the config with a `BiT` backbone.''' ) lowerCAmelCase__ : Tuple = BitConfig(**lowercase_ ) elif isinstance(lowercase_ ,lowercase_ ): lowerCAmelCase__ : Union[str, Any] = backbone_config else: raise ValueError( F'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) lowerCAmelCase__ : Optional[Any] = backbone_featmap_shape lowerCAmelCase__ : Union[str, Any] = neck_ignore_stages if readout_type != "project": raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' ) else: lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : int = [] lowerCAmelCase__ : Dict = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Any = hidden_act lowerCAmelCase__ : str = hidden_dropout_prob lowerCAmelCase__ : Optional[int] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = initializer_range lowerCAmelCase__ : List[Any] = layer_norm_eps lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : Optional[Any] = patch_size lowerCAmelCase__ : Tuple = num_channels lowerCAmelCase__ : Union[str, Any] = qkv_bias lowerCAmelCase__ : Dict = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' ) lowerCAmelCase__ : str = readout_type lowerCAmelCase__ : Dict = reassemble_factors lowerCAmelCase__ : Optional[int] = neck_hidden_sizes lowerCAmelCase__ : Union[str, Any] = fusion_hidden_size lowerCAmelCase__ : str = head_in_index lowerCAmelCase__ : Optional[int] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCAmelCase__ : Tuple = use_auxiliary_head lowerCAmelCase__ : str = auxiliary_loss_weight lowerCAmelCase__ : Any = semantic_loss_ignore_index lowerCAmelCase__ : List[Any] = semantic_classifier_dropout def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : Union[str, Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCAmelCase__ : List[Any] = self.backbone_config.to_dict() lowerCAmelCase__ : List[Any] = self.__class__.model_type return output
106
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __lowerCAmelCase : Optional[int] = False class snake_case__ (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict ) -> int: a = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = "A painting of a squirrel eating a burger " a = torch.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) a = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = generator.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __UpperCAmelCase ( self : str ) -> List[str]: a = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = "A painting of a squirrel eating a burger " a = torch.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images a = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) a = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
107
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[int] =field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a : bool =field( default=lowercase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) a : bool =field( default=lowercase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) a : Optional[int] =field( default=lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a : Optional[int] =field( default=lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) a : Optional[int] =field( default=lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : str =field( default=lowercase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a : str =field( default=lowercase , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) a : Optional[str] =field( default=lowercase , metadata={"help": "Train language if it is different from the evaluation language."} ) a : Optional[str] =field( default=lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] =field( default=lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] =field( default=lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a : Optional[bool] =field( default=lowercase , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) a : bool =field( default=lowercase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) a : str =field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a : bool =field( default=lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a : bool =field( default=lowercase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , SCREAMING_SNAKE_CASE ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCAmelCase : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase : Union[str, Any] = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: lowerCAmelCase : List[Any] = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase : int = train_dataset.features["label"].names if training_args.do_eval: lowerCAmelCase : List[Any] = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase : Dict = eval_dataset.features["label"].names if training_args.do_predict: lowerCAmelCase : List[str] = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase : List[Any] = predict_dataset.features["label"].names # Labels lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE , idalabel={str(SCREAMING_SNAKE_CASE ): label for i, label in enumerate(SCREAMING_SNAKE_CASE )} , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase : Optional[int] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase : Union[str, Any] = False def preprocess_function(SCREAMING_SNAKE_CASE : Dict ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=SCREAMING_SNAKE_CASE , max_length=data_args.max_seq_length , truncation=SCREAMING_SNAKE_CASE , ) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase : str = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_train_samples ) lowerCAmelCase : Union[str, Any] = train_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCAmelCase : Dict = train_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase : Dict = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_eval_samples ) lowerCAmelCase : int = eval_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCAmelCase : List[Any] = eval_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase : Any = min(len(SCREAMING_SNAKE_CASE ) , data_args.max_predict_samples ) lowerCAmelCase : List[Any] = predict_dataset.select(range(SCREAMING_SNAKE_CASE ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCAmelCase : Optional[int] = predict_dataset.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function lowerCAmelCase : List[str] = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE : EvalPrediction ): lowerCAmelCase : List[str] = p.predictions[0] if isinstance(p.predictions , SCREAMING_SNAKE_CASE ) else p.predictions lowerCAmelCase : Dict = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase : Optional[Any] = default_data_collator elif training_args.fpaa: lowerCAmelCase : Tuple = DataCollatorWithPadding(SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) else: lowerCAmelCase : List[str] = None # Initialize our Trainer lowerCAmelCase : Optional[int] = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowerCAmelCase : Optional[int] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : Any = last_checkpoint lowerCAmelCase : Optional[Any] = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = train_result.metrics lowerCAmelCase : List[str] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Tuple = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , SCREAMING_SNAKE_CASE ) trainer.save_metrics("train" , SCREAMING_SNAKE_CASE ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase : Optional[Any] = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("eval" , SCREAMING_SNAKE_CASE ) trainer.save_metrics("eval" , SCREAMING_SNAKE_CASE ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = trainer.predict(SCREAMING_SNAKE_CASE , metric_key_prefix="predict" ) lowerCAmelCase : Optional[int] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) trainer.log_metrics("predict" , SCREAMING_SNAKE_CASE ) trainer.save_metrics("predict" , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) lowerCAmelCase : Any = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = label_list[item] writer.write(f"""{index}\t{item}\n""" ) if __name__ == "__main__": main()
108
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
325
0
"""simple docstring""" def _snake_case ( UpperCamelCase : dict ): UpperCAmelCase : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCAmelCase : set[int] = set() return any( node not in visited and depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for node in graph ) def _snake_case ( UpperCamelCase : dict , UpperCamelCase : int , UpperCamelCase : set , UpperCamelCase : set ): visited.add(UpperCamelCase ) rec_stk.add(UpperCamelCase ) for node in graph[vertex]: if node not in visited: if depth_first_search(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(UpperCamelCase ) return False if __name__ == "__main__": from doctest import testmod testmod()
109
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__(self , __magic_name__ ) -> Any: '''simple docstring''' super().__init__() snake_case_ : int = nn.ModuleList(_UpperCAmelCase ) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = True , ) -> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(_UpperCAmelCase , _UpperCAmelCase , self.nets ) ): snake_case_ , snake_case_ : int = controlnet( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # merge samples if i == 0: snake_case_ , snake_case_ : Union[str, Any] = down_samples, mid_sample else: snake_case_ : Optional[Any] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_UpperCAmelCase , _UpperCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCamelCase (self , __magic_name__ , __magic_name__ = True , __magic_name__ = None , __magic_name__ = False , __magic_name__ = None , ) -> Optional[int]: '''simple docstring''' snake_case_ : List[Any] = 0 snake_case_ : Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( _UpperCAmelCase , is_main_process=_UpperCAmelCase , save_function=_UpperCAmelCase , safe_serialization=_UpperCAmelCase , variant=_UpperCAmelCase , ) idx += 1 snake_case_ : str = model_path_to_save + F'''_{idx}''' @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = 0 snake_case_ : int = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... snake_case_ : Tuple = pretrained_model_path while os.path.isdir(_UpperCAmelCase ): snake_case_ : List[str] = ControlNetModel.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) controlnets.append(_UpperCAmelCase ) idx += 1 snake_case_ : str = pretrained_model_path + F'''_{idx}''' logger.info(F'''{len(_UpperCAmelCase )} controlnets loaded from {pretrained_model_path}.''' ) if len(_UpperCAmelCase ) == 0: raise ValueError( F'''No ControlNets found under {os.path.dirname(_UpperCAmelCase )}. Expected at least {pretrained_model_path + "_0"}.''' ) return cls(_UpperCAmelCase )
279
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split('/' ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __lowercase = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
325
0
"""simple docstring""" from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a ( lowerCAmelCase__ ): def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """num_heads""" ) ) class a : def __init__( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int]=13 , __lowerCAmelCase : Dict=64 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : int=[16, 48, 96] , __lowerCAmelCase : Dict=[1, 3, 6] , __lowerCAmelCase : List[Any]=[1, 2, 10] , __lowerCAmelCase : str=[7, 3, 3] , __lowerCAmelCase : List[str]=[4, 2, 2] , __lowerCAmelCase : List[Any]=[2, 1, 1] , __lowerCAmelCase : Union[str, Any]=[2, 2, 2] , __lowerCAmelCase : Tuple=[False, False, True] , __lowerCAmelCase : str=[0.0, 0.0, 0.0] , __lowerCAmelCase : Optional[int]=0.02 , __lowerCAmelCase : List[Any]=1e-1_2 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Union[str, Any]=2 , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_sizes _UpperCAmelCase = patch_stride _UpperCAmelCase = patch_padding _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = num_labels _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = num_heads _UpperCAmelCase = stride_kv _UpperCAmelCase = depth _UpperCAmelCase = cls_token _UpperCAmelCase = attention_drop_rate _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: # create a random int32 tensor of given shape _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : List[str] ): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = TFCvtModel(config=_UpperCAmelCase ) _UpperCAmelCase = model(_UpperCAmelCase , training=_UpperCAmelCase ) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase , _UpperCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _UpperCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _UpperCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = TFCvtForImageClassification(_UpperCAmelCase ) _UpperCAmelCase = model(_UpperCAmelCase , labels=_UpperCAmelCase , training=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): _snake_case : List[str] = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () _snake_case : List[Any] = ( {"feature-extraction": TFCvtModel, "image-classification": TFCvtForImageClassification} if is_tf_available() else {} ) _snake_case : List[Any] = False _snake_case : Optional[Any] = False _snake_case : Optional[int] = False _snake_case : Optional[int] = False _snake_case : Optional[int] = False def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = TFCvtModelTester(self ) _UpperCAmelCase = TFCvtConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Tuple ): self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : Optional[int] ): pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def lowerCAmelCase_ ( self : List[str] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def lowerCAmelCase_ ( self : List[Any] ): super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowerCAmelCase_ ( self : Dict ): super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(_UpperCAmelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_UpperCAmelCase ) _UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): def check_hidden_states_output(__lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ): _UpperCAmelCase = model_class(_UpperCAmelCase ) _UpperCAmelCase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : int ): for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = TFCvtModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __UpperCAmelCase ( ): """simple docstring""" _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Dict ): return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_UpperCAmelCase , return_tensors="""tf""" ) # forward pass _UpperCAmelCase = model(**_UpperCAmelCase ) # verify the logits _UpperCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _UpperCAmelCase = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _UpperCAmelCase , atol=1e-4 ) )
289
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
0
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class a_ ( lowerCAmelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None __SCREAMING_SNAKE_CASE : torch.FloatTensor = None __SCREAMING_SNAKE_CASE : Optional[Tuple[torch.FloatTensor]] = None __SCREAMING_SNAKE_CASE : Optional[Tuple[torch.FloatTensor]] = None class a_ ( lowerCAmelCase__ ): """simple docstring""" def __init__( self , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , _lowerCamelCase=512 , _lowerCamelCase="cls" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Dict: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = project_dim SCREAMING_SNAKE_CASE : List[Any] = pooler_fn SCREAMING_SNAKE_CASE : Optional[int] = learn_encoder SCREAMING_SNAKE_CASE : int = use_attention_mask class a_ ( lowerCAmelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = [R"pooler", R"logit_scale"] __SCREAMING_SNAKE_CASE : Any = [R"position_ids", R"predictions.decoder.bias"] __SCREAMING_SNAKE_CASE : Dict = "roberta" __SCREAMING_SNAKE_CASE : List[str] = RobertaSeriesConfig def __init__( self , _lowerCamelCase ) ->Union[str, Any]: super().__init__(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = XLMRobertaModel(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(_UpperCAmelCase , '''has_pre_transformation''' , _UpperCAmelCase ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE : Dict = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->Dict: SCREAMING_SNAKE_CASE : Dict = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : int = self.base_model( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , output_attentions=_UpperCAmelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=_UpperCAmelCase , ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE : Optional[Any] = outputs['''hidden_states'''][-2] SCREAMING_SNAKE_CASE : str = self.pre_LN(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = self.transformation_pre(_UpperCAmelCase ) return TransformationModelOutput( projection_state=_UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: SCREAMING_SNAKE_CASE : List[str] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=_UpperCAmelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
313
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 10 @require_sentencepiece @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[Any] = True def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase ) __lowercase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = '<pad>' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCAmelCase ) , 10_01 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , ) __lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A__ ( unittest.TestCase ): lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase__ : Dict = "C'est trop cool" lowerCAmelCase__ : List[Any] = "Esto es genial" @classmethod def a__ ( cls : Any ) -> Optional[int]: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a__ ( self : Tuple ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def a__ ( self : str ) -> int: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) __lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2] __lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = 'fr' __lowercase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowercase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
325
0
import requests __snake_case = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def _A ( SCREAMING_SNAKE_CASE__ : str ): # fetching a list of articles in json format UpperCamelCase :Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['''articles'''] , 1 ): print(F'''{i}.) {article["title"]}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
259
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = version.parse("1.12" ) @property def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : int ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : str ) -> int: """simple docstring""" return 12 def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
325
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowercase : int = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase__ ): a__ : Any = ["pixel_values"] def __init__( self : Tuple , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : bool = True , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : bool = True , **_lowercase : int , ): super().__init__(**_UpperCAmelCase ) __UpperCAmelCase = size if size is not None else {'''height''': 3_84, '''width''': 3_84} __UpperCAmelCase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCAmelCase = do_convert_rgb def a ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PILImageResampling.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : str , ): __UpperCAmelCase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) __UpperCAmelCase = (size['''height'''], size['''width''']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a ( self : Tuple , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Optional[int] , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a ( self : Optional[int] , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[str] , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def a ( self : Union[str, Any] , _lowercase : ImageInput , _lowercase : Optional[bool] = None , _lowercase : Optional[Dict[str, int]] = None , _lowercase : PILImageResampling = None , _lowercase : Optional[bool] = None , _lowercase : Optional[float] = None , _lowercase : Optional[bool] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : bool = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : Tuple , ): __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase = image_std if image_std is not None else self.image_std __UpperCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __UpperCAmelCase = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCAmelCase = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_rescale: __UpperCAmelCase = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __UpperCAmelCase = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __UpperCAmelCase = BatchFeature(data={'''pixel_values''': images} , tensor_type=_UpperCAmelCase ) return encoded_outputs
332
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any: """simple docstring""" super().__init__() __lowercase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowercase = config.num_channels def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowercase = self.embedder(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_state * attention return hidden_state class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() __lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def a__ ( self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = self.layers(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int: """simple docstring""" super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_UpperCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = RegNetConfig lowerCAmelCase__ : Optional[int] = "regnet" lowerCAmelCase__ : Dict = "pixel_values" lowerCAmelCase__ : List[str] = True def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = value SCREAMING_SNAKE_CASE__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_UpperCAmelCase ) __lowercase = RegNetEncoder(_UpperCAmelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_UpperCAmelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = 'single_label_classification' else: __lowercase = 'multi_label_classification' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
325
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase_ ( lowerCAmelCase__ ,unittest.TestCase ): __lowerCamelCase : str = LayoutLMTokenizer __lowerCamelCase : Any = LayoutLMTokenizerFast __lowerCamelCase : Optional[int] = True __lowerCamelCase : Any = True def _snake_case ( self ) -> Tuple: super().setUp() _lowerCAmelCase = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _snake_case ( self , **_lowerCAmelCase ) -> Optional[int]: return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> Union[str, Any]: _lowerCAmelCase = "UNwant\u00E9d,running" _lowerCAmelCase = "unwanted, running" return input_text, output_text def _snake_case ( self ) -> str: _lowerCAmelCase = self.tokenizer_class(self.vocab_file ) _lowerCAmelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def _snake_case ( self ) -> int: pass
158
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str=3, UpperCAmelCase__ : Optional[int]=3_2, UpperCAmelCase__ : List[Any]=3, UpperCAmelCase__ : Optional[int]=1_0, UpperCAmelCase__ : List[str]=[1_0, 2_0, 3_0, 4_0], UpperCAmelCase__ : List[str]=[1, 1, 2, 1], UpperCAmelCase__ : Dict=True, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Optional[Any]="relu", UpperCAmelCase__ : int=3, UpperCAmelCase__ : Tuple=None, ): __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = embeddings_size __lowercase = hidden_sizes __lowercase = depths __lowercase = is_training __lowercase = use_labels __lowercase = hidden_act __lowercase = num_labels __lowercase = scope __lowercase = len(_UpperCAmelCase ) def _lowercase ( self : Dict ): __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = self.get_config() return config, pixel_values def _lowercase ( self : Tuple ): return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, image_size=self.image_size, ) def _lowercase ( self : Dict, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int ): __lowercase = FlaxRegNetModel(config=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2), ) def _lowercase ( self : str, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[str] ): __lowercase = self.num_labels __lowercase = FlaxRegNetForImageClassification(config=_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : List[Any] ): __lowercase = self.prepare_config_and_inputs() __lowercase ,__lowercase = config_and_inputs __lowercase = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class _lowerCAmelCase ( lowerCAmelCase__ ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Any = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __UpperCAmelCase : Dict = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[int] = False def _lowercase ( self : List[str] ): __lowercase = FlaxRegNetModelTester(self ) __lowercase = ConfigTester(self, config_class=_UpperCAmelCase, has_text_modality=_UpperCAmelCase ) def _lowercase ( self : List[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : int ): return def _lowercase ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def _lowercase ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason="RegNet does not use inputs_embeds" ) def _lowercase ( self : List[Any] ): pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def _lowercase ( self : Optional[Any] ): pass def _lowercase ( self : Any ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(_UpperCAmelCase ) __lowercase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) def _lowercase ( self : Optional[int] ): def check_hidden_states_output(UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Dict, UpperCAmelCase__ : List[Any] ): __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) __lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase = self.model_tester.num_stages self.assertEqual(len(_UpperCAmelCase ), expected_num_stages + 1 ) __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def _lowercase ( self : Tuple ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowercase = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) @jax.jit def model_jitted(UpperCAmelCase__ : List[Any], **UpperCAmelCase__ : str ): return model(pixel_values=_UpperCAmelCase, **_UpperCAmelCase ) with self.subTest("JIT Enabled" ): __lowercase = model_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __lowercase = model_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ), len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase, _UpperCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) def _A ( ) -> Union[str, Any]: '''simple docstring''' __lowercase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : str ): return AutoImageProcessor.from_pretrained("facebook/regnet-y-040" ) if is_vision_available() else None @slow def _lowercase ( self : Union[str, Any] ): __lowercase = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040" ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=_UpperCAmelCase, return_tensors="np" ) __lowercase = model(**_UpperCAmelCase ) # verify the logits __lowercase = (1, 1_0_0_0) self.assertEqual(outputs.logits.shape, _UpperCAmelCase ) __lowercase = jnp.array([-0.4_180, -1.5_051, -3.4_836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3], _UpperCAmelCase, atol=1E-4 ) )
17
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A_ ( lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Any = "dandelin/vilt-b32-finetuned-vqa" _UpperCamelCase : int = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) _UpperCamelCase : List[Any] = "image_qa" _UpperCamelCase : Any = AutoProcessor _UpperCamelCase : Tuple = AutoModelForVisualQuestionAnswering _UpperCamelCase : int = ["image", "text"] _UpperCamelCase : Any = ["text"] def __init__( self , *snake_case , **snake_case ): requires_backends(self , ['vision'] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): return self.pre_processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): with torch.no_grad(): return self.model(**_UpperCAmelCase ).logits def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
195
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
0
def a_ ( __lowercase : int = 1_000 ) -> int: _snake_case = -1 _snake_case = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c _snake_case = (n * n - 2 * a * n) // (2 * n - 2 * a) _snake_case = n - a - b if c * c == (a * a + b * b): _snake_case = a * b * c if candidate >= product: _snake_case = candidate return product if __name__ == "__main__": print(F'{solution() = }')
282
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [torch.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class A__ ( unittest.TestCase ): def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [tf.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowercase = [tf.convert_to_tensor(_UpperCAmelCase )] __lowercase = [torch.tensor(_UpperCAmelCase )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
325
0
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowercase__ ( lowerCAmelCase__, unittest.TestCase ): a_ =RoFormerTokenizer a_ =RoFormerTokenizerFast a_ =True a_ =True def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' super().setUp() def UpperCAmelCase ( self , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **_UpperCAmelCase ) def UpperCAmelCase ( self , **__UpperCAmelCase )-> Dict: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained("junnyu/roformer_chinese_base" , **_UpperCAmelCase ) def UpperCAmelCase ( self )-> List[str]: '''simple docstring''' lowerCAmelCase__ = "永和服装饰品有限公司,今天天气非常好" lowerCAmelCase__ = "永和 服装 饰品 有限公司 , 今 天 天 气 非常 好" return input_text, output_text def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ , lowerCAmelCase__ = self.get_chinese_input_output_texts() lowerCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , output_text.split() ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCAmelCase ( self )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ , lowerCAmelCase__ = self.get_chinese_input_output_texts() lowerCAmelCase__ = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , output_text.split() ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [22943, 21332, 34431, 45904, 117, 306, 1231, 1231, 2653, 33994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCAmelCase ( self )-> int: '''simple docstring''' pass def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' pass def UpperCAmelCase ( self )-> Optional[Any]: '''simple docstring''' pass
340
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _SCREAMING_SNAKE_CASE = """platform""" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a=None , __a=None , __a=None , __a=None , __a=None , __a=None , ): if attention_mask is None: snake_case_ : Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: snake_case_ : int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: snake_case_ : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: snake_case_ : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: snake_case_ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE_ : def __init__( self : List[Any] , _A : Tuple , _A : Tuple=13 , _A : Union[str, Any]=7 , _A : List[str]=True , _A : Any=False , _A : int=99 , _A : Dict=16 , _A : Tuple=2 , _A : Optional[Any]=4 , _A : Optional[int]=4 , _A : str="gelu" , _A : Dict=0.1 , _A : Tuple=0.1 , _A : Optional[Any]=32 , _A : Tuple=2 , _A : Tuple=1 , _A : Optional[int]=0 , _A : str=0.0_2 , ) -> Tuple: """simple docstring""" snake_case_ : Optional[int] = parent snake_case_ : Optional[Any] = batch_size snake_case_ : List[str] = seq_length snake_case_ : Dict = is_training snake_case_ : Union[str, Any] = use_labels snake_case_ : List[str] = vocab_size snake_case_ : Any = hidden_size snake_case_ : Dict = num_hidden_layers snake_case_ : str = num_attention_heads snake_case_ : str = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Dict = attention_probs_dropout_prob snake_case_ : Any = max_position_embeddings snake_case_ : Any = eos_token_id snake_case_ : Optional[Any] = pad_token_id snake_case_ : Tuple = bos_token_id snake_case_ : List[Any] = initializer_range def UpperCAmelCase_ ( self : str ) -> Dict: """simple docstring""" snake_case_ : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) snake_case_ : str = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) snake_case_ : Optional[int] = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) snake_case_ : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , ) snake_case_ : Optional[Any] = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ ,snake_case_ : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase_ ( self : int , _A : Optional[int] , _A : List[str] , _A : List[str] ) -> str: """simple docstring""" snake_case_ : Union[str, Any] = 20 snake_case_ : Optional[Any] = model_class_name(_UpperCAmelCase ) snake_case_ : List[Any] = model.encode(inputs_dict['input_ids'] ) snake_case_ ,snake_case_ : Union[str, Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) snake_case_ : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) snake_case_ : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case_ : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) snake_case_ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) snake_case_ : Dict = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , ) snake_case_ : Any = model.decode(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCAmelCase_ ( self : Union[str, Any] , _A : str , _A : str , _A : List[str] ) -> int: """simple docstring""" snake_case_ : Optional[int] = 20 snake_case_ : Optional[int] = model_class_name(_UpperCAmelCase ) snake_case_ : Union[str, Any] = model.encode(inputs_dict['input_ids'] ) snake_case_ ,snake_case_ : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) snake_case_ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) snake_case_ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) snake_case_ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) snake_case_ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) snake_case_ : str = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) snake_case_ : Union[str, Any] = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase ) snake_case_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): __magic_name__: Any = 99 def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case_ : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) snake_case_ : Union[str, Any] = input_ids.shape[0] snake_case_ : Optional[int] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" snake_case_ ,snake_case_ ,snake_case_ : Optional[int] = self._get_config_and_data() snake_case_ : Union[str, Any] = FlaxBlenderbotForConditionalGeneration(_UpperCAmelCase ) snake_case_ : str = lm_model(input_ids=_UpperCAmelCase ) snake_case_ : Any = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Any ) -> Dict: """simple docstring""" snake_case_ : int = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) snake_case_ : Optional[Any] = FlaxBlenderbotForConditionalGeneration(_UpperCAmelCase ) snake_case_ : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) snake_case_ : str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) snake_case_ : Tuple = lm_model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) snake_case_ : Optional[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _UpperCAmelCase ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ : str = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) snake_case_ : Union[str, Any] = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) snake_case_ : Optional[Any] = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() snake_case_ : List[str] = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase__ , unittest.TestCase , lowerCAmelCase__ ): __magic_name__: Any = True __magic_name__: Tuple = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __magic_name__: str = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case_ : int = FlaxBlenderbotModelTester(self ) def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: """simple docstring""" snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : List[Any] ) -> int: """simple docstring""" snake_case_ ,snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Dict ) -> List[Any]: """simple docstring""" snake_case_ ,snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ : List[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Tuple = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(_A : List[Any] , _A : List[Any]=None , **_A : str ): return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) with self.subTest('JIT Enabled' ): snake_case_ : Dict = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): snake_case_ : str = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" snake_case_ ,snake_case_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): snake_case_ : List[Any] = model_class(_UpperCAmelCase ) snake_case_ : Tuple = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) snake_case_ : Optional[Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_A : int , _A : List[Any] , _A : int ): return model.decode( decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , ) with self.subTest('JIT Enabled' ): snake_case_ : str = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): snake_case_ : Dict = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ : Union[str, Any] = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids snake_case_ : Union[str, Any] = np.ones((1, 1) ) * model.config.eos_token_id snake_case_ : List[str] = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case_ : List[Any] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} snake_case_ : int = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} snake_case_ : Optional[int] = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_UpperCAmelCase ) snake_case_ : Optional[int] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) snake_case_ : Dict = ['Sam'] snake_case_ : str = tokenizer(_UpperCAmelCase , return_tensors='jax' ) snake_case_ : str = model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) snake_case_ : Optional[int] = 'Sam is a great name. It means "sun" in Gaelic.' snake_case_ : Optional[Any] = tokenizer.batch_decode(_UpperCAmelCase , **_UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
327
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCamelCase_ ( _UpperCamelCase ) -> Dict: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: snake_case_ : Optional[Any] = model_type_to_module_name(_UpperCamelCase ) snake_case_ : Any = importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(_UpperCamelCase , _UpperCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_UpperCamelCase , '''__name__''' , _UpperCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. snake_case_ : Tuple = importlib.import_module('''transformers''' ) if hasattr(_UpperCamelCase , _UpperCamelCase ): return getattr(_UpperCamelCase , _UpperCamelCase ) return None def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = False , **_UpperCamelCase , ) -> Tuple: """simple docstring""" snake_case_ : Optional[int] = get_file_from_repo( _UpperCamelCase , _UpperCamelCase , cache_dir=_UpperCamelCase , force_download=_UpperCamelCase , resume_download=_UpperCamelCase , proxies=_UpperCamelCase , use_auth_token=_UpperCamelCase , revision=_UpperCamelCase , local_files_only=_UpperCamelCase , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(_UpperCamelCase , encoding='''utf-8''' ) as reader: return json.load(_UpperCamelCase ) class __lowerCAmelCase : def __init__(self ) -> Optional[int]: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_UpperCAmelCase ) def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = kwargs.pop('''config''' , _UpperCAmelCase ) snake_case_ : Any = kwargs.pop('''trust_remote_code''' , _UpperCAmelCase ) snake_case_ : Optional[Any] = True snake_case_ , snake_case_ : List[str] = ImageProcessingMixin.get_image_processor_dict(_UpperCAmelCase , **_UpperCAmelCase ) snake_case_ : List[str] = config_dict.get('''image_processor_type''' , _UpperCAmelCase ) snake_case_ : Optional[int] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): snake_case_ : str = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: snake_case_ : Optional[Any] = config_dict.pop('''feature_extractor_type''' , _UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) snake_case_ : List[str] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): snake_case_ : Tuple = config_dict['''auto_map''']['''AutoFeatureExtractor'''] snake_case_ : List[str] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): snake_case_ : int = AutoConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # It could be in `config.image_processor_type`` snake_case_ : int = getattr(_UpperCAmelCase , '''image_processor_type''' , _UpperCAmelCase ) if hasattr(_UpperCAmelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: snake_case_ : List[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: snake_case_ : List[str] = image_processor_class_from_name(_UpperCAmelCase ) snake_case_ : List[Any] = image_processor_auto_map is not None snake_case_ : Optional[Any] = image_processor_class is not None or type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING snake_case_ : Tuple = resolve_trust_remote_code( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if has_remote_code and trust_remote_code: snake_case_ : str = get_class_from_dynamic_module( _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) snake_case_ : Tuple = kwargs.pop('''code_revision''' , _UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: snake_case_ : Tuple = IMAGE_PROCESSOR_MAPPING[type(_UpperCAmelCase )] return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) raise ValueError( F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def lowerCamelCase (__magic_name__ , __magic_name__ ) -> Optional[Any]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(_UpperCAmelCase , _UpperCAmelCase )
279
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: for attribute in key.split('.' ): __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowercase = None for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __lowercase = True elif name.split('.' )[0] == "proj": __lowercase = fairseq_model.proj __lowercase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __lowercase = 'weight_g' elif "weight_v" in name: __lowercase = 'weight_v' elif "bias" in name: __lowercase = 'bias' elif "weight" in name: __lowercase = 'weight' else: __lowercase = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: __lowercase = full_name.split('conv_layers.' )[-1] __lowercase = name.split('.' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __lowercase = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: __lowercase = f.readlines() __lowercase = [line.split(' ' )[0] for line in lines] __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]: __lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __lowercase = model[0].eval() # set weights for wav2vec2 encoder __lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE ) __lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) __lowercase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) __lowercase = False # add projection layer __lowercase = nn.Parameter(projection_layer.weight ) __lowercase = nn.Parameter(projection_layer.bias ) __lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = hf_wavavec.config.to_dict() __lowercase = tokenizer.pad_token_id __lowercase = tokenizer.bos_token_id __lowercase = tokenizer.eos_token_id __lowercase = 'speech_to_text_2' __lowercase = 'wav2vec2' __lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
325
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[int] ): _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = SamImageProcessor() _UpperCAmelCase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : int , **__lowerCAmelCase : Optional[Any] ): return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def lowerCAmelCase_ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : List[Any] ): _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) _UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = SamProcessor(image_processor=_UpperCAmelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(_UpperCAmelCase , return_tensors="""np""" ) _UpperCAmelCase = processor(images=_UpperCAmelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = SamProcessor(image_processor=_UpperCAmelCase ) _UpperCAmelCase = [torch.ones((1, 3, 5, 5) )] _UpperCAmelCase = [[1764, 2646]] _UpperCAmelCase = [[683, 1024]] _UpperCAmelCase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _UpperCAmelCase = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _UpperCAmelCase = [np.ones((1, 3, 5, 5) )] _UpperCAmelCase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): _UpperCAmelCase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = SamImageProcessor() _UpperCAmelCase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : str , **__lowerCAmelCase : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def lowerCAmelCase_ ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) _UpperCAmelCase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = SamProcessor(image_processor=_UpperCAmelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(_UpperCAmelCase , return_tensors="""np""" ) _UpperCAmelCase = processor(images=_UpperCAmelCase , return_tensors="""np""" ) input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def lowerCAmelCase_ ( self : Dict ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = SamProcessor(image_processor=_UpperCAmelCase ) _UpperCAmelCase = [tf.ones((1, 3, 5, 5) )] _UpperCAmelCase = [[1764, 2646]] _UpperCAmelCase = [[683, 1024]] _UpperCAmelCase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _UpperCAmelCase = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors="""tf""" , ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) # should also work with np _UpperCAmelCase = [np.ones((1, 3, 5, 5) )] _UpperCAmelCase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors="""tf""" ) self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) ) _UpperCAmelCase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): _UpperCAmelCase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors="""tf""" ) @require_vision @require_torchvision class a ( unittest.TestCase ): def lowerCAmelCase_ ( self : Any ): _UpperCAmelCase = tempfile.mkdtemp() _UpperCAmelCase = SamImageProcessor() _UpperCAmelCase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Dict , **__lowerCAmelCase : int ): return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def lowerCAmelCase_ ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def lowerCAmelCase_ ( self : List[str] ): _UpperCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _UpperCAmelCase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowerCAmelCase_ ( self : Tuple ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = SamProcessor(image_processor=_UpperCAmelCase ) _UpperCAmelCase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) _UpperCAmelCase = [tf.convert_to_tensor(_UpperCAmelCase )] _UpperCAmelCase = [torch.tensor(_UpperCAmelCase )] _UpperCAmelCase = [[1764, 2646]] _UpperCAmelCase = [[683, 1024]] _UpperCAmelCase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors="""tf""" ) _UpperCAmelCase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors="""pt""" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowerCAmelCase_ ( self : Union[str, Any] ): _UpperCAmelCase = self.get_image_processor() _UpperCAmelCase = SamProcessor(image_processor=_UpperCAmelCase ) _UpperCAmelCase = self.prepare_image_inputs() _UpperCAmelCase = image_processor(_UpperCAmelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() _UpperCAmelCase = processor(images=_UpperCAmelCase , return_tensors="""pt""" )["""pixel_values"""].numpy() _UpperCAmelCase = image_processor(_UpperCAmelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() _UpperCAmelCase = processor(images=_UpperCAmelCase , return_tensors="""tf""" )["""pixel_values"""].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
289
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : Any = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['''MaskFormerFeatureExtractor'''] a__ : str = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] a__ : List[str] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
313
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["vqvae"] def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase ) def a__ ( self : Tuple ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00 @torch.no_grad() def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCAmelCase , device=self.device , ) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase ) __lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 2_55) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample( generator=_UpperCAmelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCAmelCase ): __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample'] else: __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] if isinstance(self.scheduler , _UpperCAmelCase ): __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] else: __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_UpperCAmelCase )['sample'] __lowercase = (images / 2 + 0.5).clamp(0 , 1 ) __lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowercase = (images * 2_55).round().astype('uint8' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) ) @torch.no_grad() def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , _UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 2_55) * 2 - 1 __lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor: """simple docstring""" __lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
325
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCamelCase_ : List[Any] =MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase_ : str =TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[Any] = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output UpperCamelCase :Union[str, Any] = text_generator('''This is a test''' , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) UpperCamelCase :int = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( _UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) UpperCamelCase :Any = text_generator('''This is a test''' , do_sample=_UpperCAmelCase , num_return_sequences=2 , return_tensors=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ {'''generated_token_ids''': ANY(_UpperCAmelCase )}, {'''generated_token_ids''': ANY(_UpperCAmelCase )}, ] , ) UpperCamelCase :Optional[Any] = text_generator.model.config.eos_token_id UpperCamelCase :List[Any] = '''<pad>''' UpperCamelCase :Dict = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=_UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=_UpperCAmelCase , ) self.assertEqual( _UpperCAmelCase , [ [ {'''generated_token_ids''': ANY(_UpperCAmelCase )}, {'''generated_token_ids''': ANY(_UpperCAmelCase )}, ], [ {'''generated_token_ids''': ANY(_UpperCAmelCase )}, {'''generated_token_ids''': ANY(_UpperCAmelCase )}, ], ] , ) @require_tf def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Dict = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output UpperCamelCase :Union[str, Any] = text_generator('''This is a test''' , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) UpperCamelCase :List[Any] = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: UpperCamelCase :List[Any] = TextGenerationPipeline(model=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) return text_generator, ["This is a test", "Another test"] def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase :Dict = '''Hello I believe in''' UpperCamelCase :List[Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) UpperCamelCase :List[str] = text_generator(_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) UpperCamelCase :int = text_generator(_UpperCAmelCase , stop_sequence=''' fe''' ) self.assertEqual(_UpperCAmelCase , [{'''generated_text''': '''Hello I believe in fe'''}] ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :List[Any] = text_generator.model UpperCamelCase :Optional[int] = text_generator.tokenizer UpperCamelCase :List[str] = text_generator('''This is a test''' ) self.assertEqual(_UpperCAmelCase , [{'''generated_text''': ANY(_UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) UpperCamelCase :Any = text_generator('''This is a test''' , return_full_text=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [{'''generated_text''': ANY(_UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) UpperCamelCase :Union[str, Any] = pipeline(task='''text-generation''' , model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , return_full_text=_UpperCAmelCase ) UpperCamelCase :Optional[Any] = text_generator('''This is a test''' ) self.assertEqual(_UpperCAmelCase , [{'''generated_text''': ANY(_UpperCAmelCase )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) UpperCamelCase :int = text_generator('''This is a test''' , return_full_text=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , [{'''generated_text''': ANY(_UpperCAmelCase )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) UpperCamelCase :Dict = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ [{'''generated_text''': ANY(_UpperCAmelCase )}, {'''generated_text''': ANY(_UpperCAmelCase )}], [{'''generated_text''': ANY(_UpperCAmelCase )}, {'''generated_text''': ANY(_UpperCAmelCase )}], ] , ) if text_generator.tokenizer.pad_token is not None: UpperCamelCase :List[Any] = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=_UpperCAmelCase ) self.assertEqual( _UpperCAmelCase , [ [{'''generated_text''': ANY(_UpperCAmelCase )}, {'''generated_text''': ANY(_UpperCAmelCase )}], [{'''generated_text''': ANY(_UpperCAmelCase )}, {'''generated_text''': ANY(_UpperCAmelCase )}], ] , ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase :Optional[Any] = text_generator('''test''' , return_full_text=_UpperCAmelCase , return_text=_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase :List[str] = text_generator('''test''' , return_full_text=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) with self.assertRaises(_UpperCAmelCase ): UpperCamelCase :Dict = text_generator('''test''' , return_text=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): UpperCamelCase :List[Any] = text_generator('''''' ) self.assertEqual(_UpperCAmelCase , [{'''generated_text''': ANY(_UpperCAmelCase )}] ) else: with self.assertRaises((ValueError, AssertionError) ): UpperCamelCase :str = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. UpperCamelCase :Any = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 500 , max_new_tokens=20 ) UpperCamelCase :Optional[int] = text_generator('''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(_UpperCAmelCase ): text_generator( '''This is a test''' * 500 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def UpperCAmelCase ( self ) -> Optional[int]: import torch # Classic `model_kwargs` UpperCamelCase :int = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase :Tuple = pipe('''This is a test''' ) self.assertEqual( _UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) UpperCamelCase :List[Any] = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) UpperCamelCase :List[Any] = pipe('''This is a test''' ) self.assertEqual( _UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 UpperCamelCase :Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) UpperCamelCase :Any = pipe('''This is a test''' ) self.assertEqual( _UpperCAmelCase , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def UpperCAmelCase ( self ) -> Optional[Any]: import torch UpperCamelCase :int = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def UpperCAmelCase ( self ) -> List[str]: import torch UpperCamelCase :Any = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=_UpperCAmelCase , top_p=0.5 ) def UpperCAmelCase ( self ) -> str: UpperCamelCase :Tuple = '''Hello world''' UpperCamelCase :Union[str, Any] = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": UpperCamelCase :Union[str, Any] = logging.get_logger('''transformers.generation.tf_utils''' ) else: UpperCamelCase :Dict = logging.get_logger('''transformers.generation.utils''' ) UpperCamelCase :Any = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(_UpperCAmelCase ) as cl: UpperCamelCase :Any = text_generator(_UpperCAmelCase , max_length=10 , max_new_tokens=1 ) self.assertIn(_UpperCAmelCase , cl.out ) # The user only sets one -> no warning with CaptureLogger(_UpperCAmelCase ) as cl: UpperCamelCase :List[str] = text_generator(_UpperCAmelCase , max_new_tokens=1 ) self.assertNotIn(_UpperCAmelCase , cl.out ) with CaptureLogger(_UpperCAmelCase ) as cl: UpperCamelCase :Optional[Any] = text_generator(_UpperCAmelCase , max_length=10 ) self.assertNotIn(_UpperCAmelCase , cl.out )
259
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : str = { 'google/mobilenet_v1_1.0_224': 'https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json', 'google/mobilenet_v1_0.75_192': 'https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _UpperCAmelCase ( lowerCAmelCase__ ): a__ : str = "mobilenet_v1" def __init__( self : str , _lowercase : List[Any]=3 , _lowercase : List[str]=2_24 , _lowercase : int=1.0 , _lowercase : Optional[Any]=8 , _lowercase : List[str]="relu6" , _lowercase : List[str]=True , _lowercase : Any=0.999 , _lowercase : Optional[Any]=0.02 , _lowercase : Any=0.001 , **_lowercase : Optional[int] , ): super().__init__(**_UpperCAmelCase ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __UpperCAmelCase = num_channels __UpperCAmelCase = image_size __UpperCAmelCase = depth_multiplier __UpperCAmelCase = min_depth __UpperCAmelCase = hidden_act __UpperCAmelCase = tf_padding __UpperCAmelCase = classifier_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps class _UpperCAmelCase ( lowerCAmelCase__ ): a__ : str = version.parse("1.11" ) @property def a ( self : Tuple ): return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def a ( self : Dict ): if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def a ( self : str ): return 1E-4
332
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
'''simple docstring''' from timeit import timeit def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) _lowerCAmelCase = 0 while number: number &= number - 1 result += 1 return result def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) _lowerCAmelCase = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __a(): '''simple docstring''' def do_benchmark(SCREAMING_SNAKE_CASE_ : int ) -> None: _lowerCAmelCase = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(SCREAMING_SNAKE_CASE_ ) = }''' ) _lowerCAmelCase = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=SCREAMING_SNAKE_CASE_ ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(SCREAMING_SNAKE_CASE_ ) = }''' ) _lowerCAmelCase = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=SCREAMING_SNAKE_CASE_ , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(SCREAMING_SNAKE_CASE_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
158
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _lowerCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def _lowercase ( self : List[Any], UpperCAmelCase__ : str ): with open(_UpperCAmelCase, encoding="utf-8" ) as input_file: __lowercase = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __lowercase = input_file.read() __lowercase = regexp.search(_UpperCAmelCase ) return match def _lowercase ( self : Tuple, UpperCAmelCase__ : str ): with open(_UpperCAmelCase, encoding="utf-8" ) as input_file: __lowercase = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()", re.DOTALL ) __lowercase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __lowercase = regexp.finditer(_UpperCAmelCase ) __lowercase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self : Union[str, Any] ): __lowercase = Path("./datasets" ) __lowercase = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_UpperCAmelCase ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self : str ): __lowercase = Path("./datasets" ) __lowercase = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(_UpperCAmelCase ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
17
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A_ ( lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = ["vqvae"] def __init__( self , snake_case , snake_case , snake_case , snake_case , ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 1000 @torch.no_grad() def __call__( self , snake_case = 1 , snake_case = None , snake_case = None , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = None , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = 0 , snake_case = None , snake_case = None , snake_case=True , ): lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCAmelCase ) lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCAmelCase , device=self.device , ) lowercase = noise lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase ) lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase ) lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) lowercase = (input_image / 255) * 2 - 1 lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample( generator=_UpperCAmelCase )[0] lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowercase = int(mask_start_secs * pixels_per_second ) lowercase = int(mask_end_secs * pixels_per_second ) lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCAmelCase ): lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample'] else: lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] if isinstance(self.scheduler , _UpperCAmelCase ): lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] else: lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: lowercase = mask[:, step, :, :mask_start] if mask_end > 0: lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowercase = 1 / self.vqvae.config.scaling_factor * images lowercase = self.vqvae.decode(_UpperCAmelCase )['sample'] lowercase = (images / 2 + 0.5).clamp(0 , 1 ) lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() lowercase = (images * 255).round().astype('uint8' ) lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) ) @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = 50 ): assert isinstance(self.scheduler , _UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase ) lowercase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) lowercase = (sample / 255) * 2 - 1 lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowercase = self.scheduler.alphas_cumprod[t] lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowercase = 1 - alpha_prod_t lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case , snake_case , snake_case ): lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
195
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
0
def a_ ( __lowercase : list , __lowercase : int = 0 ) -> list: _snake_case = length or len(__lowercase ) _snake_case = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _snake_case , _snake_case = list_data[i + 1], list_data[i] _snake_case = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
282
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
325
0
import re from filelock import FileLock try: import nltk _SCREAMING_SNAKE_CASE = True except (ImportError, ModuleNotFoundError): _SCREAMING_SNAKE_CASE = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def SCREAMING_SNAKE_CASE__ ( __a ): re.sub('<n>' , '' , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
327
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCamelCase_ : List[str] = "vit_msn" def __init__(self , __magic_name__=768 , __magic_name__=12 , __magic_name__=12 , __magic_name__=3072 , __magic_name__="gelu" , __magic_name__=0.0 , __magic_name__=0.0 , __magic_name__=0.02 , __magic_name__=1e-06 , __magic_name__=224 , __magic_name__=16 , __magic_name__=3 , __magic_name__=True , **__magic_name__ , ) -> Dict: '''simple docstring''' super().__init__(**_UpperCAmelCase ) snake_case_ : Dict = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : int = intermediate_size snake_case_ : Optional[Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : List[str] = attention_probs_dropout_prob snake_case_ : Any = initializer_range snake_case_ : List[Any] = layer_norm_eps snake_case_ : int = image_size snake_case_ : Union[str, Any] = patch_size snake_case_ : str = num_channels snake_case_ : Union[str, Any] = qkv_bias
279
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split('/' ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __lowercase = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
325
0
"""simple docstring""" def __UpperCAmelCase ( lowercase ,lowercase ,lowercase=False ): """simple docstring""" if isinstance(lowercase ,lowercase ) and isinstance(lowercase ,lowercase ): _UpperCAmelCase = len(set_a.intersection(lowercase ) ) if alternative_union: _UpperCAmelCase = len(lowercase ) + len(lowercase ) else: _UpperCAmelCase = len(set_a.union(lowercase ) ) return intersection / union if isinstance(lowercase ,(list, tuple) ) and isinstance(lowercase ,(list, tuple) ): _UpperCAmelCase = [element for element in set_a if element in set_b] if alternative_union: _UpperCAmelCase = len(lowercase ) + len(lowercase ) return len(lowercase ) / union else: _UpperCAmelCase = set_a + [element for element in set_b if element not in set_a] return len(lowercase ) / len(lowercase ) return len(lowercase ) / len(lowercase ) return None if __name__ == "__main__": UpperCAmelCase__ = {"""a""", """b""", """c""", """d""", """e"""} UpperCAmelCase__ = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
289
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py a__ : Optional[Any] = '''src/diffusers''' a__ : Dict = '''.''' # This is to make sure the diffusers module imported is the one in the repo. a__ : Any = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) a__ : str = spec.loader.load_module() def UpperCAmelCase_( a__ , a__ ): """simple docstring""" return line.startswith(a__ ) or len(a__ ) <= 1 or re.search(r'''^\s*\)(\s*->.*:|:)\s*$''' , a__ ) is not None def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = object_name.split('''.''' ) SCREAMING_SNAKE_CASE : Any = 0 # First let's find the module where our object lives. SCREAMING_SNAKE_CASE : int = parts[i] while i < len(a__ ) and not os.path.isfile(os.path.join(a__ , F"""{module}.py""" ) ): i += 1 if i < len(a__ ): SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(a__ , parts[i] ) if i >= len(a__ ): raise ValueError(F"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(a__ , F"""{module}.py""" ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE : List[Any] = f.readlines() # Now let's find the class / func in the code! SCREAMING_SNAKE_CASE : str = '''''' SCREAMING_SNAKE_CASE : List[Any] = 0 for name in parts[i + 1 :]: while ( line_index < len(a__ ) and re.search(rF"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(a__ ): raise ValueError(F""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). SCREAMING_SNAKE_CASE : Union[str, Any] = line_index while line_index < len(a__ ) and _should_continue(lines[line_index] , a__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE : Optional[Any] = lines[start_index:line_index] return "".join(a__ ) a__ : List[Any] = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') a__ : List[str] = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') a__ : Dict = re.compile(r'''<FILL\s+[^>]*>''') def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = code.split('''\n''' ) SCREAMING_SNAKE_CASE : Optional[Any] = 0 while idx < len(a__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(a__ ): return re.search(r'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = len(get_indent(a__ ) ) > 0 if has_indent: SCREAMING_SNAKE_CASE : Union[str, Any] = F"""class Bla:\n{code}""" SCREAMING_SNAKE_CASE : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=a__ ) SCREAMING_SNAKE_CASE : Dict = black.format_str(a__ , mode=a__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = style_docstrings_in_code(a__ ) return result[len('''class Bla:\n''' ) :] if has_indent else result def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" with open(a__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: SCREAMING_SNAKE_CASE : str = f.readlines() SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Dict = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(a__ ): SCREAMING_SNAKE_CASE : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = search.groups() SCREAMING_SNAKE_CASE : Union[str, Any] = find_code_in_diffusers(a__ ) SCREAMING_SNAKE_CASE : int = get_indent(a__ ) SCREAMING_SNAKE_CASE : Optional[int] = line_index + 1 if indent == theoretical_indent else line_index + 2 SCREAMING_SNAKE_CASE : Optional[int] = theoretical_indent SCREAMING_SNAKE_CASE : int = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. SCREAMING_SNAKE_CASE : List[Any] = True while line_index < len(a__ ) and should_continue: line_index += 1 if line_index >= len(a__ ): break SCREAMING_SNAKE_CASE : Optional[int] = lines[line_index] SCREAMING_SNAKE_CASE : Union[str, Any] = _should_continue(a__ , a__ ) and re.search(F"""^{indent}# End copy""" , a__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 SCREAMING_SNAKE_CASE : List[Any] = lines[start_index:line_index] SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join(a__ ) # Remove any nested `Copied from` comments to avoid circular copies SCREAMING_SNAKE_CASE : Union[str, Any] = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(a__ ) is None] SCREAMING_SNAKE_CASE : Any = '''\n'''.join(a__ ) # Before comparing, use the `replace_pattern` on the original code. if len(a__ ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) SCREAMING_SNAKE_CASE : int = [_re_replace_pattern.search(a__ ) for p in patterns] for pattern in patterns: if pattern is None: continue SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = pattern.groups() SCREAMING_SNAKE_CASE : Any = re.sub(a__ , a__ , a__ ) if option.strip() == "all-casing": SCREAMING_SNAKE_CASE : int = re.sub(obja.lower() , obja.lower() , a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = re.sub(obja.upper() , obja.upper() , a__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line SCREAMING_SNAKE_CASE : Any = blackify(lines[start_index - 1] + theoretical_code ) SCREAMING_SNAKE_CASE : Dict = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: SCREAMING_SNAKE_CASE : Any = lines[:start_index] + [theoretical_code] + lines[line_index:] SCREAMING_SNAKE_CASE : Any = start_index + 1 if overwrite and len(a__ ) > 0: # Warn the user a file has been modified. print(F"""Detected changes, rewriting {filename}.""" ) with open(a__ , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(a__ ) return diffs def UpperCAmelCase_( a__ = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = glob.glob(os.path.join(a__ , '''**/*.py''' ) , recursive=a__ ) SCREAMING_SNAKE_CASE : Optional[Any] = [] for filename in all_files: SCREAMING_SNAKE_CASE : Tuple = is_copy_consistent(a__ , a__ ) diffs += [F"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(a__ ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = '''\n'''.join(a__ ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a__ : List[str] = parser.parse_args() check_copies(args.fix_and_overwrite)
313
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 10 @require_sentencepiece @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[Any] = True def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase ) __lowercase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = '<pad>' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCAmelCase ) , 10_01 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , ) __lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A__ ( unittest.TestCase ): lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase__ : Dict = "C'est trop cool" lowerCAmelCase__ : List[Any] = "Esto es genial" @classmethod def a__ ( cls : Any ) -> Optional[int]: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a__ ( self : Tuple ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def a__ ( self : str ) -> int: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) __lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2] __lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = 'fr' __lowercase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowercase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
325
0
from collections import defaultdict from math import gcd def _A ( SCREAMING_SNAKE_CASE__ : int = 1500000 ): UpperCamelCase :Union[str, Any] = defaultdict(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Union[str, Any] = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , SCREAMING_SNAKE_CASE__ , 2 ): if gcd(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) > 1: continue UpperCamelCase :Optional[int] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE__ , limit + 1 , SCREAMING_SNAKE_CASE__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
259
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = version.parse("1.12" ) @property def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : int ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : str ) -> int: """simple docstring""" return 12 def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
325
0
"""simple docstring""" def lowercase__ ( snake_case_ :str , snake_case_ :str = " " ): __UpperCAmelCase = [] __UpperCAmelCase = 0 for index, char in enumerate(snake_case_ ): if char == separator: split_words.append(string[last_index:index] ) __UpperCAmelCase = index + 1 elif index + 1 == len(snake_case_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
332
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any: """simple docstring""" super().__init__() __lowercase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowercase = config.num_channels def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowercase = self.embedder(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_state * attention return hidden_state class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() __lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def a__ ( self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = self.layers(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int: """simple docstring""" super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_UpperCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = RegNetConfig lowerCAmelCase__ : Optional[int] = "regnet" lowerCAmelCase__ : Dict = "pixel_values" lowerCAmelCase__ : List[str] = True def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = value SCREAMING_SNAKE_CASE__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_UpperCAmelCase ) __lowercase = RegNetEncoder(_UpperCAmelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_UpperCAmelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = 'single_label_classification' else: __lowercase = 'multi_label_classification' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
325
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = ( first_str_length if first_str_length > second_str_length else second_str_length ) _lowerCAmelCase = [] for char_count in range(SCREAMING_SNAKE_CASE_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
158
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
0
"""simple docstring""" from math import pi def _A ( UpperCamelCase_ : int, UpperCamelCase_ : int) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
17
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''▁''' UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), } } UpperCAmelCase = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off UpperCAmelCase = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class A_ ( lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : List[Any] = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = ["input_ids", "attention_mask"] _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self , snake_case , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=None , snake_case=None , snake_case=None , snake_case = None , snake_case=None , **snake_case , ): lowercase = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowercase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase = 1 lowercase = len(self.sp_model ) lowercase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase ) } lowercase = {v: k for k, v in self.lang_code_to_id.items()} lowercase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase = src_lang if src_lang is not None else 'en_XX' lowercase = self.lang_code_to_id[self._src_lang] lowercase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): lowercase = self.__dict__.copy() lowercase = None lowercase = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case ): lowercase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__ ( self ): return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) lowercase = [1] * len(self.prefix_tokens ) lowercase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , **snake_case ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) lowercase = src_lang lowercase = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) lowercase = self.convert_tokens_to_ids(_UpperCAmelCase ) lowercase = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = ''.join(_UpperCAmelCase ).replace(_UpperCAmelCase , ' ' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = "en_XX" , snake_case = None , snake_case = "ro_RO" , **snake_case , ): lowercase = src_lang lowercase = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.lang_code_to_id[src_lang] lowercase = [] lowercase = [self.eos_token_id, self.cur_lang_code] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.lang_code_to_id[lang] lowercase = [] lowercase = [self.eos_token_id, self.cur_lang_code]
195
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
0
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : int = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def a_ ( __lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : List[Any] , __lowercase : Union[str, Any] ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: _snake_case = TOKENIZER_CLASSES else: _snake_case = {tokenizer_name: getattr(__lowercase , tokenizer_name + 'Fast' )} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: _snake_case = TOKENIZER_CLASSES[tokenizer_name] _snake_case = True if checkpoint_name is None: _snake_case = list(tokenizer_class.max_model_input_sizes.keys() ) else: _snake_case = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer _snake_case = tokenizer_class.from_pretrained(__lowercase , force_download=__lowercase ) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: _snake_case , _snake_case = checkpoint.split('/' ) _snake_case = os.path.join(__lowercase , __lowercase ) elif add_prefix: _snake_case = checkpoint _snake_case = dump_path else: _snake_case = None _snake_case = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: _snake_case = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] _snake_case = file_path.split(__lowercase )[-1][0] if next_char == "/": _snake_case = os.path.join(__lowercase , __lowercase ) _snake_case = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) _snake_case = tokenizer.save_pretrained( __lowercase , legacy_format=__lowercase , filename_prefix=__lowercase ) logger.info(f'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowercase ) logger.info(f'''=> removing {file_name}''' ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) _lowerCamelCase : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
282
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [torch.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class A__ ( unittest.TestCase ): def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [tf.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowercase = [tf.convert_to_tensor(_UpperCAmelCase )] __lowercase = [torch.tensor(_UpperCAmelCase )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
325
0
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES a_ = logging.get_logger(__name__) a_ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) a_ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a_ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a_ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) a_ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) a_ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) a_ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) a_ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) a_ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) a_ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) a_ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) a_ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) a_ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) a_ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) a_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) a_ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_MAPPING a_ = auto_class_update(FlaxAutoModel) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_PRETRAINING_MAPPING a_ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING a_ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_MASKED_LM_MAPPING a_ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a_ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING a_ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING a_ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING a_ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a_ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING a_ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class lowercase__ ( _BaseAutoModelClass ): a_ =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING a_ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
340
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
0
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase__ , unittest.TestCase ): __magic_name__: str = GPTaTokenizer __magic_name__: List[Any] = GPTaTokenizerFast __magic_name__: Tuple = True __magic_name__: Dict = {"add_prefix_space": True} __magic_name__: str = False def UpperCAmelCase_ ( self : Dict ) -> Optional[int]: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] snake_case_ : Union[str, Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) snake_case_ : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case_ : List[str] = {'unk_token': '<unk>'} snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def UpperCAmelCase_ ( self : Optional[int] , **_A : Tuple ) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def UpperCAmelCase_ ( self : List[Any] , **_A : Any ) -> List[str]: """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def UpperCAmelCase_ ( self : Any , _A : Optional[Any] ) -> int: """simple docstring""" snake_case_ : Dict = 'lower newer' snake_case_ : str = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self : int ) -> List[str]: """simple docstring""" snake_case_ : Tuple = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case_ : List[Any] = 'lower newer' snake_case_ : List[str] = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] snake_case_ : Any = tokenizer.tokenize(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : Optional[Any] = tokens + [tokenizer.unk_token] snake_case_ : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: """simple docstring""" if not self.test_rust_tokenizer: return snake_case_ : int = self.get_tokenizer() snake_case_ : str = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) snake_case_ : Dict = 'lower newer' # Testing tokenization snake_case_ : Any = tokenizer.tokenize(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) snake_case_ : int = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids without special tokens snake_case_ : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) snake_case_ : Optional[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing conversion to ids with special tokens snake_case_ : Optional[int] = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase ) snake_case_ : Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) snake_case_ : str = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing the unknown token snake_case_ : str = tokens + [rust_tokenizer.unk_token] snake_case_ : Tuple = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCAmelCase_ ( self : Dict , *_A : Union[str, Any] , **_A : List[str] ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase_ ( self : Optional[Any] , _A : Tuple=15 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case_ : Any = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # Simple input snake_case_ : Any = 'This is a simple input' snake_case_ : Optional[int] = ['This is a simple input 1', 'This is a simple input 2'] snake_case_ : Optional[Any] = ('This is a simple input', 'This is a pair') snake_case_ : Dict = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Simple input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' ) # Pair input self.assertRaises( _UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding='max_length' , ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ : List[str] = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input snake_case_ : Optional[int] = 'This is a simple input' snake_case_ : List[Any] = ['This is a simple input looooooooong', 'This is a simple input'] snake_case_ : List[Any] = ('This is a simple input', 'This is a pair') snake_case_ : List[Any] = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] snake_case_ : Any = tokenizer.pad_token_id snake_case_ : Optional[Any] = tokenizer(_UpperCAmelCase , padding='max_length' , max_length=30 , return_tensors='np' ) snake_case_ : Any = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncate=_UpperCAmelCase , return_tensors='np' ) snake_case_ : Optional[int] = tokenizer(*_UpperCAmelCase , padding='max_length' , max_length=60 , return_tensors='np' ) snake_case_ : int = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncate=_UpperCAmelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ : List[Any] = '$$$' snake_case_ : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_UpperCAmelCase , add_bos_token=_UpperCAmelCase ) snake_case_ : List[str] = 'This is a simple input' snake_case_ : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] snake_case_ : List[str] = tokenizer.bos_token_id snake_case_ : Any = tokenizer(_UpperCAmelCase ) snake_case_ : int = tokenizer(_UpperCAmelCase ) self.assertEqual(out_s.input_ids[0] , _UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case_ : List[str] = tokenizer.decode(out_s.input_ids ) snake_case_ : Union[str, Any] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ : Union[str, Any] = [self.get_tokenizer(do_lower_case=_UpperCAmelCase , add_bos_token=_UpperCAmelCase )] for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case_ : Optional[Any] = 'Encode this.' snake_case_ : Dict = 'This one too please.' snake_case_ : List[str] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) encoded_sequence += tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) snake_case_ : Any = tokenizer.encode_plus( _UpperCAmelCase , _UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , ) snake_case_ : Tuple = encoded_sequence_dict['input_ids'] snake_case_ : List[str] = encoded_sequence_dict['special_tokens_mask'] self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) snake_case_ : List[str] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_UpperCAmelCase ) ] snake_case_ : Optional[Any] = [x for x in filtered_sequence if x is not None] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): def UpperCAmelCase_ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ : Any = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_UpperCAmelCase ) snake_case_ : Tuple = 'A photo of a cat' snake_case_ : int = tokenizer.encode( _UpperCAmelCase , ) self.assertEqual(_UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('test_opt' ) snake_case_ : List[str] = AutoTokenizer.from_pretrained('./test_opt' ) snake_case_ : Optional[Any] = tokenizer.encode( _UpperCAmelCase , ) self.assertEqual(_UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" snake_case_ : Optional[int] = AutoTokenizer.from_pretrained('facebook/opt-350m' , use_slow=_UpperCAmelCase ) snake_case_ : List[Any] = 'A photo of a cat' snake_case_ : Optional[int] = tokenizer.encode( _UpperCAmelCase , ) # Same as above self.assertEqual(_UpperCAmelCase , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip('This test is failing because of a bug in the fast tokenizer' ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: """simple docstring""" snake_case_ : str = AutoTokenizer.from_pretrained('facebook/opt-350m' , from_slow=_UpperCAmelCase ) snake_case_ : Optional[Any] = 'bos' snake_case_ : Optional[Any] = tokenizer.get_vocab()['bos'] snake_case_ : List[str] = 'A photo of a cat' snake_case_ : Any = tokenizer.encode( _UpperCAmelCase , ) # We changed the bos token self.assertEqual(_UpperCAmelCase , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained('./tok' ) snake_case_ : str = AutoTokenizer.from_pretrained('./tok' ) self.assertTrue(tokenizer.is_fast ) snake_case_ : Any = tokenizer.encode( _UpperCAmelCase , ) self.assertEqual(_UpperCAmelCase , [31957, 250, 1345, 9, 10, 4758] )
327
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
0
from __future__ import annotations def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> bool: """simple docstring""" snake_case_ : Any = get_failure_array(_UpperCamelCase ) # 2) Step through text searching for pattern snake_case_ , snake_case_ : Union[str, Any] = 0, 0 # index into text, pattern while i < len(_UpperCamelCase ): if pattern[j] == text[i]: if j == (len(_UpperCamelCase ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: snake_case_ : List[str] = failure[j - 1] continue i += 1 return False def lowerCamelCase_ ( _UpperCamelCase ) -> list[int]: """simple docstring""" snake_case_ : Union[str, Any] = [0] snake_case_ : Tuple = 0 snake_case_ : Tuple = 1 while j < len(_UpperCamelCase ): if pattern[i] == pattern[j]: i += 1 elif i > 0: snake_case_ : List[Any] = failure[i - 1] continue j += 1 failure.append(_UpperCamelCase ) return failure if __name__ == "__main__": # Test 1) lowerCAmelCase_ = '''abc1abc12''' lowerCAmelCase_ = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' lowerCAmelCase_ = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) lowerCAmelCase_ = '''ABABX''' lowerCAmelCase_ = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) lowerCAmelCase_ = '''AAAB''' lowerCAmelCase_ = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) lowerCAmelCase_ = '''abcdabcy''' lowerCAmelCase_ = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) lowerCAmelCase_ = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
279
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: for attribute in key.split('.' ): __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowercase = None for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __lowercase = True elif name.split('.' )[0] == "proj": __lowercase = fairseq_model.proj __lowercase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __lowercase = 'weight_g' elif "weight_v" in name: __lowercase = 'weight_v' elif "bias" in name: __lowercase = 'bias' elif "weight" in name: __lowercase = 'weight' else: __lowercase = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: __lowercase = full_name.split('conv_layers.' )[-1] __lowercase = name.split('.' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __lowercase = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: __lowercase = f.readlines() __lowercase = [line.split(' ' )[0] for line in lines] __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]: __lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __lowercase = model[0].eval() # set weights for wav2vec2 encoder __lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE ) __lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) __lowercase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) __lowercase = False # add projection layer __lowercase = nn.Parameter(projection_layer.weight ) __lowercase = nn.Parameter(projection_layer.bias ) __lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = hf_wavavec.config.to_dict() __lowercase = tokenizer.pad_token_id __lowercase = tokenizer.bos_token_id __lowercase = tokenizer.eos_token_id __lowercase = 'speech_to_text_2' __lowercase = 'wav2vec2' __lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
325
0
"""simple docstring""" import math def __UpperCAmelCase ( lowercase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( lowercase = 1_00_01 ): """simple docstring""" try: _UpperCAmelCase = int(lowercase ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) _UpperCAmelCase = [] _UpperCAmelCase = 2 while len(lowercase ) < nth: if is_prime(lowercase ): primes.append(lowercase ) num += 1 else: num += 1 return primes[len(lowercase ) - 1] if __name__ == "__main__": print(F'''{solution() = }''')
289
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ : Tuple = logging.get_logger(__name__) # General docstring a__ : Dict = '''RegNetConfig''' # Base docstring a__ : Any = '''facebook/regnet-y-040''' a__ : str = [1, 1_088, 7, 7] # Image classification docstring a__ : int = '''facebook/regnet-y-040''' a__ : Dict = '''tabby, tabby cat''' a__ : Tuple = [ '''facebook/regnet-y-040''', # See all regnet models at https://huggingface.co/models?filter=regnet ] class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 3 , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = "relu" , ) ->Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE : str = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.BatchNormad(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = ACTaFN[activation] if activation is not None else nn.Identity() def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : Any = self.convolution(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = self.normalization(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.activation(_UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : Any = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) SCREAMING_SNAKE_CASE : Tuple = config.num_channels def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : int = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) SCREAMING_SNAKE_CASE : Optional[Any] = self.embedder(_UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 ) ->Optional[int]: super().__init__() SCREAMING_SNAKE_CASE : str = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.BatchNormad(_UpperCAmelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : int = self.convolution(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.normalization(_UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase ) ->str: super().__init__() SCREAMING_SNAKE_CASE : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) SCREAMING_SNAKE_CASE : List[str] = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : int = self.pooler(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = self.attention(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = hidden_state * attention return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 ) ->Tuple: super().__init__() SCREAMING_SNAKE_CASE : List[Any] = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : str = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE : Any = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) SCREAMING_SNAKE_CASE : List[Any] = ACTaFN[config.hidden_act] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = hidden_state SCREAMING_SNAKE_CASE : List[Any] = self.layer(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = self.shortcut(_UpperCAmelCase ) hidden_state += residual SCREAMING_SNAKE_CASE : Any = self.activation(_UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 ) ->Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : List[str] = max(1 , out_channels // config.groups_width ) SCREAMING_SNAKE_CASE : Any = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : int = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) SCREAMING_SNAKE_CASE : int = ACTaFN[config.hidden_act] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : List[Any] = hidden_state SCREAMING_SNAKE_CASE : int = self.layer(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.shortcut(_UpperCAmelCase ) hidden_state += residual SCREAMING_SNAKE_CASE : Tuple = self.activation(_UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 , _lowerCamelCase = 2 , ) ->Dict: super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer SCREAMING_SNAKE_CASE : int = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: SCREAMING_SNAKE_CASE : int = self.layers(_UpperCAmelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) SCREAMING_SNAKE_CASE : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True ) ->BaseModelOutputWithNoAttention: SCREAMING_SNAKE_CASE : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE : Any = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE : Optional[Any] = stage_module(_UpperCAmelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class a_ ( lowerCAmelCase__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = RegNetConfig __SCREAMING_SNAKE_CASE : Optional[int] = "regnet" __SCREAMING_SNAKE_CASE : Dict = "pixel_values" __SCREAMING_SNAKE_CASE : List[str] = True def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->Dict: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE : Any = value a__ : Union[str, Any] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : List[str] = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class a_ ( lowerCAmelCase__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super().__init__(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = config SCREAMING_SNAKE_CASE : int = RegNetEmbeddings(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = RegNetEncoder(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) ->BaseModelOutputWithPoolingAndNoAttention: SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Optional[int] = self.embedder(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = encoder_outputs[0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class a_ ( lowerCAmelCase__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Tuple: super().__init__(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = config.num_labels SCREAMING_SNAKE_CASE : Dict = RegNetModel(_UpperCAmelCase ) # classification head SCREAMING_SNAKE_CASE : str = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->ImageClassifierOutputWithNoAttention: SCREAMING_SNAKE_CASE : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Union[str, Any] = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : Tuple = self.classifier(_UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Optional[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : List[Any] = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Union[str, Any] = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Optional[int] = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Optional[int] = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : Any = CrossEntropyLoss() SCREAMING_SNAKE_CASE : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : List[str] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : Any = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Optional[int] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
313
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["vqvae"] def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase ) def a__ ( self : Tuple ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00 @torch.no_grad() def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCAmelCase , device=self.device , ) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase ) __lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 2_55) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample( generator=_UpperCAmelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCAmelCase ): __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample'] else: __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] if isinstance(self.scheduler , _UpperCAmelCase ): __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] else: __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_UpperCAmelCase )['sample'] __lowercase = (images / 2 + 0.5).clamp(0 , 1 ) __lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowercase = (images * 2_55).round().astype('uint8' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) ) @torch.no_grad() def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , _UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 2_55) * 2 - 1 __lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor: """simple docstring""" __lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
325
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , ) -> Tuple: UpperCamelCase :List[str] = parent UpperCamelCase :int = 13 UpperCamelCase :Optional[int] = 7 UpperCamelCase :List[str] = 30 UpperCamelCase :List[str] = self.seq_length + self.mem_len UpperCamelCase :Optional[int] = 15 UpperCamelCase :Dict = True UpperCamelCase :List[str] = True UpperCamelCase :Union[str, Any] = 99 UpperCamelCase :int = [10, 50, 80] UpperCamelCase :List[str] = 32 UpperCamelCase :List[str] = 32 UpperCamelCase :List[Any] = 4 UpperCamelCase :Tuple = 8 UpperCamelCase :str = 128 UpperCamelCase :Any = 2 UpperCamelCase :str = 2 UpperCamelCase :str = None UpperCamelCase :Tuple = 1 UpperCamelCase :Dict = 0 UpperCamelCase :Optional[Any] = 3 UpperCamelCase :Any = self.vocab_size - 1 UpperCamelCase :str = 0.01 def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :List[Any] = None if self.use_labels: UpperCamelCase :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase :Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCAmelCase ( self ) -> Dict: random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :int = TFTransfoXLModel(_UpperCAmelCase ) UpperCamelCase , UpperCamelCase :Dict = model(_UpperCAmelCase ).to_tuple() UpperCamelCase :Union[str, Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a} UpperCamelCase , UpperCamelCase :str = model(_UpperCAmelCase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :Tuple = TFTransfoXLLMHeadModel(_UpperCAmelCase ) UpperCamelCase , UpperCamelCase :str = model(_UpperCAmelCase ).to_tuple() UpperCamelCase :List[Any] = {'''input_ids''': input_ids_a, '''labels''': lm_labels} UpperCamelCase , UpperCamelCase :List[Any] = model(_UpperCAmelCase ).to_tuple() UpperCamelCase , UpperCamelCase :Tuple = model([input_ids_a, mems_a] ).to_tuple() UpperCamelCase :Any = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} UpperCamelCase , UpperCamelCase :List[Any] = model(_UpperCAmelCase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCamelCase :List[str] = TFTransfoXLForSequenceClassification(_UpperCAmelCase ) UpperCamelCase :Optional[int] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Optional[int] = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) :Any = config_and_inputs UpperCamelCase :str = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class UpperCAmelCase_ ( lowerCAmelCase__, lowerCAmelCase__, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Any =( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) UpperCamelCase_ : List[Any] =() if is_tf_available() else () UpperCamelCase_ : Optional[Any] =( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented UpperCamelCase_ : List[Any] =False UpperCamelCase_ : List[Any] =False UpperCamelCase_ : int =False UpperCamelCase_ : Union[str, Any] =False def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :Union[str, Any] = TFTransfoXLModelTester(self ) UpperCamelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , d_embed=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Any: self.model_tester.set_seed() UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*_UpperCAmelCase ) def UpperCAmelCase ( self ) -> List[str]: self.model_tester.set_seed() UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*_UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*_UpperCAmelCase ) def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCamelCase :Optional[Any] = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCamelCase :Dict = model.get_output_embeddings() assert isinstance(_UpperCAmelCase , tf.keras.layers.Layer ) UpperCamelCase :List[str] = model.get_bias() assert name is None else: UpperCamelCase :Optional[int] = model.get_output_embeddings() assert x is None UpperCamelCase :Union[str, Any] = model.get_bias() assert name is None def UpperCAmelCase ( self ) -> Optional[Any]: pass @slow def UpperCAmelCase ( self ) -> Any: for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase :List[str] = TFTransfoXLModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def UpperCAmelCase ( self ) -> str: pass @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def UpperCAmelCase ( self ) -> Any: UpperCamelCase :Union[str, Any] = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off UpperCamelCase :str = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCamelCase :Any = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCamelCase :Any = model.generate(_UpperCAmelCase , max_length=200 , do_sample=_UpperCAmelCase ) self.assertListEqual(output_ids[0].numpy().tolist() , _UpperCAmelCase )
259
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
0
"""simple docstring""" from argparse import ArgumentParser from . import BaseTransformersCLICommand def lowercase__ ( snake_case_ :Dict ): return DownloadCommand(args.model , args.cache_dir , args.force , args.trust_remote_code ) class _UpperCAmelCase ( lowerCAmelCase__ ): @staticmethod def a ( _lowercase : ArgumentParser ): __UpperCAmelCase = parser.add_parser('''download''' ) download_parser.add_argument( '''--cache-dir''' , type=_UpperCAmelCase , default=_UpperCAmelCase , help='''Path to location to store the models''' ) download_parser.add_argument( '''--force''' , action='''store_true''' , help='''Force the model to be download even if already in cache-dir''' ) download_parser.add_argument( '''--trust-remote-code''' , action='''store_true''' , help='''Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine''' , ) download_parser.add_argument('''model''' , type=_UpperCAmelCase , help='''Name of the model to download''' ) download_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self : Optional[Any] , _lowercase : str , _lowercase : str , _lowercase : bool , _lowercase : bool ): __UpperCAmelCase = model __UpperCAmelCase = cache __UpperCAmelCase = force __UpperCAmelCase = trust_remote_code def a ( self : int ): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
332
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase_ ( lowerCAmelCase__ ,unittest.TestCase ): __lowerCamelCase : List[Any] = KandinskyVaaPriorPipeline __lowerCamelCase : Optional[int] = ["prompt"] __lowerCamelCase : Union[str, Any] = ["prompt", "negative_prompt"] __lowerCamelCase : Tuple = [ "num_images_per_prompt", "generator", "num_inference_steps", "latents", "negative_prompt", "guidance_scale", "output_type", "return_dict", ] __lowerCamelCase : int = False @property def _snake_case ( self ) -> int: return 32 @property def _snake_case ( self ) -> Tuple: return 32 @property def _snake_case ( self ) -> Dict: return self.time_input_dim @property def _snake_case ( self ) -> List[Any]: return self.time_input_dim * 4 @property def _snake_case ( self ) -> Dict: return 100 @property def _snake_case ( self ) -> Any: _lowerCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def _snake_case ( self ) -> Optional[Any]: torch.manual_seed(0 ) _lowerCAmelCase = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } _lowerCAmelCase = PriorTransformer(**_UpperCAmelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _lowerCAmelCase = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def _snake_case ( self ) -> str: torch.manual_seed(0 ) _lowerCAmelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _lowerCAmelCase = CLIPVisionModelWithProjection(_UpperCAmelCase ) return model @property def _snake_case ( self ) -> Dict: _lowerCAmelCase = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = self.dummy_prior _lowerCAmelCase = self.dummy_image_encoder _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = self.dummy_tokenizer _lowerCAmelCase = self.dummy_image_processor _lowerCAmelCase = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=_UpperCAmelCase , clip_sample_range=10.0 , ) _lowerCAmelCase = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase=0 ) -> str: if str(_UpperCAmelCase ).startswith("mps" ): _lowerCAmelCase = torch.manual_seed(_UpperCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _lowerCAmelCase = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = "cpu" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_UpperCAmelCase ) _lowerCAmelCase = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) _lowerCAmelCase = output.image_embeds _lowerCAmelCase = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] _lowerCAmelCase = image[0, -10:] _lowerCAmelCase = image_from_tuple[0, -10:] assert image.shape == (1, 32) _lowerCAmelCase = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = torch_device == "cpu" _lowerCAmelCase = True _lowerCAmelCase = False self._test_inference_batch_single_identical( test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , test_mean_pixel_difference=_UpperCAmelCase , ) @skip_mps def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = torch_device == "cpu" _lowerCAmelCase = False self._test_attention_slicing_forward_pass( test_max_difference=_UpperCAmelCase , test_mean_pixel_difference=_UpperCAmelCase , )
158
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
0
"""simple docstring""" _a = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _a = [{'type': 'code', 'content': INSTALL_CONTENT}] _a = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
17
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): for attribute in key.split('.' ): lowercase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).shape else: lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase = value elif weight_type == "weight_g": lowercase = value elif weight_type == "weight_v": lowercase = value elif weight_type == "bias": lowercase = value else: lowercase = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [] lowercase = fairseq_model.state_dict() lowercase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight lowercase = None for name, value in fairseq_dict.items(): lowercase = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) lowercase = True elif name.split('.' )[0] == "proj": lowercase = fairseq_model.proj lowercase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: lowercase = True if "*" in mapped_key: lowercase = name.split(__SCREAMING_SNAKE_CASE )[0].split('.' )[-2] lowercase = mapped_key.replace('*' , __SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase = 'weight_g' elif "weight_v" in name: lowercase = 'weight_v' elif "bias" in name: lowercase = 'bias' elif "weight" in name: lowercase = 'weight' else: lowercase = None set_recursively(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = full_name.split('conv_layers.' )[-1] lowercase = name.split('.' ) lowercase = int(items[0] ) lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase , lowercase = emb.weight.shape lowercase = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) lowercase = emb.weight.data return lin_layer def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: lowercase = f.readlines() lowercase = [line.split(' ' )[0] for line in lines] lowercase = len(__SCREAMING_SNAKE_CASE ) lowercase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(__SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): lowercase = WavaVecaConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) lowercase = SpeechaTextaConfig.from_pretrained( __SCREAMING_SNAKE_CASE , vocab_size=__SCREAMING_SNAKE_CASE , decoder_layers=__SCREAMING_SNAKE_CASE , do_stable_layer_norm=__SCREAMING_SNAKE_CASE ) lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) lowercase , lowercase , lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowercase = model[0].eval() # set weights for wav2vec2 encoder lowercase = WavaVecaModel(__SCREAMING_SNAKE_CASE ) lowercase = recursively_load_weights_wavaveca(model.encoder , __SCREAMING_SNAKE_CASE ) lowercase = SpeechaTextaForCausalLM(__SCREAMING_SNAKE_CASE ) lowercase , lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) lowercase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowercase = SpeechEncoderDecoderModel(encoder=__SCREAMING_SNAKE_CASE , decoder=__SCREAMING_SNAKE_CASE ) lowercase = False # add projection layer lowercase = nn.Parameter(projection_layer.weight ) lowercase = nn.Parameter(projection_layer.bias ) lowercase = create_vocab_dict(__SCREAMING_SNAKE_CASE ) with open(os.path.join(__SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = SpeechaTextaTokenizer(os.path.join(__SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) lowercase = hf_wavavec.config.to_dict() lowercase = tokenizer.pad_token_id lowercase = tokenizer.bos_token_id lowercase = tokenizer.eos_token_id lowercase = 'speech_to_text_2' lowercase = 'wav2vec2' lowercase = SpeechEncoderDecoderConfig.from_dict(__SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(__SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') UpperCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
195
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: _lowerCamelCase : List[Any] = None _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _lowerCamelCase : List[Any] = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } _lowerCamelCase : Tuple = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } _lowerCamelCase : Union[str, Any] = '''▁''' class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES _UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Optional[Any] = ["input_ids", "token_type_ids"] _UpperCAmelCase : Any = FNetTokenizer def __init__( self : Tuple , lowercase : Optional[int]=None , lowercase : int=None , lowercase : Dict=False , lowercase : List[Any]=True , lowercase : Union[str, Any]=True , lowercase : Dict="<unk>" , lowercase : int="[SEP]" , lowercase : Union[str, Any]="<pad>" , lowercase : Optional[int]="[CLS]" , lowercase : List[Any]="[MASK]" , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) _snake_case = do_lower_case _snake_case = remove_space _snake_case = keep_accents _snake_case = vocab_file _snake_case = False if not self.vocab_file else True def A ( self : Optional[Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def A ( self : Union[str, Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A ( self : Dict , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
282
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
0
from manim import * class lowercase__ ( lowerCAmelCase__ ): def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase__ = Rectangle(height=0.25 , width=0.25 ) lowerCAmelCase__ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("CPU" , font_size=24 ) lowerCAmelCase__ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) lowerCAmelCase__ = [mem.copy() for i in range(4 )] lowerCAmelCase__ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("GPU" , font_size=24 ) lowerCAmelCase__ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("Model" , font_size=24 ) lowerCAmelCase__ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i, rect in enumerate(_UpperCAmelCase ): rect.set_stroke(_UpperCAmelCase ) lowerCAmelCase__ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_UpperCAmelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_UpperCAmelCase , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_UpperCAmelCase , buff=0.0 ) self.add(_UpperCAmelCase ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase , *_UpperCAmelCase ) lowerCAmelCase__ = [mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("Loaded Checkpoint" , font_size=24 ) lowerCAmelCase__ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) checkpoint.move_to([3, 0.5, 0] ) self.add(_UpperCAmelCase ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for i, rect in enumerate(_UpperCAmelCase ): lowerCAmelCase__ = fill.copy().set_fill(_UpperCAmelCase , opacity=0.7 ) target.move_to(_UpperCAmelCase ) ckpt_arr.append(_UpperCAmelCase ) lowerCAmelCase__ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) lowerCAmelCase__ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase__ = MarkupText( F"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) lowerCAmelCase__ = MarkupText( F"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) lowerCAmelCase__ = MarkupText( F"Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device." , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCAmelCase__ = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ = [meta_mem.copy() for i in range(6 )] lowerCAmelCase__ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) lowerCAmelCase__ = Text("Disk" , font_size=24 ) lowerCAmelCase__ = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , Write(_UpperCAmelCase , run_time=1 ) , Create(_UpperCAmelCase , run_time=1 ) ) lowerCAmelCase__ = [] for i, rect in enumerate(_UpperCAmelCase ): lowerCAmelCase__ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_UpperCAmelCase , run_time=1.5 ) ) self.play(*_UpperCAmelCase ) self.play(FadeOut(_UpperCAmelCase ) ) lowerCAmelCase__ = MarkupText(F"Then, the checkpoint is removed from memory\nthrough garbage collection." , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) self.play( FadeOut(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , *_UpperCAmelCase ) , ) self.wait()
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
325
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( lowerCAmelCase__ , unittest.TestCase ): __magic_name__: int = DebertaTokenizer __magic_name__: Any = True __magic_name__: int = DebertaTokenizerFast def UpperCAmelCase_ ( self : List[Any] ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Dict = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] snake_case_ : Optional[Any] = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) snake_case_ : Union[str, Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case_ : Any = {'unk_token': '[UNK]'} snake_case_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def UpperCAmelCase_ ( self : Union[str, Any] , **_A : Any ) -> Optional[Any]: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def UpperCAmelCase_ ( self : Optional[Any] , _A : Tuple ) -> Tuple: """simple docstring""" snake_case_ : Tuple = 'lower newer' snake_case_ : int = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self : List[Any] ) -> Any: """simple docstring""" snake_case_ : List[Any] = self.get_tokenizer() snake_case_ : Union[str, Any] = 'lower newer' snake_case_ : int = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] snake_case_ : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ : List[Any] = tokens + [tokenizer.unk_token] snake_case_ : str = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def UpperCAmelCase_ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : Optional[Any] = self.get_tokenizer() snake_case_ : Dict = tokenizer('Hello' , 'World' ) snake_case_ : Tuple = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , _UpperCAmelCase ) @slow def UpperCAmelCase_ ( self : int ) -> int: """simple docstring""" snake_case_ : Optional[int] = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) snake_case_ : Optional[Any] = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) snake_case_ : Optional[Any] = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) snake_case_ : Dict = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) snake_case_ : Union[str, Any] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) snake_case_ : Any = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) snake_case_ : Tuple = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def UpperCAmelCase_ ( self : int ) -> str: """simple docstring""" snake_case_ : str = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case_ : Optional[int] = tokenizer_class.from_pretrained('microsoft/deberta-base' ) snake_case_ : Tuple = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] snake_case_ : Optional[Any] = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase ) snake_case_ : str = [tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) for seq in encoding['input_ids']] # fmt: off snake_case_ : Optional[int] = { 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case_ : List[Any] = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , _UpperCAmelCase ) for expected, decoded in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
327
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCamelCase_ ( _UpperCamelCase = "laptop" ) -> DataFrame: """simple docstring""" snake_case_ : Any = f'''https://www.amazon.in/laptop/s?k={product}''' snake_case_ : List[str] = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } snake_case_ : Optional[Any] = BeautifulSoup(requests.get(_UpperCamelCase , headers=_UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles snake_case_ : Tuple = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: snake_case_ : int = item.ha.text snake_case_ : Any = '''https://www.amazon.in/''' + item.ha.a['''href'''] snake_case_ : int = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: snake_case_ : str = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: snake_case_ : int = '''Not available''' try: snake_case_ : Tuple = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: snake_case_ : List[str] = '''''' try: snake_case_ : Dict = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: snake_case_ : Optional[Any] = float('''nan''' ) except AttributeError: pass snake_case_ : Tuple = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] snake_case_ : Any = ''' ''' snake_case_ : Union[str, Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCAmelCase_ = '''headphones''' get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
279
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split('/' ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __lowercase = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
325
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class a ( lowerCAmelCase__ ): _snake_case : int = "audio-spectrogram-transformer" def __init__( self : Dict , __lowerCAmelCase : Union[str, Any]=768 , __lowerCAmelCase : Union[str, Any]=12 , __lowerCAmelCase : List[Any]=12 , __lowerCAmelCase : Optional[Any]=3072 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Union[str, Any]=0.02 , __lowerCAmelCase : List[str]=1e-1_2 , __lowerCAmelCase : int=16 , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Dict=10 , __lowerCAmelCase : Tuple=10 , __lowerCAmelCase : List[Any]=1024 , __lowerCAmelCase : Optional[int]=128 , **__lowerCAmelCase : List[Any] , ): super().__init__(**_UpperCAmelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = patch_size _UpperCAmelCase = qkv_bias _UpperCAmelCase = frequency_stride _UpperCAmelCase = time_stride _UpperCAmelCase = max_length _UpperCAmelCase = num_mel_bins
289
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCAmelCase_( a__ , a__ , a__ = 10**-10 ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = a while True: SCREAMING_SNAKE_CASE : Tuple = Decimal(a__ ) - ( Decimal(eval(a__ ) ) / Decimal(eval(str(diff(a__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(a__ ) ) < precision: # noqa: S307 return float(a__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(F"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(F"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(F"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
313
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 10 @require_sentencepiece @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[Any] = True def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase ) __lowercase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = '<pad>' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCAmelCase ) , 10_01 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , ) __lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A__ ( unittest.TestCase ): lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase__ : Dict = "C'est trop cool" lowerCAmelCase__ : List[Any] = "Esto es genial" @classmethod def a__ ( cls : Any ) -> Optional[int]: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a__ ( self : Tuple ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def a__ ( self : str ) -> int: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) __lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2] __lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = 'fr' __lowercase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowercase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
325
0
def _A ( SCREAMING_SNAKE_CASE__ : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
259
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = version.parse("1.12" ) @property def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : int ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : str ) -> int: """simple docstring""" return 12 def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
325
0
"""simple docstring""" from __future__ import annotations class _UpperCAmelCase : def __init__( self : Optional[Any] , _lowercase : int = 0 ): __UpperCAmelCase = key def a ( self : Optional[int] , _lowercase : str , _lowercase : int ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def a ( self : int , _lowercase : str , _lowercase : int ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(_UpperCAmelCase ) ^ key ) for ch in content] def a ( self : str , _lowercase : str , _lowercase : int = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __UpperCAmelCase = '''''' for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def a ( self : Dict , _lowercase : str , _lowercase : int = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) __UpperCAmelCase = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __UpperCAmelCase = '''''' for ch in content: ans += chr(ord(_UpperCAmelCase ) ^ key ) return ans def a ( self : List[str] , _lowercase : str , _lowercase : int = 0 ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True def a ( self : Optional[int] , _lowercase : str , _lowercase : int ): assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ) try: with open(_UpperCAmelCase ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_UpperCAmelCase , _UpperCAmelCase ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
332
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any: """simple docstring""" super().__init__() __lowercase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowercase = config.num_channels def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowercase = self.embedder(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_state * attention return hidden_state class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() __lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def a__ ( self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = self.layers(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int: """simple docstring""" super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_UpperCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = RegNetConfig lowerCAmelCase__ : Optional[int] = "regnet" lowerCAmelCase__ : Dict = "pixel_values" lowerCAmelCase__ : List[str] = True def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = value SCREAMING_SNAKE_CASE__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_UpperCAmelCase ) __lowercase = RegNetEncoder(_UpperCAmelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_UpperCAmelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = 'single_label_classification' else: __lowercase = 'multi_label_classification' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
325
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCAmelCase_ ( lowerCAmelCase__ ): __lowerCamelCase : int = "xlm-roberta" def __init__( self , _lowerCAmelCase=30522 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-12 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , _lowerCAmelCase="absolute" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ) -> Dict: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class lowerCAmelCase_ ( lowerCAmelCase__ ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
158
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[list[int]] ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
325
0
"""simple docstring""" def _A ( UpperCamelCase_ : Optional[Any]) -> Tuple: '''simple docstring''' __lowercase = [0] * len(UpperCamelCase_) __lowercase = [] __lowercase = [1] * len(UpperCamelCase_) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(UpperCamelCase_)): if indegree[i] == 0: queue.append(UpperCamelCase_) while queue: __lowercase = queue.pop(0) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __lowercase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(UpperCamelCase_) print(max(UpperCamelCase_)) # Adjacency list of Graph _a = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
17
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger SCREAMING_SNAKE_CASE__ = get_logger(__name__) class A__ ( enum.Enum ): lowerCAmelCase__ : Dict = "all_checks" lowerCAmelCase__ : List[Any] = "basic_checks" lowerCAmelCase__ : Dict = "no_checks" class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Optional[Any]: if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __lowercase = ' for ' + verification_name if verification_name is not None else '' if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass class A__ ( lowerCAmelCase__ ): pass def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ) -> Optional[int]: if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) __lowercase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info('All the splits matched successfully.' ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ) -> dict: if record_checksum: __lowercase = shaaaa() with open(SCREAMING_SNAKE_CASE , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'' ): m.update(SCREAMING_SNAKE_CASE ) __lowercase = m.hexdigest() else: __lowercase = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
325
0
import os def UpperCAmelCase_ ( ): with open(os.path.dirname(__SCREAMING_SNAKE_CASE ) + '/p022_names.txt' ) as file: lowercase = str(file.readlines()[0] ) lowercase = names.replace('"' , '' ).split(',' ) names.sort() lowercase = 0 lowercase = 0 for i, name in enumerate(__SCREAMING_SNAKE_CASE ): for letter in name: name_score += ord(__SCREAMING_SNAKE_CASE ) - 64 total_score += (i + 1) * name_score lowercase = 0 return total_score if __name__ == "__main__": print(solution())
195
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __lowercase = range(3 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=1 , **SCREAMING_SNAKE_CASE : Tuple ) -> Dict: __lowercase = factor * value __lowercase = value while not is_prime(SCREAMING_SNAKE_CASE ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **SCREAMING_SNAKE_CASE ) return value
325
0
from numpy import exp, pi, sqrt def a_ ( __lowercase : Any , __lowercase : float = 0.0 , __lowercase : float = 1.0 ) -> int: return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
282
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : int ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def a__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [torch.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(_UpperCAmelCase ): __lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) ) @require_vision @require_tf class A__ ( unittest.TestCase ): def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def a__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __lowercase = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) __lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> List[str]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='np' ) __lowercase = processor(images=_UpperCAmelCase , return_tensors='np' ) input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = [tf.ones((1, 3, 5, 5) )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = processor.post_process_masks( _UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) # should also work with np __lowercase = [np.ones((1, 3, 5, 5) )] __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) ) __lowercase = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __lowercase = processor.post_process_masks( _UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' ) @require_vision @require_torchvision class A__ ( unittest.TestCase ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = tempfile.mkdtemp() __lowercase = SamImageProcessor() __lowercase = SamProcessor(_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def a__ ( self : Tuple ) -> str: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __lowercase = [tf.convert_to_tensor(_UpperCAmelCase )] __lowercase = [torch.tensor(_UpperCAmelCase )] __lowercase = [[17_64, 26_46]] __lowercase = [[6_83, 10_24]] __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' ) __lowercase = processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def a__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.get_image_processor() __lowercase = SamProcessor(image_processor=_UpperCAmelCase ) __lowercase = self.prepare_image_inputs() __lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy() __lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() __lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy() self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
325
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["""BartphoTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
325
0
import comet # From: unbabel-comet import torch import datasets _SCREAMING_SNAKE_CASE = datasets.logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ _SCREAMING_SNAKE_CASE = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ _SCREAMING_SNAKE_CASE = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def UpperCAmelCase_ ( self : Dict ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://unbabel.github.io/COMET/html/index.html' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'sources': datasets.Value('string' , id='sequence' ), 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/Unbabel/COMET'] , reference_urls=[ 'https://github.com/Unbabel/COMET', 'https://www.aclweb.org/anthology/2020.emnlp-main.213/', 'http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6', ] , ) def UpperCAmelCase_ ( self : str , _A : Tuple ) -> Tuple: """simple docstring""" if self.config_name == "default": snake_case_ : Any = comet.load_from_checkpoint(comet.download_model('wmt20-comet-da' ) ) else: snake_case_ : List[Any] = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def UpperCAmelCase_ ( self : List[Any] , _A : Union[str, Any] , _A : Optional[int] , _A : Tuple , _A : Any=None , _A : Union[str, Any]=False ) -> List[str]: """simple docstring""" if gpus is None: snake_case_ : Optional[int] = 1 if torch.cuda.is_available() else 0 snake_case_ : int = {'src': sources, 'mt': predictions, 'ref': references} snake_case_ : int = [dict(zip(_UpperCAmelCase , _UpperCAmelCase ) ) for t in zip(*data.values() )] snake_case_ ,snake_case_ : List[Any] = self.scorer.predict(_UpperCAmelCase , gpus=_UpperCAmelCase , progress_bar=_UpperCAmelCase ) return {"mean_score": mean_score, "scores": scores}
327
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowerCamelCase_ ( _UpperCamelCase="" ) -> str: """simple docstring""" snake_case_ : Any = tempfile.mkdtemp() return os.path.join(_UpperCamelCase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : str = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : Tuple = AgentAudio(_UpperCAmelCase ) snake_case_ : Any = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(_UpperCAmelCase ) ) # Ensure that the file contains the same value as the original tensor snake_case_ , snake_case_ : List[str] = sf.read(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , atol=1e-4 ) ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : Dict = get_new_path(suffix='''.wav''' ) sf.write(_UpperCAmelCase , _UpperCAmelCase , 1_6000 ) snake_case_ : Any = AgentAudio(_UpperCAmelCase ) self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , _UpperCAmelCase ) @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : int = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ : Tuple = AgentImage(_UpperCAmelCase ) snake_case_ : Dict = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(_UpperCAmelCase , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ : int = Image.open(_UpperCAmelCase ) snake_case_ : Dict = AgentImage(_UpperCAmelCase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ : List[str] = Image.open(_UpperCAmelCase ) snake_case_ : str = AgentImage(_UpperCAmelCase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(_UpperCAmelCase ) ) class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : int = '''Hey!''' snake_case_ : List[str] = AgentText(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , agent_type.to_string() ) self.assertEqual(_UpperCAmelCase , agent_type.to_raw() ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
279
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } SCREAMING_SNAKE_CASE__ = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: for attribute in key.split('.' ): __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: __lowercase = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __lowercase = None for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) __lowercase = True elif name.split('.' )[0] == "proj": __lowercase = fairseq_model.proj __lowercase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] __lowercase = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: __lowercase = 'weight_g' elif "weight_v" in name: __lowercase = 'weight_v' elif "bias" in name: __lowercase = 'bias' elif "weight" in name: __lowercase = 'weight' else: __lowercase = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) return proj_weight def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: __lowercase = full_name.split('conv_layers.' )[-1] __lowercase = name.split('.' ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowercase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: __lowercase , __lowercase = emb.weight.shape __lowercase = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) __lowercase = emb.weight.data return lin_layer def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' ) as f: __lowercase = f.readlines() __lowercase = [line.split(' ' )[0] for line in lines] __lowercase = len(SCREAMING_SNAKE_CASE ) __lowercase = { '<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , ) -> List[Any]: __lowercase = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE , vocab_size=SCREAMING_SNAKE_CASE , decoder_layers=SCREAMING_SNAKE_CASE , do_stable_layer_norm=SCREAMING_SNAKE_CASE ) __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) __lowercase = model[0].eval() # set weights for wav2vec2 encoder __lowercase = WavaVecaModel(SCREAMING_SNAKE_CASE ) __lowercase = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE ) __lowercase , __lowercase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) # set output linear layer unexpected_keys.remove('embed_out' ) __lowercase = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowercase = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) __lowercase = False # add projection layer __lowercase = nn.Parameter(projection_layer.weight ) __lowercase = nn.Parameter(projection_layer.bias ) __lowercase = create_vocab_dict(SCREAMING_SNAKE_CASE ) with open(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) __lowercase = hf_wavavec.config.to_dict() __lowercase = tokenizer.pad_token_id __lowercase = tokenizer.bos_token_id __lowercase = tokenizer.eos_token_id __lowercase = 'speech_to_text_2' __lowercase = 'wav2vec2' __lowercase = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=1_0224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
325
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class a ( lowerCAmelCase__ , lowerCAmelCase__ ): _snake_case : Any = "swin" _snake_case : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , __lowerCAmelCase : int=224 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Union[str, Any]=3 , __lowerCAmelCase : Optional[Any]=96 , __lowerCAmelCase : str=[2, 2, 6, 2] , __lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , __lowerCAmelCase : Union[str, Any]=7 , __lowerCAmelCase : int=4.0 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : Union[str, Any]=1e-5 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Optional[Any]=None , **__lowerCAmelCase : Optional[int] , ): super().__init__(**_UpperCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) ) _UpperCAmelCase = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(_UpperCAmelCase ) + 1 )] _UpperCAmelCase , _UpperCAmelCase = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names ) class a ( lowerCAmelCase__ ): _snake_case : str = version.parse('1.11' ) @property def lowerCAmelCase_ ( self : List[Any] ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase_ ( self : int ): return 1e-4
289
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]: __lowercase = [0 for i in range(r + 1 )] # nc0 = 1 __lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. __lowercase = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
325
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar a__ : Union[str, Any] = TypeVar('''T''') class a_ ( Generic[T] ): """simple docstring""" __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self , _lowerCamelCase ) ->None: SCREAMING_SNAKE_CASE : int = deque() SCREAMING_SNAKE_CASE : Union[str, Any] = set() if not n: SCREAMING_SNAKE_CASE : Optional[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = n def __lowerCAmelCase ( self , _lowerCamelCase ) ->None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: SCREAMING_SNAKE_CASE : int = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def __lowerCAmelCase ( self ) ->None: for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ) ->str: return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() a__ : Tuple = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
313
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = ["vqvae"] def __init__( self : int , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Mel , _UpperCAmelCase : Union[DDIMScheduler, DDPMScheduler] , ) -> str: """simple docstring""" super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , mel=_UpperCAmelCase , vqvae=_UpperCAmelCase ) def a__ ( self : Tuple ) -> int: """simple docstring""" return 50 if isinstance(self.scheduler , _UpperCAmelCase ) else 10_00 @torch.no_grad() def __call__( self : str , _UpperCAmelCase : int = 1 , _UpperCAmelCase : str = None , _UpperCAmelCase : np.ndarray = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = None , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Generator = None , _UpperCAmelCase : float = 0 , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : torch.Tensor = None , _UpperCAmelCase : str=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: """simple docstring""" __lowercase = steps or self.get_default_steps() self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: __lowercase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: __lowercase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=_UpperCAmelCase , device=self.device , ) __lowercase = noise __lowercase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.mel.audio_slice_to_image(_UpperCAmelCase ) __lowercase = np.frombuffer(input_image.tobytes() , dtype='uint8' ).reshape( (input_image.height, input_image.width) ) __lowercase = (input_image / 2_55) * 2 - 1 __lowercase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: __lowercase = self.vqvae.encode(torch.unsqueeze(_UpperCAmelCase , 0 ) ).latent_dist.sample( generator=_UpperCAmelCase )[0] __lowercase = self.vqvae.config.scaling_factor * input_images if start_step > 0: __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , self.scheduler.timesteps[start_step - 1] ) __lowercase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) __lowercase = int(mask_start_secs * pixels_per_second ) __lowercase = int(mask_end_secs * pixels_per_second ) __lowercase = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , _UpperCAmelCase ): __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )['sample'] else: __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] if isinstance(self.scheduler , _UpperCAmelCase ): __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] else: __lowercase = self.scheduler.step( model_output=_UpperCAmelCase , timestep=_UpperCAmelCase , sample=_UpperCAmelCase , generator=_UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: __lowercase = mask[:, step, :, :mask_start] if mask_end > 0: __lowercase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance __lowercase = 1 / self.vqvae.config.scaling_factor * images __lowercase = self.vqvae.decode(_UpperCAmelCase )['sample'] __lowercase = (images / 2 + 0.5).clamp(0 , 1 ) __lowercase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() __lowercase = (images * 2_55).round().astype('uint8' ) __lowercase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(_UpperCAmelCase , mode='RGB' ).convert('L' ) for _ in images) ) __lowercase = [self.mel.image_to_audio(_UpperCAmelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(_UpperCAmelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(_UpperCAmelCase ) ) @torch.no_grad() def a__ ( self : Any , _UpperCAmelCase : List[Image.Image] , _UpperCAmelCase : int = 50 ) -> np.ndarray: """simple docstring""" assert isinstance(self.scheduler , _UpperCAmelCase ) self.scheduler.set_timesteps(_UpperCAmelCase ) __lowercase = np.array( [np.frombuffer(image.tobytes() , dtype='uint8' ).reshape((1, image.height, image.width) ) for image in images] ) __lowercase = (sample / 2_55) * 2 - 1 __lowercase = torch.Tensor(_UpperCAmelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): __lowercase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps __lowercase = self.scheduler.alphas_cumprod[t] __lowercase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) __lowercase = 1 - alpha_prod_t __lowercase = self.unet(_UpperCAmelCase , _UpperCAmelCase )['sample'] __lowercase = (1 - alpha_prod_t_prev) ** 0.5 * model_output __lowercase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) __lowercase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def a__ ( _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : torch.Tensor , _UpperCAmelCase : float ) -> torch.Tensor: """simple docstring""" __lowercase = acos(torch.dot(torch.flatten(_UpperCAmelCase ) , torch.flatten(_UpperCAmelCase ) ) / torch.norm(_UpperCAmelCase ) / torch.norm(_UpperCAmelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(_UpperCAmelCase ) + sin(alpha * theta ) * xa / sin(_UpperCAmelCase )
325
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCAmelCase_ ( lowerCAmelCase__ ): """simple docstring""" UpperCamelCase_ : List[Any] =( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) UpperCamelCase_ : List[Any] ="CIDAS/clipseg-rd64-refined" UpperCamelCase_ : Dict ="image_segmenter" UpperCamelCase_ : Union[str, Any] =CLIPSegForImageSegmentation UpperCamelCase_ : List[Any] =["image", "text"] UpperCamelCase_ : Union[str, Any] =["image"] def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> int: requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: return self.pre_processor(text=[label] , images=[image] , padding=_UpperCAmelCase , return_tensors='''pt''' ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Any: with torch.no_grad(): UpperCamelCase :Any = self.model(**_UpperCAmelCase ).logits return logits def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCamelCase :int = outputs.cpu().detach().numpy() UpperCamelCase :Optional[int] = 0 UpperCamelCase :int = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
259
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. SCREAMING_SNAKE_CASE__ = 10 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if array[i] == target: return i return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) while left <= right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __lowercase = one_third - 1 elif array[two_third] < target: __lowercase = two_third + 1 else: __lowercase = one_third + 1 __lowercase = two_third - 1 else: return -1 def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ) -> int: if left < right: if right - left < precision: return lin_search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = (left + right) // 3 + 1 __lowercase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(SCREAMING_SNAKE_CASE , one_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = input("""Enter numbers separated by comma:\n""").strip() SCREAMING_SNAKE_CASE__ = [int(item.strip()) for item in user_input.split(""",""")] assert collection == sorted(collection), F"List must be ordered.\n{collection}." SCREAMING_SNAKE_CASE__ = int(input("""Enter the number to be found in the list:\n""").strip()) SCREAMING_SNAKE_CASE__ = ite_ternary_search(collection, target) SCREAMING_SNAKE_CASE__ = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print("""Not found""")
325
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): if len(snake_case_ ) == 0: return False __UpperCAmelCase = len(snake_case_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case_ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case_ ) if __name__ == "__main__": _lowercase : Tuple = input('Enter numbers separated by comma:\n').strip() _lowercase : int = [int(item.strip()) for item in user_input.split(',')] _lowercase : Optional[int] = int(input('Enter the number to be found in the list:\n').strip()) _lowercase : List[Any] = '' if binary_search(sequence, target) else 'not ' print(f"""{target} was {not_str}found in {sequence}""")
332
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> List[str]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : nn.Module , _UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = module __lowercase = nn.Sequential( nn.Linear(module.in_features , _UpperCAmelCase , bias=_UpperCAmelCase ) , nn.Linear(_UpperCAmelCase , module.out_features , bias=_UpperCAmelCase ) , ) __lowercase = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=_UpperCAmelCase ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def a__ ( self : str , _UpperCAmelCase : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" return self.module(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) + self.adapter(_UpperCAmelCase ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module lowerCAmelCase__ : int = "bigscience/bloom-1b7" # Constant values lowerCAmelCase__ : Any = 2.109659552692574 lowerCAmelCase__ : str = "Hello my name is" lowerCAmelCase__ : Any = set() EXPECTED_OUTPUTS.add("Hello my name is John and I am a professional photographer. I" ) EXPECTED_OUTPUTS.add("Hello my name is John.\nI am a friend of your father.\n" ) EXPECTED_OUTPUTS.add("Hello my name is John Doe, I am a student at the University" ) lowerCAmelCase__ : List[Any] = 10 def a__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __lowercase = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" super().setUp() # Models and tokenizer __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : Any ) -> Optional[Any]: """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> int: """simple docstring""" __lowercase = self.model_abit.config self.assertTrue(hasattr(_UpperCAmelCase , 'quantization_config' ) ) __lowercase = config.to_dict() __lowercase = config.to_diff_dict() __lowercase = config.to_json_string() def a__ ( self : Dict ) -> Tuple: """simple docstring""" from bitsandbytes.nn import Paramsabit __lowercase = self.model_fpaa.get_memory_footprint() __lowercase = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __lowercase = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def a__ ( self : Tuple ) -> str: """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(_UpperCAmelCase , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def a__ ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" __lowercase = BitsAndBytesConfig() __lowercase = True __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) def a__ ( self : str ) -> List[str]: """simple docstring""" with self.assertRaises(_UpperCAmelCase ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __lowercase = BitsAndBytesConfig() with self.assertRaises(_UpperCAmelCase ): __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=_UpperCAmelCase , load_in_abit=_UpperCAmelCase , device_map='auto' , bnb_abit_quant_type='nf4' , ) def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" with self.assertRaises(_UpperCAmelCase ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.float() with self.assertRaises(_UpperCAmelCase ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) __lowercase = self.model_fpaa.to(torch.floataa ) __lowercase = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __lowercase = self.model_fpaa.to('cpu' ) # Check this does not throw an error __lowercase = self.model_fpaa.half() # Check this does not throw an error __lowercase = self.model_fpaa.float() def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=_UpperCAmelCase , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): @classmethod def a__ ( cls : int ) -> Tuple: """simple docstring""" __lowercase = 't5-small' __lowercase = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense __lowercase = AutoTokenizer.from_pretrained(cls.model_name ) __lowercase = 'Translate in German: Hello, my dog is cute' def a__ ( self : List[Any] ) -> Dict: """simple docstring""" gc.collect() torch.cuda.empty_cache() def a__ ( self : int ) -> int: """simple docstring""" from transformers import TaForConditionalGeneration __lowercase = TaForConditionalGeneration._keep_in_fpaa_modules __lowercase = None # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) __lowercase = modules def a__ ( self : str ) -> Optional[Any]: """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __lowercase = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) # test with `flan-t5-small` __lowercase = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) __lowercase = model.generate(**_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" super().setUp() # model_name __lowercase = 'bigscience/bloom-560m' __lowercase = 't5-small' # Different types of model __lowercase = AutoModel.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Sequence classification model __lowercase = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # CausalLM model __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) # Seq2seq model __lowercase = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=_UpperCAmelCase , device_map='auto' ) def a__ ( self : int ) -> List[str]: """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> str: """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( lowerCAmelCase__ ): def a__ ( self : str ) -> str: """simple docstring""" super().setUp() def a__ ( self : Dict ) -> Any: """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def a__ ( self : Tuple ) -> int: """simple docstring""" __lowercase = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __lowercase = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( lowerCAmelCase__ ): def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" super().setUp() def a__ ( self : List[Any] ) -> int: """simple docstring""" __lowercase = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=_UpperCAmelCase , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __lowercase = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch __lowercase = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=_UpperCAmelCase ) , self.EXPECTED_OUTPUTS ) class A__ ( lowerCAmelCase__ ): def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = 'facebook/opt-350m' super().setUp() def a__ ( self : Dict ) -> List[str]: """simple docstring""" if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters __lowercase = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=_UpperCAmelCase ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __lowercase = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __lowercase = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(_UpperCAmelCase ) ): __lowercase = LoRALayer(module.q_proj , rank=16 ) __lowercase = LoRALayer(module.k_proj , rank=16 ) __lowercase = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __lowercase = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __lowercase = model.forward(**_UpperCAmelCase ) out.logits.norm().backward() for module in model.modules(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(_UpperCAmelCase , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Any = "gpt2-xl" lowerCAmelCase__ : str = 3.3191854854152187
325
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class lowerCAmelCase_ ( lowerCAmelCase__ ): __lowerCamelCase : Tuple = "mra" def __init__( self , _lowerCAmelCase=50265 , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=1 , _lowerCAmelCase=0.02 , _lowerCAmelCase=1E-5 , _lowerCAmelCase="absolute" , _lowerCAmelCase=4 , _lowerCAmelCase="full" , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=1 , _lowerCAmelCase=0 , _lowerCAmelCase=2 , **_lowerCAmelCase , ) -> Tuple: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = type_vocab_size _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = block_per_row _lowerCAmelCase = approx_mode _lowerCAmelCase = initial_prior_first_n_blocks _lowerCAmelCase = initial_prior_diagonal_n_blocks
158
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
0
"""simple docstring""" import doctest from collections import deque import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self : Union[str, Any] ): __lowercase = [2, 1, 2, -1] __lowercase = [1, 2, 3, 4] def _lowercase ( self : Tuple ): __lowercase = len(self.first_signal ) __lowercase = len(self.second_signal ) __lowercase = max(_UpperCAmelCase, _UpperCAmelCase ) # create a zero matrix of max_length x max_length __lowercase = [[0] * max_length for i in range(_UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCAmelCase ): __lowercase = deque(self.second_signal ) rotated_signal.rotate(_UpperCAmelCase ) for j, item in enumerate(_UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal __lowercase = np.matmul(np.transpose(_UpperCAmelCase ), np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCAmelCase, 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
17
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class A__ : def __init__( self : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : bool = True , _UpperCAmelCase : bool = False ) -> Union[str, Any]: """simple docstring""" __lowercase = scheduler __lowercase = optimizers if isinstance(_UpperCAmelCase , (list, tuple) ) else [optimizers] __lowercase = split_batches __lowercase = step_with_optimizer __lowercase = GradientState() def a__ ( self : Optional[int] , *_UpperCAmelCase : int , **_UpperCAmelCase : str ) -> Union[str, Any]: """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __lowercase = AcceleratorState().num_processes for _ in range(_UpperCAmelCase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) else: self.scheduler.step(*_UpperCAmelCase , **_UpperCAmelCase ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" return self.scheduler.get_last_lr() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" return self.scheduler.state_dict() def a__ ( self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.scheduler.load_state_dict(_UpperCAmelCase ) def a__ ( self : Dict ) -> int: """simple docstring""" return self.scheduler.get_lr() def a__ ( self : Union[str, Any] , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : List[str] ) -> Any: """simple docstring""" return self.scheduler.print_lr(*_UpperCAmelCase , **_UpperCAmelCase )
325
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): if index == r: for j in range(__SCREAMING_SNAKE_CASE ): print(data[j] , end=' ' ) print(' ' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowercase = arr[i] combination_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , index + 1 , __SCREAMING_SNAKE_CASE , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # A temporary array to store all combination one by one lowercase = [0] * r # Print all combination using temporary array 'data[]' combination_util(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 0 , __SCREAMING_SNAKE_CASE , 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCAmelCase = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
195
import collections import importlib.util import os import re from pathlib import Path SCREAMING_SNAKE_CASE__ = """src/transformers""" # Matches is_xxx_available() SCREAMING_SNAKE_CASE__ = re.compile(r"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} SCREAMING_SNAKE_CASE__ = re.compile(r"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], SCREAMING_SNAKE_CASE__ = re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo SCREAMING_SNAKE_CASE__ = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*try:""") # Catches a line with else: SCREAMING_SNAKE_CASE__ = re.compile(r"""^\s*else:""") def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None __lowercase = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowercase = f.readlines() __lowercase = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure __lowercase = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __lowercase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): __lowercase = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] __lowercase = re.findall('\[([^\]]+)\]' , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __lowercase = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: __lowercase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __lowercase = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: __lowercase = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(', ' ) __lowercase = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __lowercase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase = {'none': objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __lowercase = lines[line_index] __lowercase = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int ) -> int: def find_duplicates(SCREAMING_SNAKE_CASE : Tuple ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase = [] for key in import_dict_objects.keys(): __lowercase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __lowercase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __lowercase = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: __lowercase = os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) __lowercase = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: __lowercase = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError('\n\n'.join(SCREAMING_SNAKE_CASE ) ) def __SCREAMING_SNAKE_CASE ( ) -> Dict: __lowercase = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob('*.py' ) ) ) == 0: continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace(os.path.sep , '.' ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue __lowercase = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) __lowercase = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules SCREAMING_SNAKE_CASE__ = [ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def __SCREAMING_SNAKE_CASE ( ) -> List[str]: # This is to make sure the transformers module imported is the one in the repo. __lowercase = importlib.util.spec_from_file_location( 'transformers' , os.path.join(SCREAMING_SNAKE_CASE , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __lowercase = spec.loader.load_module() __lowercase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: __lowercase = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
325
0
import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def a_ ( ) -> List[str]: _snake_case = argparse.ArgumentParser() parser.add_argument('--model_ckpt' , type=__lowercase , default='microsoft/unixcoder-base-nine' ) parser.add_argument('--num_epochs' , type=__lowercase , default=5 ) parser.add_argument('--batch_size' , type=__lowercase , default=6 ) parser.add_argument('--gradient_accumulation_steps' , type=__lowercase , default=1 ) parser.add_argument('--freeze' , type=__lowercase , default=__lowercase ) parser.add_argument('--learning_rate' , type=__lowercase , default=5E-4 ) parser.add_argument('--seed' , type=__lowercase , default=0 ) parser.add_argument('--lr_scheduler_type' , type=__lowercase , default='cosine' ) parser.add_argument('--num_warmup_steps' , type=__lowercase , default=10 ) parser.add_argument('--weight_decay' , type=__lowercase , default=0.0_1 ) parser.add_argument('--output_dir' , type=__lowercase , default='./results' ) return parser.parse_args() _lowerCamelCase : Union[str, Any] = load('''accuracy''') def a_ ( __lowercase : Dict ) -> Union[str, Any]: _snake_case , _snake_case = eval_pred _snake_case = np.argmax(__lowercase , axis=1 ) return metric.compute(predictions=__lowercase , references=__lowercase ) class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self : Dict , lowercase : List[str] ): '''simple docstring''' super().__init__() _snake_case = trainer def A ( self : Tuple , lowercase : Any , lowercase : Union[str, Any] , lowercase : str , **lowercase : Tuple ): '''simple docstring''' if control.should_evaluate: _snake_case = deepcopy(_UpperCAmelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' ) return control_copy def a_ ( ) -> str: _snake_case = get_args() set_seed(args.seed ) _snake_case = load_dataset('codeparrot/codecomplex' , split='train' ) _snake_case = dataset.train_test_split(test_size=0.2 ) _snake_case = train_test['test'].train_test_split(test_size=0.5 ) _snake_case = DatasetDict( { 'train': train_test['train'], 'test': test_validation['train'], 'valid': test_validation['test'], } ) print('Loading tokenizer and model' ) _snake_case = AutoTokenizer.from_pretrained(args.model_ckpt ) _snake_case = tokenizer.eos_token _snake_case = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _snake_case = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _snake_case = False _snake_case = ClassLabel(num_classes=7 , names=list(set(train_test_validation['train']['complexity'] ) ) ) def tokenize(__lowercase : Any ): _snake_case = tokenizer(example['src'] , truncation=__lowercase , max_length=1_024 ) _snake_case = labels.straint(example['complexity'] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _snake_case = train_test_validation.map( __lowercase , batched=__lowercase , remove_columns=train_test_validation['train'].column_names , ) _snake_case = DataCollatorWithPadding(tokenizer=__lowercase ) _snake_case = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='epoch' , save_strategy='epoch' , logging_strategy='epoch' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.0_1 , metric_for_best_model='accuracy' , run_name='complexity-java' , report_to='wandb' , ) _snake_case = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['train'] , eval_dataset=tokenized_datasets['valid'] , tokenizer=__lowercase , data_collator=__lowercase , compute_metrics=__lowercase , ) print('Training...' ) trainer.add_callback(CustomCallback(__lowercase ) ) trainer.train() if __name__ == "__main__": main()
282
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
0
def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ = [0 for i in range(r + 1 )] # nc0 = 1 lowerCAmelCase__ = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowerCAmelCase__ = min(UpperCamelCase_ , UpperCamelCase_ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
340
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: __lowercase = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False __lowercase = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __lowercase = [3, 3, 3, 3] __lowercase = [5, 5, 5, 5] elif "fl4" in model_name: __lowercase = [4, 4, 4, 4] __lowercase = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __lowercase = [3, 3, 3, 3] if "lrf" in model_name: __lowercase = [3, 3, 3, 3] else: __lowercase = [2, 2, 2, 2] if "tiny" in model_name: __lowercase = 96 elif "small" in model_name: __lowercase = 96 elif "base" in model_name: __lowercase = 128 elif "large" in model_name: __lowercase = 192 elif "xlarge" in model_name: __lowercase = 256 elif "huge" in model_name: __lowercase = 352 # set label information __lowercase = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __lowercase = 'imagenet-22k-id2label.json' else: __lowercase = 'imagenet-1k-id2label.json' __lowercase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) __lowercase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = {v: k for k, v in idalabel.items()} __lowercase = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE , depths=SCREAMING_SNAKE_CASE , focal_levels=SCREAMING_SNAKE_CASE , focal_windows=SCREAMING_SNAKE_CASE , use_conv_embed=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , use_post_layernorm=SCREAMING_SNAKE_CASE , use_layerscale=SCREAMING_SNAKE_CASE , ) return config def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict ) -> Dict: if "patch_embed.proj" in name: __lowercase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowercase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __lowercase = 'encoder.' + name if "encoder.layers" in name: __lowercase = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __lowercase = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __lowercase = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __lowercase = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __lowercase = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __lowercase = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __lowercase = 'layernorm.weight' if name == "norm.bias": __lowercase = 'layernorm.bias' if "head" in name: __lowercase = name.replace('head' , 'classifier' ) else: __lowercase = 'focalnet.' + name return name def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> List[str]: # fmt: off __lowercase = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __lowercase = model_name_to_url[model_name] print('Checkpoint URL: ' , SCREAMING_SNAKE_CASE ) __lowercase = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(SCREAMING_SNAKE_CASE ) __lowercase = val __lowercase = get_focalnet_config(SCREAMING_SNAKE_CASE ) __lowercase = FocalNetForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify conversion __lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowercase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE , image_mean=SCREAMING_SNAKE_CASE , image_std=SCREAMING_SNAKE_CASE , ) __lowercase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) __lowercase = processor(images=SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowercase = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __lowercase = image_transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE , atol=1E-4 ) __lowercase = model(**SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __lowercase = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": __lowercase = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": __lowercase = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": __lowercase = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": __lowercase = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": __lowercase = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
325
0
from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( __a = 4 ): snake_case_ : str = abs(__a ) or 4 return [[1 + x + y * row_size for x in range(__a )] for y in range(__a )] def SCREAMING_SNAKE_CASE__ ( __a ): return reverse_row(transpose(__a ) ) # OR.. transpose(reverse_column(matrix)) def SCREAMING_SNAKE_CASE__ ( __a ): return reverse_row(reverse_column(__a ) ) # OR.. reverse_column(reverse_row(matrix)) def SCREAMING_SNAKE_CASE__ ( __a ): return reverse_column(transpose(__a ) ) # OR.. transpose(reverse_row(matrix)) def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : Any = [list(__a ) for x in zip(*__a )] return matrix def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : int = matrix[::-1] return matrix def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : str = [x[::-1] for x in matrix] return matrix def SCREAMING_SNAKE_CASE__ ( __a ): for i in matrix: print(*__a ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) _SCREAMING_SNAKE_CASE = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) _SCREAMING_SNAKE_CASE = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
327
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE__ = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = "mask2former" lowerCAmelCase__ : List[Any] = ["swin"] lowerCAmelCase__ : str = {"hidden_size": "hidden_dim"} def __init__( self : Optional[int] , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : List[str] , ) -> int: """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) __lowercase = CONFIG_MAPPING['swin']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = backbone_config.pop('model_type' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(_UpperCAmelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) __lowercase = backbone_config __lowercase = feature_size __lowercase = mask_feature_size __lowercase = hidden_dim __lowercase = encoder_feedforward_dim __lowercase = activation_function __lowercase = encoder_layers __lowercase = decoder_layers __lowercase = num_attention_heads __lowercase = dropout __lowercase = dim_feedforward __lowercase = pre_norm __lowercase = enforce_input_projection __lowercase = common_stride __lowercase = ignore_value __lowercase = num_queries __lowercase = no_object_weight __lowercase = class_weight __lowercase = mask_weight __lowercase = dice_weight __lowercase = train_num_points __lowercase = oversample_ratio __lowercase = importance_sample_ratio __lowercase = init_std __lowercase = init_xavier_std __lowercase = use_auxiliary_loss __lowercase = feature_strides __lowercase = output_auxiliary_logits __lowercase = decoder_layers super().__init__(**_UpperCAmelCase ) @classmethod def a__ ( cls : Union[str, Any] , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" return cls( backbone_config=_UpperCAmelCase , **_UpperCAmelCase , ) def a__ ( self : str ) -> Dict[str, any]: """simple docstring""" __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
325
0
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCamelCase_ : Any = ComputeEnvironment.AMAZON_SAGEMAKER lowerCamelCase_ : Dict = True lowerCamelCase_ : int = "ml.p3.2xlarge" lowerCamelCase_ : Union[str, Any] = "accelerate_sagemaker_execution_role" lowerCamelCase_ : Any = "hf-sm" lowerCamelCase_ : Union[str, Any] = "us-east-1" lowerCamelCase_ : Any = 1 lowerCamelCase_ : str = "accelerate-sagemaker-1" lowerCamelCase_ : str = "1.6" lowerCamelCase_ : Any = "4.4" lowerCamelCase_ : List[str] = "train.py" lowerCamelCase_ : List[Any] = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] lowerCamelCase_ : str = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : int = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , _UpperCAmelCase ) assert isinstance(converted_args['''do_train'''] , _UpperCAmelCase ) assert isinstance(converted_args['''epochs'''] , _UpperCAmelCase ) assert isinstance(converted_args['''learning_rate'''] , _UpperCAmelCase ) assert isinstance(converted_args['''max_steps'''] , _UpperCAmelCase ) with pytest.raises(_UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
279
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: __lowercase = TOKENIZER_CLASSES else: __lowercase = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + 'Fast' )} logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: __lowercase = TOKENIZER_CLASSES[tokenizer_name] __lowercase = True if checkpoint_name is None: __lowercase = list(tokenizer_class.max_model_input_sizes.keys() ) else: __lowercase = [checkpoint_name] logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer __lowercase = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: __lowercase , __lowercase = checkpoint.split('/' ) __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: __lowercase = checkpoint __lowercase = dump_path else: __lowercase = None __lowercase = dump_path logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __lowercase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __lowercase = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __lowercase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowercase = None logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) __lowercase = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(F"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(F"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
325
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
289
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
0
def UpperCAmelCase_( a__ , a__ ): """simple docstring""" print('''\nThe shortest path matrix using Floyd Warshall algorithm\n''' ) for i in range(a__ ): for j in range(a__ ): if dist[i][j] != float('''inf''' ): print(int(dist[i][j] ) , end='''\t''' ) else: print('''INF''' , end='''\t''' ) print() def UpperCAmelCase_( a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = [[float('''inf''' ) for _ in range(a__ )] for _ in range(a__ )] for i in range(a__ ): for j in range(a__ ): SCREAMING_SNAKE_CASE : Dict = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(a__ ): # looping through rows of graph array for i in range(a__ ): # looping through columns of graph array for j in range(a__ ): if ( dist[i][k] != float('''inf''' ) and dist[k][j] != float('''inf''' ) and dist[i][k] + dist[k][j] < dist[i][j] ): SCREAMING_SNAKE_CASE : Optional[int] = dist[i][k] + dist[k][j] _print_dist(a__ , a__ ) return dist, v if __name__ == "__main__": a__ : List[Any] = int(input('''Enter number of vertices: ''')) a__ : Dict = int(input('''Enter number of edges: ''')) a__ : Dict = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): a__ : Union[str, Any] = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) a__ : Dict = int(input('''Enter source:''')) a__ : Optional[Any] = int(input('''Enter destination:''')) a__ : Union[str, Any] = float(input('''Enter weight:''')) a__ : List[Any] = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
313
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp SCREAMING_SNAKE_CASE__ = 5 SCREAMING_SNAKE_CASE__ = 10 @require_sentencepiece @require_tokenizers class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Optional[Any] = SpeechaTextTokenizer lowerCAmelCase__ : Any = False lowerCAmelCase__ : List[Any] = True def a__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() __lowercase = sp.SentencePieceProcessor() spm_model.Load(_UpperCAmelCase ) __lowercase = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_UpperCAmelCase ) )] __lowercase = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) __lowercase = Path(self.tmpdirname ) save_json(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_UpperCAmelCase , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self : str ) -> int: """simple docstring""" __lowercase = '<pad>' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCAmelCase ) , 10_01 ) def a__ ( self : int ) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def a__ ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) __lowercase = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [2_89, 50, 14, 1_74, 3_86] , ) __lowercase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) __lowercase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) __lowercase = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class A__ ( unittest.TestCase ): lowerCAmelCase__ : str = "valhalla/s2t_mustc_multilinguial_medium" lowerCAmelCase__ : Dict = "C'est trop cool" lowerCAmelCase__ : List[Any] = "Esto es genial" @classmethod def a__ ( cls : Any ) -> Optional[int]: """simple docstring""" __lowercase = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a__ ( self : Tuple ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def a__ ( self : str ) -> int: """simple docstring""" self.assertIn(_UpperCAmelCase , self.tokenizer.all_special_ids ) __lowercase = [ES_CODE, 4, 16_01, 47, 76_47, 2] __lowercase = self.tokenizer.decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __lowercase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _UpperCAmelCase ) def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = 'fr' __lowercase = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _UpperCAmelCase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a__ ( self : List[Any] ) -> Any: """simple docstring""" __lowercase = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) __lowercase = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
325
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _A ( SCREAMING_SNAKE_CASE__ : Optional[int] ): UpperCamelCase :List[str] = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] UpperCamelCase :List[str] = True if '''large''' in model_name or '''huge''' in model_name else False UpperCamelCase :Optional[int] = True if '''large''' in model_name or '''huge''' in model_name else False UpperCamelCase :Tuple = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: UpperCamelCase :List[Any] = [3, 3, 3, 3] UpperCamelCase :List[Any] = [5, 5, 5, 5] elif "fl4" in model_name: UpperCamelCase :Any = [4, 4, 4, 4] UpperCamelCase :Union[str, Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: UpperCamelCase :Tuple = [3, 3, 3, 3] if "lrf" in model_name: UpperCamelCase :List[Any] = [3, 3, 3, 3] else: UpperCamelCase :Optional[Any] = [2, 2, 2, 2] if "tiny" in model_name: UpperCamelCase :Any = 96 elif "small" in model_name: UpperCamelCase :List[str] = 96 elif "base" in model_name: UpperCamelCase :List[str] = 128 elif "large" in model_name: UpperCamelCase :Tuple = 192 elif "xlarge" in model_name: UpperCamelCase :Tuple = 256 elif "huge" in model_name: UpperCamelCase :str = 352 # set label information UpperCamelCase :Optional[int] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: UpperCamelCase :Any = '''imagenet-22k-id2label.json''' else: UpperCamelCase :Optional[int] = '''imagenet-1k-id2label.json''' UpperCamelCase :str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase :Dict = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} UpperCamelCase :Optional[int] = {v: k for k, v in idalabel.items()} UpperCamelCase :Tuple = FocalNetConfig( embed_dim=SCREAMING_SNAKE_CASE__ , depths=SCREAMING_SNAKE_CASE__ , focal_levels=SCREAMING_SNAKE_CASE__ , focal_windows=SCREAMING_SNAKE_CASE__ , use_conv_embed=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , use_post_layernorm=SCREAMING_SNAKE_CASE__ , use_layerscale=SCREAMING_SNAKE_CASE__ , ) return config def _A ( SCREAMING_SNAKE_CASE__ : Dict ): if "patch_embed.proj" in name: UpperCamelCase :List[Any] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: UpperCamelCase :Tuple = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: UpperCamelCase :List[str] = '''encoder.''' + name if "encoder.layers" in name: UpperCamelCase :Union[str, Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: UpperCamelCase :List[Any] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: UpperCamelCase :List[Any] = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: UpperCamelCase :int = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: UpperCamelCase :Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: UpperCamelCase :List[str] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": UpperCamelCase :int = '''layernorm.weight''' if name == "norm.bias": UpperCamelCase :Union[str, Any] = '''layernorm.bias''' if "head" in name: UpperCamelCase :str = name.replace('''head''' , '''classifier''' ) else: UpperCamelCase :Optional[Any] = '''focalnet.''' + name return name def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ): # fmt: off UpperCamelCase :int = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on UpperCamelCase :Union[str, Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase :str = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): UpperCamelCase :List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = val UpperCamelCase :Optional[int] = get_focalnet_config(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[str] = FocalNetForImageClassification(SCREAMING_SNAKE_CASE__ ) model.eval() # load state dict model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify conversion UpperCamelCase :List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase :str = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE__ , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=SCREAMING_SNAKE_CASE__ , crop_size=224 , do_normalize=SCREAMING_SNAKE_CASE__ , image_mean=SCREAMING_SNAKE_CASE__ , image_std=SCREAMING_SNAKE_CASE__ , ) UpperCamelCase :int = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) UpperCamelCase :int = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) UpperCamelCase :Optional[int] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) UpperCamelCase :Optional[Any] = image_transforms(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) UpperCamelCase :Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) UpperCamelCase :List[Any] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": UpperCamelCase :List[Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": UpperCamelCase :Optional[Any] = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": UpperCamelCase :Union[str, Any] = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": UpperCamelCase :Union[str, Any] = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": UpperCamelCase :Dict = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": UpperCamelCase :List[Any] = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) __snake_case = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
259
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : List[Any] = "layoutlmv3" def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=5_02_65 , _UpperCAmelCase : str=7_68 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[int]=30_72 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Optional[int]=5_12 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1e-5 , _UpperCAmelCase : str=1 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=10_24 , _UpperCAmelCase : int=1_28 , _UpperCAmelCase : Dict=1_28 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=1_28 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : List[Any]=2_56 , _UpperCAmelCase : int=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[int]=2_24 , _UpperCAmelCase : int=3 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : List[str] , ) -> Dict: """simple docstring""" super().__init__( vocab_size=_UpperCAmelCase , hidden_size=_UpperCAmelCase , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , intermediate_size=_UpperCAmelCase , hidden_act=_UpperCAmelCase , hidden_dropout_prob=_UpperCAmelCase , attention_probs_dropout_prob=_UpperCAmelCase , max_position_embeddings=_UpperCAmelCase , type_vocab_size=_UpperCAmelCase , initializer_range=_UpperCAmelCase , layer_norm_eps=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __lowercase = max_ad_position_embeddings __lowercase = coordinate_size __lowercase = shape_size __lowercase = has_relative_attention_bias __lowercase = rel_pos_bins __lowercase = max_rel_pos __lowercase = has_spatial_attention_bias __lowercase = rel_ad_pos_bins __lowercase = max_rel_ad_pos __lowercase = text_embed __lowercase = visual_embed __lowercase = input_size __lowercase = num_channels __lowercase = patch_size __lowercase = classifier_dropout class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : int = version.parse("1.12" ) @property def a__ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ] ) @property def a__ ( self : int ) -> float: """simple docstring""" return 1e-5 @property def a__ ( self : str ) -> int: """simple docstring""" return 12 def a__ ( self : str , _UpperCAmelCase : "ProcessorMixin" , _UpperCAmelCase : int = -1 , _UpperCAmelCase : int = -1 , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional["TensorType"] = None , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 40 , _UpperCAmelCase : int = 40 , ) -> Mapping[str, Any]: """simple docstring""" setattr(processor.image_processor , 'apply_ocr' , _UpperCAmelCase ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = processor.tokenizer.num_special_tokens_to_add(_UpperCAmelCase ) __lowercase = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence __lowercase = [[' '.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowercase = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowercase = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __lowercase = dict( processor( _UpperCAmelCase , text=_UpperCAmelCase , boxes=_UpperCAmelCase , return_tensors=_UpperCAmelCase , ) ) return inputs
325
0
"""simple docstring""" from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. _lowercase : Union[str, Any] = 10 def lowercase__ ( snake_case_ :int , snake_case_ :int , snake_case_ :list[int] , snake_case_ :int ): for i in range(snake_case_ , snake_case_ ): if array[i] == target: return i return -1 def lowercase__ ( snake_case_ :list[int] , snake_case_ :int ): __UpperCAmelCase = 0 __UpperCAmelCase = len(snake_case_ ) while left <= right: if right - left < precision: return lin_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = (left + right) // 3 + 1 __UpperCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: __UpperCAmelCase = one_third - 1 elif array[two_third] < target: __UpperCAmelCase = two_third + 1 else: __UpperCAmelCase = one_third + 1 __UpperCAmelCase = two_third - 1 else: return -1 def lowercase__ ( snake_case_ :int , snake_case_ :int , snake_case_ :list[int] , snake_case_ :int ): if left < right: if right - left < precision: return lin_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = (left + right) // 3 + 1 __UpperCAmelCase = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(snake_case_ , one_third - 1 , snake_case_ , snake_case_ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , snake_case_ , snake_case_ , snake_case_ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , snake_case_ , snake_case_ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : Dict = input('Enter numbers separated by comma:\n').strip() _lowercase : Optional[int] = [int(item.strip()) for item in user_input.split(',')] assert collection == sorted(collection), f"List must be ordered.\n{collection}." _lowercase : List[str] = int(input('Enter the number to be found in the list:\n').strip()) _lowercase : Dict = ite_ternary_search(collection, target) _lowercase : Union[str, Any] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(f"""Iterative search: {target} found at positions: {resulta}""") print(f"""Recursive search: {target} found at positions: {resulta}""") else: print('Not found')
332
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) # General docstring SCREAMING_SNAKE_CASE__ = """RegNetConfig""" # Base docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = [1, 1088, 7, 7] # Image classification docstring SCREAMING_SNAKE_CASE__ = """facebook/regnet-y-040""" SCREAMING_SNAKE_CASE__ = """tabby, tabby cat""" SCREAMING_SNAKE_CASE__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class A__ ( nn.Module ): def __init__( self : str , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 3 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[str] = "relu" , ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = nn.Convad( _UpperCAmelCase , _UpperCAmelCase , kernel_size=_UpperCAmelCase , stride=_UpperCAmelCase , padding=kernel_size // 2 , groups=_UpperCAmelCase , bias=_UpperCAmelCase , ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) __lowercase = ACTaFN[activation] if activation is not None else nn.Identity() def a__ ( self : Tuple , _UpperCAmelCase : List[str] ) -> str: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig ) -> Any: """simple docstring""" super().__init__() __lowercase = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) __lowercase = config.num_channels def a__ ( self : Optional[Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" __lowercase = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) __lowercase = self.embedder(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , stride=_UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.BatchNormad(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Tensor ) -> Tensor: """simple docstring""" __lowercase = self.convolution(_UpperCAmelCase ) __lowercase = self.normalization(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: """simple docstring""" super().__init__() __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) __lowercase = nn.Sequential( nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 ) , nn.Sigmoid() , ) def a__ ( self : str , _UpperCAmelCase : Dict ) -> str: """simple docstring""" __lowercase = self.pooler(_UpperCAmelCase ) __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_state * attention return hidden_state class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Tuple: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : List[str] , _UpperCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 1 ) -> Optional[Any]: """simple docstring""" super().__init__() __lowercase = in_channels != out_channels or stride != 1 __lowercase = max(1 , out_channels // config.groups_width ) __lowercase = ( RegNetShortCut(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase ) if should_apply_shortcut else nn.Identity() ) __lowercase = nn.Sequential( RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , groups=_UpperCAmelCase , activation=config.hidden_act ) , RegNetSELayer(_UpperCAmelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_UpperCAmelCase , _UpperCAmelCase , kernel_size=1 , activation=_UpperCAmelCase ) , ) __lowercase = ACTaFN[config.hidden_act] def a__ ( self : Tuple , _UpperCAmelCase : Any ) -> List[str]: """simple docstring""" __lowercase = hidden_state __lowercase = self.layer(_UpperCAmelCase ) __lowercase = self.shortcut(_UpperCAmelCase ) hidden_state += residual __lowercase = self.activation(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : RegNetConfig , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int = 2 , _UpperCAmelCase : int = 2 , ) -> Dict: """simple docstring""" super().__init__() __lowercase = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer __lowercase = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , stride=_UpperCAmelCase , ) , *[layer(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for _ in range(depth - 1 )] , ) def a__ ( self : Any , _UpperCAmelCase : str ) -> int: """simple docstring""" __lowercase = self.layers(_UpperCAmelCase ) return hidden_state class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : RegNetConfig ) -> int: """simple docstring""" super().__init__() __lowercase = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _UpperCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) __lowercase = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_UpperCAmelCase , config.depths[1:] ): self.stages.append(RegNetStage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , depth=_UpperCAmelCase ) ) def a__ ( self : int , _UpperCAmelCase : Tensor , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True ) -> BaseModelOutputWithNoAttention: """simple docstring""" __lowercase = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowercase = hidden_states + (hidden_state,) __lowercase = stage_module(_UpperCAmelCase ) if output_hidden_states: __lowercase = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_UpperCAmelCase , hidden_states=_UpperCAmelCase ) class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = RegNetConfig lowerCAmelCase__ : Optional[int] = "regnet" lowerCAmelCase__ : Dict = "pixel_values" lowerCAmelCase__ : List[str] = True def a__ ( self : Any , _UpperCAmelCase : Any ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu' ) elif isinstance(_UpperCAmelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def a__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=False ) -> Dict: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __lowercase = value SCREAMING_SNAKE_CASE__ = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ SCREAMING_SNAKE_CASE__ = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class A__ ( lowerCAmelCase__ ): def __init__( self : List[Any] , _UpperCAmelCase : Any ) -> str: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config __lowercase = RegNetEmbeddings(_UpperCAmelCase ) __lowercase = RegNetEncoder(_UpperCAmelCase ) __lowercase = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def a__ ( self : Tuple , _UpperCAmelCase : Tensor , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" __lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.embedder(_UpperCAmelCase ) __lowercase = self.encoder( _UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = encoder_outputs[0] __lowercase = self.pooler(_UpperCAmelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_UpperCAmelCase , pooler_output=_UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , lowerCAmelCase__ , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class A__ ( lowerCAmelCase__ ): def __init__( self : str , _UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" super().__init__(_UpperCAmelCase ) __lowercase = config.num_labels __lowercase = RegNetModel(_UpperCAmelCase ) # classification head __lowercase = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def a__ ( self : List[Any] , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[torch.LongTensor] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" __lowercase = return_dict if return_dict is not None else self.config.use_return_dict __lowercase = self.regnet(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , return_dict=_UpperCAmelCase ) __lowercase = outputs.pooler_output if return_dict else outputs[1] __lowercase = self.classifier(_UpperCAmelCase ) __lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowercase = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowercase = 'single_label_classification' else: __lowercase = 'multi_label_classification' if self.config.problem_type == "regression": __lowercase = MSELoss() if self.num_labels == 1: __lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __lowercase = CrossEntropyLoss() __lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowercase = BCEWithLogitsLoss() __lowercase = loss_fct(_UpperCAmelCase , _UpperCAmelCase ) if not return_dict: __lowercase = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_UpperCAmelCase , logits=_UpperCAmelCase , hidden_states=outputs.hidden_states )
325
0